Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Eukaryotic cell adhesion molecules (CAMs) are used by various cells and extracellular molecules in host defence against infection. They are involved in many processes including recognition by circulating phagocytes of a site of inflammation, transmigration through the endothelial barrier, diapedesis through basement membrane and extracellular matrix, and release of effector mechanisms at the infected site. CAMs involved in leucocyte-endothelial cell interaction include the selectins, integrins, and members of the immunoglobulin superfamily. However, CAMs are also used by various microorganisms (protozoa, fungi, bacteria, and viruses) during their pathogenesis. For example, bacteria that utilise CAMs include Mycobacterium tuberculosis, Listeria monocytogenes, Yersinia spp, enteropathogenic Escherichia coli, Shigella spp, Neisseria spp, Bordetella spp, and Borrelia burgdorferi. In addition, CAMs are involved in the pathogenetic effects of the RTX toxins of Pasteurella haemolytica, Actinobacillus actinomycetemcomitans, and the superantigen exotoxins of Staphylococcus aureus and Streptococcus pyogenes. A recurrent and topical theme of potential importance within the bacterial group is the intimate relation between CAMs, bacterial protein receptors, and type III secretion systems. For example, the IpaBCD protein complex is secreted by the type III system of Shigella flexneri and interacts with alpha 5 beta 1 integrin on the eukaryotic cell surface, followed by Rho mediated internalisation; this illustrates the relevance of cellular microbiology. CAMs might prove to be novel therapeutic targets. Comparative genomics has provided the knowledge of shared virulence determinants among diverse bacterial genera, and will continue to deepen our understanding of microbial pathogenesis, particularly in the context of the interaction of prokaryotic and eukaryotic molecules.

Free full text 


Logo of molpathLink to Publisher's site
Mol Pathol. 1999 Aug; 52(4): 220–230.
PMCID: PMC395703
PMID: 10694943

Cell adhesion molecules in the pathogenesis of and host defence against microbial infection.

Abstract

Eukaryotic cell adhesion molecules (CAMs) are used by various cells and extracellular molecules in host defence against infection. They are involved in many processes including recognition by circulating phagocytes of a site of inflammation, transmigration through the endothelial barrier, diapedesis through basement membrane and extracellular matrix, and release of effector mechanisms at the infected site. CAMs involved in leucocyte-endothelial cell interaction include the selectins, integrins, and members of the immunoglobulin superfamily. However, CAMs are also used by various microorganisms (protozoa, fungi, bacteria, and viruses) during their pathogenesis. For example, bacteria that utilise CAMs include Mycobacterium tuberculosis, Listeria monocytogenes, Yersinia spp, enteropathogenic Escherichia coli, Shigella spp, Neisseria spp, Bordetella spp, and Borrelia burgdorferi. In addition, CAMs are involved in the pathogenetic effects of the RTX toxins of Pasteurella haemolytica, Actinobacillus actinomycetemcomitans, and the superantigen exotoxins of Staphylococcus aureus and Streptococcus pyogenes. A recurrent and topical theme of potential importance within the bacterial group is the intimate relation between CAMs, bacterial protein receptors, and type III secretion systems. For example, the IpaBCD protein complex is secreted by the type III system of Shigella flexneri and interacts with alpha 5 beta 1 integrin on the eukaryotic cell surface, followed by Rho mediated internalisation; this illustrates the relevance of cellular microbiology. CAMs might prove to be novel therapeutic targets. Comparative genomics has provided the knowledge of shared virulence determinants among diverse bacterial genera, and will continue to deepen our understanding of microbial pathogenesis, particularly in the context of the interaction of prokaryotic and eukaryotic molecules.

