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Supplementary Methods

Benchmarking code

The code used to run the count-based algorithms is contained in the file inst/
script/runScripts.R in the DESeq2paper package (available at http://www.
huber.embl.de/DESeq2paper). The code for the simulations is referenced from
the simulations vignette in this package. The code which ran the algorithms over
the real datasets is contained in the files inst/script/pickrell/diffExpr.R
(the specificity analysis run on the Pickrell et al. [1] dataset) and inst/script/
bottomly/diffExpr.R (for the sensitivity and precision analysis run on the Bot-
tomly et al. [2] dataset). The Cuffdiff 2 commands are contained in the inst/

script/pickrell/ and inst/script/bottomly/ directories.

Supplementary Tables

i€{l,...,n} gene index
je{l,...,m} sample index
r€{0,...,p—1} covariate index, with intercept r =0

K;; counts of reads for gene ¢, sample j

ti;  fitted mean
«; gene-specific dispersion
s; sample-specific size factor

sij  gene- and sample-specific normalization factor

gi; proportional to true concentration of fragments

zjr elements of the design matrix X

Bir  the logarithmic fold change for gene ¢ and covariate r
[i; mean of normalized counts of gene i
o2 prior variance for logarithmic dispersions

0%, sampling variance of logarithmic dispersion estimator
512r variance estimate for logarithmic residuals of dispersion

af"  gene-wise dispersion estimate

a4 (fi;)  trended dispersion fit
ozi-VIAP maximum a posteriori estimate of dispersion

o2  prior variance for logarithmic fold change r
Y; covariance matrix for B_;

Additional file 1: Table S1: Notation


http://www.huber.embl.de/DESeq2paper
http://www.huber.embl.de/DESeq2paper

m p «  theor. var. sample var.
6 2 0.05 0.645 0.670
6 2 0.20 0.645 0.642
8 2 0.05 0.395 0.409
8 2 0.20 0.395 0.396
8 3 0.05 0.490 0.530
8 3 0.20 0.490 0.462
16 2 0.05 0.154 0.160
16 2 0.20 0.154 0.138
16 3 0.05 0.166 0.169
16 3 0.20 0.166 0.156

Additional file 1: Table S2: Theoretical and sample variance of logarithmic disper-
sion estimates for various combinations of sample size m, number of parameters
p and true dispersion a. The estimates are the DESeq2 gene-wise estimates from
4000 simulated genes with Negative Binomial counts with a mean of 1024. The
sample variance of the logarithmic dispersion estimates is generally close to the
approximation of theoretical variance.

function/package version additional information

DESeq (old)  1.16.0 using the GLM test
DESeq2 1.4.0
edgeR 3.6.0 wusing GLM and trended dispersion estimation

DSS 2.2.0
voom: limma 3.20.1
SAMseq: samr 2.0 using samr.pvalues.from.perms for p-values

EBSeq 1.4.0 (1 —PPDE) used for FDR cutoff, following user guide
Cuffdiff 2 2.1.1
GFOLD 1.1.2
PoiClaClu 1.0.2

