Supplementary Appendix

This appendix has been provided by the authors to give readers additional information about their work.

Supplement to: Inker LA, Schmid CH, Tighiouart H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 2012;367:20-9. DOI: 10.1056/NEJMoa1114248.

Table of contents

		Page
List of collabor	rators	2
Methods		3
Figure S1	Distribution of Difference and Percent Difference between Measured and Estimated GFR	5
Figure S2	Performance of Estimating Equations by Clinical Subgroups	6
Table S1a	Category 1: Studies and Participant Characteristics.	7
Table S1b	Category 2: Studies and Participant Characteristics.	9
Table S2	Serum Cystatin C Measurements or Calibration by Study.	10
Table S3	Previously Developed Equations in CKD Populations Re-expressed for Use with Standardized Serum Creatinine or Serum Cystatin C.	11
Table S4	Forms of Variables and Coefficients in the CKD-EPI Equations Developed in Diverse Population.	12
Table S5	Newly Developed Equations that May Be of Interest in Research	14
Table S6	Comparison of Performance of Equations in the Development Dataset by Level of GFR and Race.	15
Table S7	Performance within the Development Dataset with Data Available on Proteinuria, overall and by proteinuria subgroup.	17
Table S8	Performance of Cystatin C Estimating Equation with and without Diabetes in Development and External Validation Datasets.	18
Table S9	Performance of Cystatin C Estimating Equation with and without Weight in Development and External Validation Datasets.	20
Table S10	Performance of Equations Developed in CKD Populations in the External Validation Dataset	21
Table S11	Performance by Study in the Validation Dataset.	22
Table S12:	Reclassification of People with Measured GFR of Greater and Lower than 60 ml/min per 1.73 m ² Using Estimated GFR Computed from the Creatinine to the Creatinine-Cystatin C equation across Subgroups in the Validation Dataset.	23
Table S13	Reclassification of Measured GFR Above and Below Different Thresholds Estimated GFR Computed from the Creatinine to the Creatinine-Cystatin C equation in the Validation Dataset.	24
Supplemental I	References	25

Acknowledgements

In addition to the authors, the following were collaborators and provided data: *African American Study of Kidney Disease and Hypertension (AASK)* - Gabriel Contreras, MD MPH, Julia B. Lewis, MD; *Captopril in Diabetic Nephropathy Study (CSG)* - Roger A. Rodby, MD, Richard D. Rohde, BS; *Chronic Renal Insufficiency Cohort (CRIC)* - Harold I. Feldman, MD MSCE, Lawrence J. Appel, MD MPH, Jing Chen, MD MS, Alan S. Go, MD, Lee Hamm, MD, Chi-yuan Hsu, MD, James P. Lash, MD, Akinlolu O. Ojo, MD, Mahboob Rahman, MD, Raymond R. Townsend, MD, Matthew R. Weir, MD, Jackson T. Wright, MD;

Cleveland Clinic Foundation (CCF)- Phillip Hall, MD, Emilio Poggio, MD; Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP)-Vicente Torres, MD PhD Diabetes Control and Complications Trial (DCCT)- Saul Genuth, MD, Michael W. Steffes, MD PhD; Groningen Renal Hemodynamic Cohort Study Group (GRECO)- Gerjan Navis, MD PhD; International Diabetic Nephropathy Study Group (IDNSG) and the Renin-Angiotensin System Study (RASS)-Michael Mauer, MD;Departments of Clinical Chemistry and Nephrology, University hospital, Lund, Sweden- Anders Grubb, MD PhD, Omran Bakoush, MD PhD;Mayo Clinic- Andrew D. Rule, MD MS, Timothy Larson, MD, Fernando Cosio, MD; Modification of Diet in Renal Disease (MDRD) Study- Gerald Beck, PhD; NephroTest Cohort: Jerome Rossert, MD PhD, Marc Froissart, MD PhD; ;Steno Diabetes Center- Hans-Henrik Parving, MD PhD, Peter Rossing, MD DMSc

Scientific Advisory Committee for CKD-EPI: Allan Collins, MD FACP, University of Minnesota, Minneapolis, MN; Gary Curhan, MD ScD, Brigham and Women's Hospital, Boston, MA; Ralph D'Agostino, PhD, Boston University, Boston, MA; John Eckfeldt, MD PhD, University of Minnesota, Minneapolis, MN; Adeera Levin, MD FRCP(C), University of British Columbia, Vancouver, BC

Supplemental Methods

Hypothesis

We hypothesized that equations developed in a diverse dataset would be less biased than our prior equations developed in CKD populations^{1,2}, especially at higher GFR, and that an equation using creatinine and cystatin C together would be more precise than equations using either filtration marker alone.