Full Text

The Full Text of this article is available as a PDF (235K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Freemont AJ. Demystified ... adhesion molecules. Mol Pathol. 1998 Aug;51(4):175–184. [Europe PMC free article] [Abstract] [Google Scholar]
  • Humphries MJ. The molecular basis and specificity of integrin-ligand interactions. J Cell Sci. 1990 Dec;97(Pt 4):585–592. [Abstract] [Google Scholar]
  • Pugsley AP. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev. 1993 Mar;57(1):50–108. [Europe PMC free article] [Abstract] [Google Scholar]
  • Anderson DM, Schneewind O. A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science. 1997 Nov 7;278(5340):1140–1143. [Abstract] [Google Scholar]
  • Henderson IR, Navarro-Garcia F, Nataro JP. The great escape: structure and function of the autotransporter proteins. Trends Microbiol. 1998 Sep;6(9):370–378. [Abstract] [Google Scholar]
  • Cossart P, Boquet P, Normark S, Rappuoli R. Cellular microbiology emerging. Science. 1996 Jan 19;271(5247):315–316. [Abstract] [Google Scholar]
  • Lally ET, Kieba IR, Sato A, Green CL, Rosenbloom J, Korostoff J, Wang JF, Shenker BJ, Ortlepp S, Robinson MK, et al. RTX toxins recognize a beta2 integrin on the surface of human target cells. J Biol Chem. 1997 Nov 28;272(48):30463–30469. [Abstract] [Google Scholar]
  • Wright SD, Silverstein SC. Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med. 1983 Dec 1;158(6):2016–2023. [Europe PMC free article] [Abstract] [Google Scholar]
  • Berton G, Laudanna C, Sorio C, Rossi F. Generation of signals activating neutrophil functions by leukocyte integrins: LFA-1 and gp150/95, but not CR3, are able to stimulate the respiratory burst of human neutrophils. J Cell Biol. 1992 Feb;116(4):1007–1017. [Europe PMC free article] [Abstract] [Google Scholar]
  • Caron E, Hall A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science. 1998 Nov 27;282(5394):1717–1721. [Abstract] [Google Scholar]
  • Massol P, Montcourrier P, Guillemot JC, Chavrier P. Fc receptor-mediated phagocytosis requires CDC42 and Rac1. EMBO J. 1998 Nov 2;17(21):6219–6229. [Europe PMC free article] [Abstract] [Google Scholar]
  • Sherman IW, Crandall IE, Guthrie N, Land KM. The sticky secrets of sequestration. Parasitol Today. 1995 Oct;11(10):378–384. [Abstract] [Google Scholar]
  • Barnwell JW, Asch AS, Nachman RL, Yamaya M, Aikawa M, Ingravallo P. A human 88-kD membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand on Plasmodium falciparum-infected erythrocytes. J Clin Invest. 1989 Sep;84(3):765–772. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ockenhouse CF, Tandon NN, Magowan C, Jamieson GA, Chulay JD. Identification of a platelet membrane glycoprotein as a falciparum malaria sequestration receptor. Science. 1989 Mar 17;243(4897):1469–1471. [Abstract] [Google Scholar]
  • Berendt AR, Simmons DL, Tansey J, Newbold CI, Marsh K. Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature. 1989 Sep 7;341(6237):57–59. [Abstract] [Google Scholar]
  • Ockenhouse CF, Tegoshi T, Maeno Y, Benjamin C, Ho M, Kan KE, Thway Y, Win K, Aikawa M, Lobb RR. Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-infected erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1. J Exp Med. 1992 Oct 1;176(4):1183–1189. [Europe PMC free article] [Abstract] [Google Scholar]
  • Mosser DM, Edelson PJ. The third component of complement (C3) is responsible for the intracellular survival of Leishmania major. Nature. 327(6120):329–331. [Abstract] [Google Scholar]
  • Vines RR, Ramakrishnan G, Rogers JB, Lockhart LA, Mann BJ, Petri WA., Jr Regulation of adherence and virulence by the Entamoeba histolytica lectin cytoplasmic domain, which contains a beta2 integrin motif. Mol Biol Cell. 1998 Aug;9(8):2069–2079. [Europe PMC free article] [Abstract] [Google Scholar]
  • Gale C, Finkel D, Tao N, Meinke M, McClellan M, Olson J, Kendrick K, Hostetter M. Cloning and expression of a gene encoding an integrin-like protein in Candida albicans. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):357–361. [Europe PMC free article] [Abstract] [Google Scholar]