Additional file 1: Table S3: Versions of software used in manuscript



Supplementary Figures
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Additional file 1: Figure S1: Shrinkage estimation of dispersion over all
genes. Plot of dispersion estimates over the average expression strength (A)
for the Bottomly et al. [2] dataset with 6 samples across 2 conditions and (B)
for the Pickrell et al. [1] dataset with 5 samples fitting only an intercept term.
This plot shows the same data as Figure 1, but with dispersions drawn for all
genes instead of only a subset. The points at the bottom of the plot typically
arise from genes for which the observed variance is below the variance expected
under a Poisson model. In such a case, the maximum-likelihood estimate will
be essential zero, and appears here with the surrogate value 10~8. Vertical lines
indicate the reciprocal of the asymptotic dispersion «q, on the scale of raw counts
for the samples with the smallest and largest size factor. The lines hence mark
the count range where Poisson noise and overdispersion contribute about equally
to the observed variance. For very low count values (left of the lines), dispersion
estimates become unreliable, causing possible overestimation (Methods).
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Additional file 1: Figure S2: Scatterplot of various estimates of dispersion
using DESeq2, against the true dispersion in the logarithmic scale (base
10) from simulated counts. The blue, red, and yellow colors indicate regions
of increasing density of points. Counts for 4000 genes and for 10 samples in two
groups were simulated with no true difference in means. The Negative Binomial
counts had mean and dispersion drawn from the joint distribution of the mean
and gene-wise dispersion estimates from the Pickrell et al. dataset. The estimates
shown are genewise, the CR-adjusted maximum likelihood estimate; fit the value
from the fitted curve; mazimum, the maximum of the two previous values (the
estimate used in the older version of DESeq); and MAP, the maximum a pos-
teriori estimate used in DESeq2. The correlations shown in the bottom panels
do not include the very low gene-wise estimates of dispersion which can result
in potential false positives. The MAP, shrunken estimates used in DESeq2 were
closer to the diagonal, while the mazimum estimate was typically above the true
value of dispersion, which can lead to overly-conservative inference of differential
expression.
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Additional file 1: Figure S3: “Concordance at the top” plot. DESeq?2 is run
on equally split halves of the data of Bottomly et al. [2] and the proportion of genes
in common after ranking by absolute logarithmic fold changes is compared [3]. On
the y-axis is the number of genes in common between the splits divided by the
size of the top-ranked list. The MAP estimate of logarithmic fold change and
the MLE after adding a pseudocount of 1 to all samples provide nearly the same
concordance for various cutoffs, while ranking by the MLE on raw counts has
generally low concordance. For further demonstrations of the advantage of MAP
over pseudocount, see section Benchmarks.
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Additional file 1: Figure S4: Cook’s distance outlier detection. Shown are
normalized counts and Cook’s distances for a 7 by 7 comparison of the Bot-
tomly et al. [2] dataset. (A) Normalized counts for a single gene, samples divided
into groups by strains (light green and light blue). Dotted segments represent
fitted means. An apparent outlier is highlighted in red. (B) The Cook’s distances
for each sample for this gene, and the 99% quantile of the F'(p, m — p) cutoff used
for flagging outliers. Note the logarithmic scaling of the y-axis. (C) The normal-
ized counts after replacing the outlier with the trimmed mean over all samples,
scaled by size factor. The fitted means now are less affected by the single outlier
sample.
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Additional file 1: Figure S5: Scatterplots of estimated logarithmic fold
changes from all algorithms. log, fold changes are estimated from one of
the verification sets of the Bottomly et al. [2] dataset (see section Benchmarks
on RNA-seq data). Bottom panels display the Pearson correlation coefficients.
We note that the direction of the estimate of differential expression for DESeq2
and Cuffdiff 2 accorded for the majority of genes called differentially expressed:
Among genes which were called differentially expressed by either of these two
algorithms, both agreed on the sign of the estimated logarithmic fold change for
96% of genes (averaged over all 30 replicates) in the evaluation set and for 96%
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Additional file 1: Figure S6: True logarithmic fold changes and the ob-
served logarithmic fold changes induced by the simulation for differen-
tial expression. The left plots show the true logarithmic fold changes and true
logarithm of base mean, while the right plots show the observed logarithmic fold
changes and observed logarithm of the mean of counts for a 4 vs 4 sample com-
parison. The observed logarithmic fold change was calculated as the logarithm
of the mean of counts in one group divided by the mean of counts in the second
group. In the top row, all true logarithmic fold changes were equal to zero. On
the bottom row, 20% of true logarithmic fold changes were set to a fixed value