Detailed Methods for Equation Development and Validation

Analyses in the development dataset. As in previous work, we pre-specified a process for developing equations using transformations of continuous variables and inclusion of categorical variables and interactions among all variables to develop a number of candidate equations³. The base models were developed using least squares linear regression to relate log transformed measured GFR to log serum creatinine and/or log cystatin C, age, and sex. We also used nonparametric smoothing splines to characterize the shape of the relationship of log measured GFR with log creatinine and log cystatin C. We then approximated the smoothing splines by piecewise linear splines to represent observed non-linearity. Other candidate variables included the other filtration marker, race (black vs. white and other), diabetes (yes/no) and weight. Black race and diabetes status were ascertained in the original studies⁴⁻¹⁴. These additional variables as well as pair-wise interactions among all variables were included if they were significant at a pvalue of <0.01 for additional variables and <0.001 for interactions. Models that demonstrated improved model performance [relative reduction in root mean square error (RMSE) by 2% or more overall and 5% in pre-specified subgroups of estimated GFR, age, sex, race, body mass index (BMI) and diabetes] were brought forward into internal validation. We examined

heterogeneity among studies by cross-validation, comparing coefficients for Black and diabetes within each study that included such patients, and examination of relative performance of the equations among studies. We also evaluated performance by level of proteinuria in the subset of studies with available data.

Analyses in the internal validation dataset. We verified the statistical significance of predictor variables and interactions in all models³. Models that met these criteria were brought forward into external validation. Development and internal validation datasets were combined into one dataset (called "development dataset" hereafter) to derive final coefficients for each model.

Analyses in the external validation dataset. As in our prior work, we used a pre-specified process to compare performance of the multiple models developed in the development dataset to each other as well as to the CKD-EPI creatinine equation³, and to our prior equations using cystatin C developed in CKD populations re-expressed for standardized cystatin C values^{1,2} (Table S3). We also compared the predictions from the creatinine-cystatin C equation to those calculated from the average of the CKD-EPI creatinine equation and cystatin C equation. We compared performance of equations in the overall dataset and in the subgroups described above, and final models were selected based on the combination of ranking of RMSE overall and within subgroups, clinically significant differences, as well as ease of application in clinical practice.³ For all steps, sensitivity analyses evaluated robustness of results across studies.

Figure S1: Distribution of difference and percent difference between measured and estimated GFR. Top panel: Difference between measured and estimated GFR. Solid lines indicate median difference (median bias) and dashed lines indicate 25^{th} and 75^{th} percentile for the difference (interquartile range). Bottom panel: Percent difference between measured and estimated GFR. Distance between the black dashed lines indicate the proportion that fall within 30% of measured GFR (P_{30}) and distance between the gray dashed lines indicate the proportion that fall within 20% of measured GFR (P_{20}). 1- P_{30} and 1- P_{20} represent the proportion with errors larger than 30% and 20%, respectively.

Figure S2: Performance of estimating equations by clinical subgroups. Top panel Bias: Median difference between measured and estimated GFR; Bottom panel: Accuracy: Percentage of estimates greater than 30% of measured GFR (1-P₃₀)

Table S1a. Category 1: Studies and Participant Characteristics

Name	MDRD Study ⁴	AASK ⁵	DCCT ⁶	CSG ⁷	CRIC ⁸	CCFP	CCFP Donor
Study Characteristics							
Type	RS	RS	RS	RS	RS	CP	CP
Center	MC	MC	MC	MC	MC	SC	SC
N	1046	1647	985	285	653	88	96
Filtration Marker	Iothalamate	Iothalamate	Iothalamate	Iothalamate	Iothalamate	Iothalamate	Iothalamate
Dates	1989-1992	1995-1998	1987-1989	1987-1992	2003-2005	1996-2003	1996-2003
Clinical Characteristics							
Age (years), mean (SD)	52 (13)	54 (10)	29 (6)	34 (8)	55 (14)	54 (13)	43 (12)
Age categories, N (%)							
<40	215 (21)	168 (10)	985 (100)	210 (74)	115 (18)	12 (14)	38 (40)
40-65	660 (63)	1211 (74)	0 (0)	75 (26)	345 (53)	58 (66)	57 (59)
>65	171 (16)	268 (16)	0 (0)	0(0)	193 (30)	18 (20)	1(1)
Sex (Female), N (%)	408 (39)	592 (36)	450 (46)	126 (44)	301 (46)	33 (38)	48 (50)
Blacks, N (%)	102 (10)	1647 (100)	27 (3)	23 (8)	283 (43)	7 (8)	10 (10)
Diabetes, N (%)	60 (6)	0(0)	985 (100)	285 (100)	294 (45)	18 (20)	3 (3)
Type	Type 2	None	Type 1	Type 1	Type 1 and 2	Type 1 and 2	None
Height (cm), mean (SD)	171 (10)	171 (10)	173 (10)	170 (10)	169 (10)	172 (10)	172 (9)
Weight (kg), mean (SD)	79 (16)	90 (21)	73 (12)	74 (13)	91 (24)	85 (21)	78 (15)
BMI (kg/m ²), mean (SD)	27 (4)	31 (7)	25 (3)	26 (6)	32 (8)	28 (6)	26 (4)
<20, N (%)	4 (40)	38 (2)	37 (4)	42 (15)	21(3)	4 (5)	6 (6)
20-25, N (%)	327 (31)	269 (16)	557 (57)	94 (33)	98 (15)	23 (26)	34 (35)
25-30, N (%)	431 (41)	555 (34)	343 (35)	98 (35)	185 (28)	32 (36)	36 (38)
>30, N (%)	248 (24)	785 (48)	48 (5)	50 (18)	349 (53)	29 (33)	20 (21)
GFR (mL/min/1.73 m ²), mean (SD)	33 (14)	57 (23)	124 (20)	72 (33)	50 (21)	53 (31)	102 (18)
Serum creatinine (mg/dL), mean (SD)	2.3 (1.1)	1.7 (0.8)	0.8 (0.1)	1.4 (0.6)	1.7 (0.6)	1.7 (1.1)	0.8 (0.2)
Standardized Cystatin C (mg/dL), mean (SD)	2.1 (0.7)	1.5 (0.6)	0.7 (0.1)	1.3 (0.6)	1.6 (0.5)	1.7 (0.9)	0.8 (0.1)