  • Gale CA, Bendel CM, McClellan M, Hauser M, Becker JM, Berman J, Hostetter MK. Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science. 1998 Feb 27;279(5355):1355–1358. [Abstract] [Google Scholar]
  • Thornton BP, Vetvicka V, Pitman M, Goldman RC, Ross GD. Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J Immunol. 1996 Feb 1;156(3):1235–1246. [Abstract] [Google Scholar]
  • Newman SL. Macrophages in host defense against Histoplasma capsulatum. Trends Microbiol. 1999 Feb;7(2):67–71. [Abstract] [Google Scholar]
  • Newman SL, Bucher C, Rhodes J, Bullock WE. Phagocytosis of Histoplasma capsulatum yeasts and microconidia by human cultured macrophages and alveolar macrophages. Cellular cytoskeleton requirement for attachment and ingestion. J Clin Invest. 1990 Jan;85(1):223–230. [Europe PMC free article] [Abstract] [Google Scholar]
  • Klotz SA, Hein RC, Smith RL, Rouse JB. The fibronectin adhesin of Candida albicans. Infect Immun. 1994 Oct;62(10):4679–4681. [Europe PMC free article] [Abstract] [Google Scholar]
  • Santoni G, Gismondi A, Liu JH, Punturieri A, Santoni A, Frati L, Piccoli M, Djeu JY. Candida albicans expresses a fibronectin receptor antigenically related to alpha 5 beta 1 integrin. Microbiology. 1994 Nov;140(Pt 11):2971–2979. [Abstract] [Google Scholar]
  • Bullock WE, Wright SD. Role of the adherence-promoting receptors, CR3, LFA-1, and p150,95, in binding of Histoplasma capsulatum by human macrophages. J Exp Med. 1987 Jan 1;165(1):195–210. [Europe PMC free article] [Abstract] [Google Scholar]
  • Michie CA, Cohen J. The clinical significance of T-cell superantigens. Trends Microbiol. 1998 Feb;6(2):61–65. [Abstract] [Google Scholar]
  • Kansas GS. Selectins and their ligands: current concepts and controversies. Blood. 1996 Nov 1;88(9):3259–3287. [Abstract] [Google Scholar]
  • Malik AB, Lo SK. Vascular endothelial adhesion molecules and tissue inflammation. Pharmacol Rev. 1996 Jun;48(2):213–229. [Abstract] [Google Scholar]
  • Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994 Jan 28;76(2):301–314. [Abstract] [Google Scholar]
  • Varki A. Selectin ligands: will the real ones please stand up? J Clin Invest. 1997 Jan 15;99(2):158–162. [Europe PMC free article] [Abstract] [Google Scholar]
  • Stockbauer KE, Magoun L, Liu M, Burns EH, Jr, Gubba S, Renish S, Pan X, Bodary SC, Baker E, Coburn J, et al. A natural variant of the cysteine protease virulence factor of group A Streptococcus with an arginine-glycine-aspartic acid (RGD) motif preferentially binds human integrins alphavbeta3 and alphaIIbbeta3. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):242–247. [Europe PMC free article] [Abstract] [Google Scholar]
  • Marth T, Kelsall BL. Regulation of interleukin-12 by complement receptor 3 signaling. J Exp Med. 1997 Jun 2;185(11):1987–1995. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ehlers MR, Daffé M. Interactions between Mycobacterium tuberculosis and host cells: are mycobacterial sugars the key? Trends Microbiol. 1998 Aug;6(8):328–335. [Abstract] [Google Scholar]
  • Verdegaal ME, Zegveld ST, van Furth R. Heat shock protein 65 induces CD62e, CD106, and CD54 on cultured human endothelial cells and increases their adhesiveness for monocytes and granulocytes. J Immunol. 1996 Jul 1;157(1):369–376. [Abstract] [Google Scholar]
  • Mengaud J, Ohayon H, Gounon P, Mege R-M, Cossart P. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell. 1996 Mar 22;84(6):923–932. [Abstract] [Google Scholar]
  • Dramsi S, Biswas I, Maguin E, Braun L, Mastroeni P, Cossart P. Entry of Listeria monocytogenes into hepatocytes requires expression of inIB, a surface protein of the internalin multigene family. Mol Microbiol. 1995 Apr;16(2):251–261. [Abstract] [Google Scholar]
  • Owen P, Meehan M, de Loughry-Doherty H, Henderson I. Phase-variable outer membrane proteins in Escherichia coli. FEMS Immunol Med Microbiol. 1996 Dec 1;16(2):63–76. [Abstract] [Google Scholar]
  • Kaper JB. EPEC delivers the goods. Trends Microbiol. 1998 May;6(5):169–173. [Abstract] [Google Scholar]
  • Kenny B, DeVinney R, Stein M, Reinscheid DJ, Frey EA, Finlay BB. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell. 1997 Nov 14;91(4):511–520. [Abstract] [Google Scholar]