as in the simulation benchmark for differential expression. We note that mean-
independent fixed fold changes produced an MA-plot of observed logarithmic fold
changes with mean dependence which is similar to that seen in real data, as in
Additional file 1: Figure S7.
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Additional file 1: Figure S7: M A-plot from real data. The observed logarith-
mic fold changes were generated from a 4 vs 4 sample comparison of the Pickrell
et al. dataset, wherein there was no known phenotypic difference dividing the
groups. The observed logarithmic fold change was calculated as the logarithm of
the mean of normalized counts in one group divided by the mean of normalized
counts in the second group. The observed mean of counts was calculated as the
mean of normalized counts across all samples.
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Additional file 1: Figure S8: Use of simulation to assess the sensitivity
and specificity of algorithms across combinations of sample size and
effect size. Shown are results for the benchmark through simulation described
in the main text and in Figure 6. The sensitivity was calculated as the fraction of
genes with adjusted p-value less than 0.1 among the genes with true differences
between group means. The specificity was calculated as the fraction of genes with
p-value greater than 0.01 among the genes with no true differences between group
means. The p-value was chosen instead of the adjusted p-value, as this allows
for comparison against the expected fraction of p-values less than a critical value
given the uniformity of p-values under the null hypothesis. DESeq2 often had the
highest sensitivity of those algorithms which control the false positive rate, i.e.,
those algorithms which fall on or to the left of the vertical black line (1% p-values
less than 0.01 for the non-DE genes). EBSeq results were not included in this
plot as it returns posterior probabilities, which unlike p-values are not expected
to be uniformly distributed under the null hypothesis.
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Additional file 1: Figure S9: The dependence of sensitivity on the mean of
counts for a gene in simulated data. Shown are results for the benchmark
through simulation described in Figure 6 and Additional file 1: Figure S8. The
sensitivity of algorithms across combinations of sample size and effect size in the
simulated datasets is further stratified by the mean of counts of the differentially
expressed genes. The height of the sensitivity curves in this figure corresponds to
those shown in Figure 6 and Additional file 1: Figure S8 which demonstrates the
total sensitivity of each algorithm. Points indicate the average over 6 replicates.
All algorithms show an expected dependence of sensitivity on the mean of counts.
We note that EBSeq version 1.4.0 by default removes low count genes — whose
75% quantile of normalized counts is less than 10 — before differential expression
calling.
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Additional file 1: Figure S10: Sensitivity-specificity curves for detecting
true differences in the presence of outliers. Negative Binomial counts were
simulated for 4000 genes and total sample sizes (m) of 10 and 20, for a two-group
comparison. 80% of the simulated genes had no true differential expression, while
for 20% of the genes true logarithmic (base 2) fold changes were randomly drawn
from {-1, 1}. The number of genes with simulated outliers was increased from 0%
to 15%. The outliers were constructed for a gene by multiplying the count of a
single sample by 100. Sensitivity and specificity were calculated by thresholding
on p-values. Points indicate an adjusted p-value cutoff of 0.1. DESeq2 with the
default settings and edgeR with the robust setting had higher area under the
curve compared to running edgeR without the robust option, turning off DESeq2
gene filtering, and turning off DESeq2 outlier replacement. DESeq2 filters genes
with potential outliers for samples with 3 to 6 replicates and replaces outliers for
samples with 7 or more replicates, hence the filtering can be turned off for the
top row (m = 10) and the replacement can be turned off for the bottom row
(m = 20).
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Additional file 1: Figure S11: Outlier handling: One minus the precision
(false discovery rate) plotted over various thresholds of adjusted p-
value. Shown are the results for the same simulation with outliers described in
Additional file 1: Figure S10. Points indicate an adjusted p-value cutoff of 0.1.
edgeR run with the robust setting had false discovery rate generally above the
nominal value from the adjusted p-value threshold (black diagonal line). DESeq2
run with default settings was generally at or below the line, which indicated
control of the false discovery rate.
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Additional file 1: Figure S12: Benchmarking LFC estimation: Models for
simulating logarithmic (base 2) fold changes. For the bell model, true
logarithmic fold changes were drawn from a Normal with mean 0 and variance 1.
For the slab bell model, true logarithmic fold changes were drawn for 80% of genes
from a Normal with mean 0 and variance 1 and for 20% of genes from a Uniform
distribution with range from -4 to 4. For the slab spike model, true logarithmic
fold changes were drawn similarly to the slab bell model except the Normal is