  • Frankel G, Lider O, Hershkoviz R, Mould AP, Kachalsky SG, Candy DC, Cahalon L, Humphries MJ, Dougan G. The cell-binding domain of intimin from enteropathogenic Escherichia coli binds to beta1 integrins. J Biol Chem. 1996 Aug 23;271(34):20359–20364. [Abstract] [Google Scholar]
  • Nhieu GT, Sansonetti PJ. Mechanism of Shigella entry into epithelial cells. Curr Opin Microbiol. 1999 Feb;2(1):51–55. [Abstract] [Google Scholar]
  • Watarai M, Funato S, Sasakawa C. Interaction of Ipa proteins of Shigella flexneri with alpha5beta1 integrin promotes entry of the bacteria into mammalian cells. J Exp Med. 1996 Mar 1;183(3):991–999. [Europe PMC free article] [Abstract] [Google Scholar]
  • Clark MA, Hirst BH, Jepson MA. M-cell surface beta1 integrin expression and invasin-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer's patch M cells. Infect Immun. 1998 Mar;66(3):1237–1243. [Europe PMC free article] [Abstract] [Google Scholar]
  • Isberg RR, Leong JM. Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell. 1990 Mar 9;60(5):861–871. [Abstract] [Google Scholar]
  • Marra A, Isberg RR. Invasin-dependent and invasin-independent pathways for translocation of Yersinia pseudotuberculosis across the Peyer's patch intestinal epithelium. Infect Immun. 1997 Aug;65(8):3412–3421. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ohnishi Y, Beppu T, Horinouchi S. Two genes encoding serine protease homologues in Serratia marcescens and characterization of their products in Escherichia coli. J Biochem. 1997 May;121(5):902–913. [Abstract] [Google Scholar]
  • van Putten JP, Paul SM. Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrhoeae entry into human mucosal cells. EMBO J. 1995 May 15;14(10):2144–2154. [Europe PMC free article] [Abstract] [Google Scholar]
  • Chen T, Belland RJ, Wilson J, Swanson J. Adherence of pilus- Opa+ gonococci to epithelial cells in vitro involves heparan sulfate. J Exp Med. 1995 Aug 1;182(2):511–517. [Europe PMC free article] [Abstract] [Google Scholar]
  • Duensing TD, van Putten JP. Vitronectin mediates internalization of Neisseria gonorrhoeae by Chinese hamster ovary cells. Infect Immun. 1997 Mar;65(3):964–970. [Europe PMC free article] [Abstract] [Google Scholar]
  • Gómez-Duarte OG, Dehio M, Guzmán CA, Chhatwal GS, Dehio C, Meyer TF. Binding of vitronectin to opa-expressing Neisseria gonorrhoeae mediates invasion of HeLa cells. Infect Immun. 1997 Sep;65(9):3857–3866. [Europe PMC free article] [Abstract] [Google Scholar]
  • van Putten JP, Duensing TD, Cole RL. Entry of OpaA+ gonococci into HEp-2 cells requires concerted action of glycosaminoglycans, fibronectin and integrin receptors. Mol Microbiol. 1998 Jul;29(1):369–379. [Abstract] [Google Scholar]
  • Dehio C, Gray-Owen SD, Meyer TF. The role of neisserial Opa proteins in interactions with host cells. Trends Microbiol. 1998 Dec;6(12):489–495. [Abstract] [Google Scholar]
  • Geuijen CA, Willems RJ, Bongaerts M, Top J, Gielen H, Mooi FR. Role of the Bordetella pertussis minor fimbrial subunit, FimD, in colonization of the mouse respiratory tract. Infect Immun. 1997 Oct;65(10):4222–4228. [Europe PMC free article] [Abstract] [Google Scholar]
  • van't Wout J, Burnette WN, Mar VL, Rozdzinski E, Wright SD, Tuomanen EI. Role of carbohydrate recognition domains of pertussis toxin in adherence of Bordetella pertussis to human macrophages. Infect Immun. 1992 Aug;60(8):3303–3308. [Europe PMC free article] [Abstract] [Google Scholar]
  • Wong WS, Luk JM. Signaling mechanisms of pertussis toxin-induced myelomonocytic cell adhesion: role of tyrosine phosphorylation. Biochem Biophys Res Commun. 1997 Jul 18;236(2):479–482. [Abstract] [Google Scholar]
  • Lo SK, Lee S, Ramos RA, Lobb R, Rosa M, Chi-Rosso G, Wright SD. Endothelial-leukocyte adhesion molecule 1 stimulates the adhesive activity of leukocyte integrin CR3 (CD11b/CD18, Mac-1, alpha m beta 2) on human neutrophils. J Exp Med. 1991 Jun 1;173(6):1493–1500. [Europe PMC free article] [Abstract] [Google Scholar]
  • Everest P, Li J, Douce G, Charles I, De Azavedo J, Chatfield S, Dougan G, Roberts M. Role of the Bordetella pertussis P.69/pertactin protein and the P.69/pertactin RGD motif in the adherence to and invasion of mammalian cells. Microbiology. 1996 Nov;142(Pt 11):3261–3268. [Abstract] [Google Scholar]
  • Fernandez RC, Weiss AA. Cloning and sequencing of a Bordetella pertussis serum resistance locus. Infect Immun. 1994 Nov;62(11):4727–4738. [Europe PMC free article] [Abstract] [Google Scholar]
  • Finn TM, Stevens LA. Tracheal colonization factor: a Bordetella pertussis secreted virulence determinant. Mol Microbiol. 1995 May;16(4):625–634. [Abstract] [Google Scholar]
  • Li LJ, Dougan G, Novotny P, Charles IG. P.70 pertactin, an outer-membrane protein from Bordetella parapertussis: cloning, nucleotide sequence and surface expression in Escherichia coli. Mol Microbiol. 1991 Feb;5(2):409–417. [Abstract] [Google Scholar]
  • Li J, Fairweather NF, Novotny P, Dougan G, Charles IG. Cloning, nucleotide sequence and heterologous expression of the protective outer-membrane protein P.68 pertactin from Bordetella bronchiseptica. J Gen Microbiol. 1992 Aug;138(Pt 8):1697–1705. [Abstract] [Google Scholar]
  • Williams-Bouyer NM, Hill EM. Involvement of host cell tyrosine phosphorylation in the invasion of HEp-2 cells by Bartonella bacilliformis. FEMS Microbiol Lett. 1999 Feb 15;171(2):191–201. [Abstract] [Google Scholar]
  • Wang JF, Kieba IR, Korostoff J, Guo TL, Yamaguchi N, Rozmiarek H, Billings PC, Shenker BJ, Lally ET. Molecular and biochemical mechanisms of Pasteurella haemolytica leukotoxin-induced cell death. Microb Pathog. 1998 Dec;25(6):317–331. [Abstract] [Google Scholar]
  • Cinco M, Murgia R, Perticarari S, Presani G. Surface receptors of neutrophils towards B. burgdorferi. Wien Klin Wochenschr. 1998 Dec 23;110(24):866–869. [Abstract] [Google Scholar]
  • Coburn J, Leong JM, Erban JK. Integrin alpha IIb beta 3 mediates binding of the Lyme disease agent Borrelia burgdorferi to human platelets. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7059–7063. [Europe PMC free article] [Abstract] [Google Scholar]
  • Reife RA, Shapiro RA, Bamber BA, Berry KK, Mick GE, Darveau RP. Porphyromonas gingivalis lipopolysaccharide is poorly recognized by molecular components of innate host defense in a mouse model of early inflammation. Infect Immun. 1995 Dec;63(12):4686–4694. [Europe PMC free article] [Abstract] [Google Scholar]
  • Meyer DH, Mintz KP, Fives-Taylor PM. Models of invasion of enteric and periodontal pathogens into epithelial cells: a comparative analysis. Crit Rev Oral Biol Med. 1997;8(4):389–409. [Abstract] [Google Scholar]
  • Rottem S, Naot Y. Subversion and exploitation of host cells by mycoplasmas. Trends Microbiol. 1998 Nov;6(11):436–440. [Abstract] [Google Scholar]
  • Hodtsev AS, Choi Y, Spanopoulou E, Posnett DN. Mycoplasma superantigen is a CDR3-dependent ligand for the T cell antigen receptor. J Exp Med. 1998 Feb 2;187(3):319–327. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kobe B, Deisenhofer J. The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci. 1994 Oct;19(10):415–421. [Abstract] [Google Scholar]
  • Makhov AM, Hannah JH, Brennan MJ, Trus BL, Kocsis E, Conway JF, Wingfield PT, Simon MN, Steven AC. Filamentous hemagglutinin of Bordetella pertussis. A bacterial adhesin formed as a 50-nm monomeric rigid rod based on a 19-residue repeat motif rich in beta strands and turns. J Mol Biol. 1994 Aug 5;241(1):110–124. [Abstract] [Google Scholar]
  • Shevchenko DV, Akins DR, Robinson E, Li M, Popova TG, Cox DL, Radolf JD. Molecular characterization and cellular localization of TpLRR, a processed leucine-rich repeat protein of Treponema pallidum, the syphilis spirochete. J Bacteriol. 1997 May;179(10):3188–3195. [Europe PMC free article] [Abstract] [Google Scholar]
  • Mengaud J, Lecuit M, Lebrun M, Nato F, Mazie JC, Cossart P. Antibodies to the leucine-rich repeat region of internalin block entry of Listeria monocytogenes into cells expressing E-cadherin. Infect Immun. 1996 Dec;64(12):5430–5433. [Europe PMC free article] [Abstract] [Google Scholar]
  • Autenrieth IB, Firsching R. Penetration of M cells and destruction of Peyer's patches by Yersinia enterocolitica: an ultrastructural and histological study. J Med Microbiol. 1996 Apr;44(4):285–294. [Abstract] [Google Scholar]