replaced with a spike of logarithmic fold changes at 0. For the spike spike model,
true logarithmic fold changes were drawn according to a spike of logarithmic fold
changes at 0 (80%) and a spike randomly sampled from -2 or 2 (20%). These
spikes represent fold changes of 1/4 and 4, respectively.
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Additional file 1: Figure S13: Root mean squared error (RMSE) for esti-
mating logarithmic fold changes under the four models of logarithmic
fold changes and varying total sample size m. Simulated Negative Binomial
counts were generated for two groups and for 1000 genes. Points and error bars
are drawn for the mean and 95% confidence interval over 10 replicates. DESeq2
and GFOLD, which both implement posterior logarithmic fold change estimates,
had lower root mean squared error to the true logarithmic fold changes over all
genes, compared to predictive logarithmic fold changes from edgeR, either using
the default value of 0.125 for the edgeR argument prior.count, or after increasing
prior.count to 10 (edgeR predFC10).
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Additional file 1: Figure S14: Root mean squared error (RMSE) of log-
arithmic fold change estimates, only considering genes with non-zero
true logarithmic fold change. For the same simulation as shown in Addi-
tional file 1: Figure S13, shown here is the error only for the 20% of genes with
non-zero true logarithmic fold changes (for bell and slab bell all genes have non-
zero logarithmic fold change). DESeq2 had generally lower root mean squared
error, compared to GFOLD which had higher error for large sample size and to
edgeR which had higher error for low sample size.
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Additional file 1: Figure S15: Mean absolute error (MAE) of logarithmic
fold change estimates. Results for the same simulation as shown in Addi-
tional file 1: Figure S13, however here using mean absolute error in place of root
mean squared error. Mean absolute error places less weight on the largest errors.
For the bell and slab bell models, DESeq?2 and GFOLD had the lowest mean ab-
solute error, while for the slab spike and spike spike models, GFOLD and edgeR
with a prior.count of 10 had lowest mean absolute error.
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Additional file 1: Figure S16: Mean absolute error (MAE) of logarithmic
fold change estimates, only considering those genes with non-zero true
logarithmic fold change. While in Additional file 1: Figure S15, considering
all genes for the slab spike and spike spike models, GFOLD and edgeR with a
prior.count of 10 had lowest mean absolute error, the mean absolute error for
these methods was relatively large for large sample size, when considering only
the 20% of genes with true differentially expression. DESeq2 and edgeR generally
had the lowest mean absolute error.
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Additional file 1: Figure S17: Adjusted Rand Index of clusters using var-
ious transformation and distances compared to the true clusters from
simulation. 4 simulated clusters with 4 samples each were generated using Neg-
ative Binomial counts over 2000 genes using the means and gene-wise estimates
of dispersion from the Pickrell et al. dataset. 80% of genes were given equal
mean across clusters, while for 20% of genes, logarithm (base 2) fold changes
from a centroid were drawn from a zero-centered Normal distribution while vary-
ing the standard deviation (SD, x-axis). Larger standard deviation resulted in
more distinct clusters, which are easier for the methods to recover. Simulation
was performed with equal size factors, and with size factors for each group set to
1,1, %, 3]. The methods assessed were: Euclidean distance on counts normalized
by size factor, logarithm of normalized counts plus a pseudocount of 1, rlog trans-
formed counts and variance stabilized counts (VST). Additionally, the Poisson
Distance from the PoiClaClu package and the Biological Coefficient of Variation
(BCV) distance from the plotMDS function of the edgeR package were used for
hierarchical clustering. We note that the default distance used by plotMDS is
not the BCV distance but more similar to the Euclidean distance of logarithmic
counts. The points and error bars indicate the mean and 95% confidence interval
from 20 replicates. In the simulations with equal size factors, the Poisson dis-
tance, the VST and the rlog had the highest accuracy in recovering true clusters.
In the unequal size factor simulations, the rlog outperformed the other methods.
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Additional file 1: Figure S18: Diagram of the evaluation scheme for the
benchmarks using real RN A-seq data. The Bottomly et al. dataset with 10
and 11 replicates was split into a 3 vs 3 “evaluation set” and a 7 vs 8 “verification
set”. The positive calls from the verification set, denoted as set V, were taken
as a pseudo-gold standard of truly differentially expressed genes. The algorithms
were then evaluated based on the set E of positive calls in the evaluation set,
comparing to the gold-standard calls from the set V. Sensitivity was calculated
as |E NV|/|V] and precision was calculated as |E N V|/|E|. Each algorithm’s
calls in the evaluation set were compared against each algorithm’s calls in the
verification set.
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Additional file 1: Figure S19: Actual versus nominal false discovery rate for