  • Alrutz MA, Isberg RR. Involvement of focal adhesion kinase in invasin-mediated uptake. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13658–13663. [Europe PMC free article] [Abstract] [Google Scholar]
  • Lundgren E, Carballeira N, Vazquez R, Dubinina E, Bränden H, Persson H, Wolf-Watz H. Invasin of Yersinia pseudotuberculosis activates human peripheral B cells. Infect Immun. 1996 Mar;64(3):829–835. [Europe PMC free article] [Abstract] [Google Scholar]
  • Sandros J, Tuomanen E. Attachment factors of Bordetella pertussis: mimicry of eukaryotic cell recognition molecules. Trends Microbiol. 1993 Aug;1(5):192–196. [Abstract] [Google Scholar]
  • D'Souza SE, Ginsberg MH, Plow EF. Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends Biochem Sci. 1991 Jul;16(7):246–250. [Abstract] [Google Scholar]
  • Leininger E, Roberts M, Kenimer JG, Charles IG, Fairweather N, Novotny P, Brennan MJ. Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):345–349. [Europe PMC free article] [Abstract] [Google Scholar]
  • Minnick MF, Mitchell SJ, McAllister SJ. Cell entry and the pathogenesis of Bartonella infections. Trends Microbiol. 1996 Sep;4(9):343–347. [Abstract] [Google Scholar]
  • Evans DJ, Almond JW. Cell receptors for picornaviruses as determinants of cell tropism and pathogenesis. Trends Microbiol. 1998 May;6(5):198–202. [Abstract] [Google Scholar]
  • Mendelsohn CL, Wimmer E, Racaniello VR. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell. 1989 Mar 10;56(5):855–865. [Abstract] [Google Scholar]
  • Gavrilovskaya IN, Shepley M, Shaw R, Ginsberg MH, Mackow ER. beta3 Integrins mediate the cellular entry of hantaviruses that cause respiratory failure. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7074–7079. [Europe PMC free article] [Abstract] [Google Scholar]
  • Fox G, Parry NR, Barnett PV, McGinn B, Rowlands DJ, Brown F. The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). J Gen Virol. 1989 Mar;70(Pt 3):625–637. [Abstract] [Google Scholar]
  • Colonno RJ, Callahan PL, Long WJ. Isolation of a monoclonal antibody that blocks attachment of the major group of human rhinoviruses. J Virol. 1986 Jan;57(1):7–12. [Europe PMC free article] [Abstract] [Google Scholar]
  • Greve JM, Davis G, Meyer AM, Forte CP, Yost SC, Marlor CW, Kamarck ME, McClelland A. The major human rhinovirus receptor is ICAM-1. Cell. 1989 Mar 10;56(5):839–847. [Abstract] [Google Scholar]
  • Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Marlin SD, Springer TA. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell. 1989 Mar 10;56(5):849–853. [Abstract] [Google Scholar]
  • Shafren DR, Bates RC, Agrez MV, Herd RL, Burns GF, Barry RD. Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment. J Virol. 1995 Jun;69(6):3873–3877. [Europe PMC free article] [Abstract] [Google Scholar]
  • Agrez MV, Shafren DR, Gu X, Cox K, Sheppard D, Barry RD. Integrin alpha v beta 6 enhances coxsackievirus B1 lytic infection of human colon cancer cells. Virology. 1997 Dec 8;239(1):71–77. [Abstract] [Google Scholar]
  • Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science. 1997 Feb 28;275(5304):1320–1323. [Abstract] [Google Scholar]
  • Ward T, Pipkin PA, Clarkson NA, Stone DM, Minor PD, Almond JW. Decay-accelerating factor CD55 is identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. EMBO J. 1994 Nov 1;13(21):5070–5074. [Europe PMC free article] [Abstract] [Google Scholar]
  • Bergelson JM, Chan M, Solomon KR, St John NF, Lin H, Finberg RW. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6245–6248. [Europe PMC free article] [Abstract] [Google Scholar]
  • Powell RM, Schmitt V, Ward T, Goodfellow I, Evans DJ, Almond JW. Characterization of echoviruses that bind decay accelerating factor (CD55): evidence that some haemagglutinating strains use more than one cellular receptor. J Gen Virol. 1998 Jul;79(Pt 7):1707–1713. [Abstract] [Google Scholar]
  • Roivainen M, Piirainen L, Hovi T, Virtanen I, Riikonen T, Heino J, Hyypiä T. Entry of coxsackievirus A9 into host cells: specific interactions with alpha v beta 3 integrin, the vitronectin receptor. Virology. 1994 Sep;203(2):357–365. [Abstract] [Google Scholar]
  • Hyypiä T, Horsnell C, Maaronen M, Khan M, Kalkkinen N, Auvinen P, Kinnunen L, Stanway G. A distinct picornavirus group identified by sequence analysis. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8847–8851. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kaplan G, Totsuka A, Thompson P, Akatsuka T, Moritsugu Y, Feinstone SM. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. EMBO J. 1996 Aug 15;15(16):4282–4296. [Europe PMC free article] [Abstract] [Google Scholar]
  • Huber SA. VCAM-1 is a receptor for encephalomyocarditis virus on murine vascular endothelial cells. J Virol. 1994 Jun;68(6):3453–3458. [Europe PMC free article] [Abstract] [Google Scholar]
  • Poli G, Pantaleo G, Fauci AS. Immunopathogenesis of human immunodeficiency virus infection. Clin Infect Dis. 1993 Aug;17 (Suppl 1):S224–S229. [Abstract] [Google Scholar]
  • Moore DA, Henderson D, Gazzard BG. Neutrophil adhesion molecules in HIV disease. Clin Exp Immunol. 1998 Oct;114(1):73–77. [Abstract] [Google Scholar]
  • Levy JA. Three new human herpesviruses (HHV6, 7, and 8). Lancet. 1997 Feb 22;349(9051):558–563. [Abstract] [Google Scholar]
  • Lusso P, Secchiero P, Crowley RW, Garzino-Demo A, Berneman ZN, Gallo RC. CD4 is a critical component of the receptor for human herpesvirus 7: interference with human immunodeficiency virus. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3872–3876. [Europe PMC free article] [Abstract] [Google Scholar]
  • Warren AP, Owens CN, Borysiewicz LK, Patel K. Down-regulation of integrin alpha 1/beta 1 expression and association with cell rounding in human cytomegalovirus-infected fibroblasts. J Gen Virol. 1994 Dec;75(Pt 12):3319–3325. [Abstract] [Google Scholar]
  • Summerford C, Bartlett JS, Samulski RJ. AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med. 1999 Jan;5(1):78–82. [Abstract] [Google Scholar]
  • Stone DM, Norton LK, Davis WC. Modulation of bovine leukemia virus-associated spontaneous lymphocyte proliferation by monoclonal antibodies to lymphocyte surface molecules. Clin Immunol Immunopathol. 1997 May;83(2):156–164. [Abstract] [Google Scholar]
  • Sinclair JP, Shearer WT. Current Status of CD4-Based Therapies for Prophylaxis and Treatment of HIV Infection. BioDrugs. 1997 Aug;8(2):128–138. [Abstract] [Google Scholar]
  • Hengel H, Brune W, Koszinowski UH. Immune evasion by cytomegalovirus--survival strategies of a highly adapted opportunist. Trends Microbiol. 1998 May;6(5):190–197. [Abstract] [Google Scholar]
  • Dobrescu D, Ursea B, Pope M, Asch AS, Posnett DN. Enhanced HIV-1 replication in V beta 12 T cells due to human cytomegalovirus in monocytes: evidence for a putative herpesvirus superantigen. Cell. 1995 Sep 8;82(5):753–763. [Abstract] [Google Scholar]
  • Brown EJ, Lindberg FP. Leucocyte adhesion molecules in host defence against infection. Ann Med. 1996 Jun;28(3):201–208. [Abstract] [Google Scholar]
  • Tedder TF, Steeber DA, Chen A, Engel P. The selectins: vascular adhesion molecules. FASEB J. 1995 Jul;9(10):866–873. [Abstract] [Google Scholar]
  • Bevilacqua MP, Stengelin S, Gimbrone MA, Jr, Seed B. Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science. 1989 Mar 3;243(4895):1160–1165. [Abstract] [Google Scholar]
  • Geng JG, Bevilacqua MP, Moore KL, McIntyre TM, Prescott SM, Kim JM, Bliss GA, Zimmerman GA, McEver RP. Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature. 1990 Feb 22;343(6260):757–760. [Abstract] [Google Scholar]
  • Koedam JA, Cramer EM, Briend E, Furie B, Furie BC, Wagner DD. P-selectin, a granule membrane protein of platelets and endothelial cells, follows the regulated secretory pathway in AtT-20 cells. J Cell Biol. 1992 Feb;116(3):617–625. [Europe PMC free article] [Abstract] [Google Scholar]
  • Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ, Holzmann B, Weissman IL, Hamann A, Butcher EC. Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell. 1993 Jul 16;74(1):185–195. [Abstract] [Google Scholar]
  • Briskin MJ, McEvoy LM, Butcher EC. MAdCAM-1 has homology to immunoglobulin and mucin-like adhesion receptors and to IgA1. Nature. 1993 Jun 3;363(6428):461–464. [Abstract] [Google Scholar]
  • Mawby WJ, Holmes CH, Anstee DJ, Spring FA, Tanner MJ. Isolation and characterization of CD47 glycoprotein: a multispanning membrane protein which is the same as integrin-associated protein (IAP) and the ovarian tumour marker OA3. Biochem J. 1994 Dec 1;304(Pt 2):525–530. [Europe PMC free article] [Abstract] [Google Scholar]