the Bottomly et al. dataset. The actual false discovery rate was calculated
using the median of (1 — precision), though here varying the adjusted p-value
cutoff, i.e., the nominal FDR, for the evaluation set (for EBSeq, the posterior
probability of equal expression was used). A false positive was defined as a call in
the evaluation set for a given critical value of adjusted p-value which did not have
adjusted p-value less than 0.1 in the verification set. Ideally, curves should fall on
the identity line (indicated by a black line); curves that fall above indicate that an
algorithm is too permissive (anti-conservative), curves falling below indicate that
an algorithm does not use its type-I error budget, i.e., is conservative. DESeq2
had a false discovery rate nearly matching the nominal false discovery rate (black
diagonal line) for the majority of algorithms used to determine the verification
set calls. The old DESeq tool was often too conservative.
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Additional file 1: Figure S20: Sensitivity of algorithms evaluated while con-
trolling the median precision. While it was generally noted that sensitivity
and precision were negatively correlated (Figures 8 and 9), here this effect was con-
trolled by setting the adjusted p-value cutoff for the evaluation set calls such that
the median precision of all algorithms would be 0.9 (actual false discovery rate of
0.1). This amounted to finding the point on the x-axis in Additional file 1: Figure
S19, where the curve crosses 0.1 on the y-axis. For most algorithms, this meant
setting an adjusted p-value cutoff below 0.1. DESeq2 often had the highest me-
dian sensitivity for a given target precision, though the variability across random
replicates was generally larger than the difference between algorithms.
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Additional file 1: Figure S21: Number of total calls in the evaluation set (3
vs 3 samples) of the sensitivity/precision analysis using the Bottomly et al. [2]
dataset thresholding at adjusted p-value < 0.1, over 30 replications.
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Additional file 1: Figure S22: Number of total calls in the verification set (7
vs 8 samples) of the sensitivity /precision analysis using the Bottomly et al. [2]
dataset thresholding at adjusted p-value < 0.1, over 30 replications.
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Additional file 1: Figure S23: Clustering of each algorithm’s calls on
the evaluation set (3 vs 3 samples) for one replicate of the sensitiv-
ity /precision benchmark. Genes are on the vertical axis and algorithms on
the horizontal axis. Red lines indicate a gene had adjusted p-value < 0.1 in the
evaluation set. Genes in which no algorithm had a call are not shown. Clustering
is based on the Jaccard index.
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Additional file 1: Figure S24: Clustering of algorithm calls on the verifica-
tion set (7 vs 8 samples) for one replicate of the sensitivity/precision
benchmark. Genes are on the vertical axis and algorithms on the horizontal
axis. Red lines indicate a gene had adjusted p-value < 0.1 in the verification set.
Genes in which no algorithm had a call are not shown. Clustering is based on the
Jaccard index.
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Additional file 1: Figure S25: Demonstration through simulation that the
dependence of dispersions on the mean seen in Figure 1B is not an
artifact of estimation bias. (A) The gene-wise estimates of dispersion for
the 69 samples of the Pickrell et al. dataset. (B) The gene-wise estimates of
dispersion for a simulated Negative Binomial dataset, using a fixed dispersion of
a = 0.16, equal to the asymptotic gene-wise dispersion estimate ag seen in the
original dataset (A), and with the same means and the same number of genes
and samples as the original dataset. Genes with dispersion estimates below the
plotting range are depicted at the bottom of the frame. For genes with mean
counts greater than ~ 5, the gene-wise dispersion estimates do not exhibit a
dependence on the mean count for the simulated data in panel B. Vertical lines
indicate the reciprocal of the asymptotic dispersion ag, on the scale of raw counts
for the 1%¢, 274 and 3'¢ quartile of the size factors.
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Additional file 1: Figure S26: Marginal null histogram of the test statistic,
p-values, conditioning on the filter statistic, the row mean of normal-
ized counts across all samples, used for independent filtering. A simu-
lated dataset was constructed with (A) 6 samples or (B) 12 samples and 20,000
genes. In either case the samples were equally divided into 2 groups with no
true difference between the means of the two groups. The means and dispersions
of the Negative Binomial simulated data were drawn from the estimates from
the Pickrell et al. dataset, and the standard DESeq2 pipeline was run. The his-
togram of p-values was estimated at 16 equally spaced intervals spanning [0, 1].
The marginal distributions of the test statistic were generally uniform while con-
ditioning on bins based on the filter statistic. The row mean bin with the smallest
mean of normalized counts (mean count 0 — 10) was depleted of small p-values.
The black line indicates the expected frequency for a Uniform distribution.
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