  • Reinhold MI, Lindberg FP, Plas D, Reynolds S, Peters MG, Brown EJ. In vivo expression of alternatively spliced forms of integrin-associated protein (CD47). J Cell Sci. 1995 Nov;108(Pt 11):3419–3425. [Abstract] [Google Scholar]
  • Muller WA, Weigl SA, Deng X, Phillips DM. PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med. 1993 Aug 1;178(2):449–460. [Europe PMC free article] [Abstract] [Google Scholar]
  • Cooper D, Lindberg FP, Gamble JR, Brown EJ, Vadas MA. Transendothelial migration of neutrophils involves integrin-associated protein (CD47). Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3978–3982. [Europe PMC free article] [Abstract] [Google Scholar]
  • Butcher EC. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell. 1991 Dec 20;67(6):1033–1036. [Abstract] [Google Scholar]
  • von Andrian UH, Berger EM, Ramezani L, Chambers JD, Ochs HD, Harlan JM, Paulson JC, Etzioni A, Arfors KE. In vivo behavior of neutrophils from two patients with distinct inherited leukocyte adhesion deficiency syndromes. J Clin Invest. 1993 Jun;91(6):2893–2897. [Europe PMC free article] [Abstract] [Google Scholar]
  • Etzioni A, Harlan JM, Pollack S, Phillips LM, Gershoni-Baruch R, Paulson JC. Leukocyte adhesion deficiency (LAD) II: a new adhesion defect due to absence of sialyl Lewis X, the ligand for selectins. Immunodeficiency. 1993;4(1-4):307–308. [Abstract] [Google Scholar]
  • Frydman M, Etzioni A, Eidlitz-Markus T, Avidor I, Varsano I, Shechter Y, Orlin JB, Gershoni-Baruch R. Rambam-Hasharon syndrome of psychomotor retardation, short stature, defective neutrophil motility, and Bombay phenotype. Am J Med Genet. 1992 Oct 1;44(3):297–302. [Abstract] [Google Scholar]
  • Harlan JM. Leukocyte adhesion deficiency syndrome: insights into the molecular basis of leukocyte emigration. Clin Immunol Immunopathol. 1993 Jun;67(3 Pt 2):S16–S24. [Abstract] [Google Scholar]
  • Kishimoto TK, Hollander N, Roberts TM, Anderson DC, Springer TA. Heterogeneous mutations in the beta subunit common to the LFA-1, Mac-1, and p150,95 glycoproteins cause leukocyte adhesion deficiency. Cell. 1987 Jul 17;50(2):193–202. [Abstract] [Google Scholar]
  • Lindberg FP, Gresham HD, Schwarz E, Brown EJ. Molecular cloning of integrin-associated protein: an immunoglobulin family member with multiple membrane-spanning domains implicated in alpha v beta 3-dependent ligand binding. J Cell Biol. 1993 Oct;123(2):485–496. [Europe PMC free article] [Abstract] [Google Scholar]
  • Piali L, Hammel P, Uherek C, Bachmann F, Gisler RH, Dunon D, Imhof BA. CD31/PECAM-1 is a ligand for alpha v beta 3 integrin involved in adhesion of leukocytes to endothelium. J Cell Biol. 1995 Jul;130(2):451–460. [Europe PMC free article] [Abstract] [Google Scholar]
  • Lampugnani MG, Resnati M, Dejana E, Marchisio PC. The role of integrins in the maintenance of endothelial monolayer integrity. J Cell Biol. 1991 Feb;112(3):479–490. [Europe PMC free article] [Abstract] [Google Scholar]
  • Gresham HD, Goodwin JL, Allen PM, Anderson DC, Brown EJ. A novel member of the integrin receptor family mediates Arg-Gly-Asp-stimulated neutrophil phagocytosis. J Cell Biol. 1989 May;108(5):1935–1943. [Europe PMC free article] [Abstract] [Google Scholar]
  • Gresham HD, Adams SP, Brown EJ. Ligand binding specificity of the leukocyte response integrin expressed by human neutrophils. J Biol Chem. 1992 Jul 15;267(20):13895–13902. [Abstract] [Google Scholar]
  • Zhou M, Brown EJ. Leukocyte response integrin and integrin-associated protein act as a signal transduction unit in generation of a phagocyte respiratory burst. J Exp Med. 1993 Oct 1;178(4):1165–1174. [Europe PMC free article] [Abstract] [Google Scholar]

Articles from Molecular Pathology : MP are provided here courtesy of BMJ Publishing Group

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/42585071
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/42585071

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1136/mp.52.4.220

Supporting
Mentioning
Contrasting
0
60
0

Article citations


Go to all (48) article citations