Table S1a. Category 1: Studies and Participant Characteristics (continued)

Name	MAYO CKD ¹⁰	MAYO Donor ¹⁰	GRONINGEN CKD ¹¹	GRONINGEN Donor ¹²	RASS ¹³	CRISP ¹⁴
Study Characteristics	CKD	Donor	CKD	Donor		
	CP	CP	CP	СР	RS	Cohort
Type	SC	SC	SC	SC		MC
Center					MC	
N File di Mala	203	50	29	34	39	197
Filtration Marker	Iothalamate	Iothalamate	Iothalamate	Iothalamate	Iothalamate, Iohexol	Iothalamate
Dates	1999-2000	1996-2002	2005 - 2007	2005-2007	1998-2006	2000-2001
Clinical Characteristics						
Age (years), mean (SD)	55 (16)	41 (11)	41(14)	52 (13)	24 (5)	34 (8)
Age categories, N (%)						
<40	39 (19)	19 (38)	17 (59)	6 (18)	39 (100)	145 (74)
40-65	103 (51)	30 (60)	12 (41)	22 (65)	0(0)	52 (26)
>65	61(30)	1 (2)	0(0)	6 (18)	0(0)	0 (0)
Sex (Female), N (%)	91 (45)	34 (68)	27 (59)	13 (38)	15 (38)	117 (59)
Blacks, N (%)	1 (0)	0 (0)	1 (3)	0 (0)	1 (3)	21 (11)
Diabetes, N (%)	37 (18)	0 (0)	5 (17)	0 (0)	39 (100)	0 (0)
Type	Type 1 and 2	None	Type 1 and 2	None	Type 1	None
Height (cm), mean (SD)	171 (10)	168 (9)	170 (11)	177 (10)	171 (10)	173 (11)
Weight (kg), mean (SD)	87 (23)	80 (17)	71(14)	83 (17)	75 (15)	78 (18)
BMI (kg/m ²), mean (SD)	30 (7)	28 (6)	24 (3)	26 (4)	26 (4)	26 (5)
<20, N (%)	7 (3)	1 (2)	2 (7)	1 (3)	0(0)	15 (8)
20-25, N (%)	44 (22)	14 (28)	16 (56)	12 (35)	19 (49)	78 (40)
25-30, N (%)	73 (36)	20 (40)	10 (34)	13 (38)	16 (41)	69 (35)
>30, N (%)	79 (39)	15 (30)	1 (3)	8 (24)	4 (10)	35 (18)
GFR (mL/min/1.73 m ²), mean (SD)	51 (29)	101 (16)	82 (33)	103 (19)	143 (19)	95 (23)
Serum creatinine (mg/dL), mean (SD)	1.6 (0.2)	0.7 (0.2)	1.1 (0.8)	0.9 (0.1)	0.8 (0.1)	0.9 (0.2)
Standardized Cystatin C (mg/dL), mean (SD)	1.8 (0.8)	0.9 (0.1)	1.4 (0.7)	1.0 (0.1)	0.8 (0.1)	0.9 (0.2)

Abbreviations: MDRD Study, Modification of Diet in Renal Disease Study; AASK, African American Study of Kidney Diseases and Hypertension; DCCT, Diabetes Control and Complications Trial; CSG, Collaborative Study Group: Captopril in Diabetic Nephropathy Study; CRIC, Chronic Renal Insufficiency Cohort Study; CCF, Cleveland Clinic Foundation; MC, multicenter; SC, Single Center; RS, research study; CP, clinical population; SC, single center; MC, multi-center; GFR, glomerular filtration rate; BMI, body mass index; SD, standard deviation To convert GFR from mL/min/1.73 m² to mL/s/m², multiply by 0.0167. To convert serum creatinine from mg/dL to µmol/L, multiply by 88.4.

Table S1b: Category 2: Studies and Participant Characteristics

Name	NephroTest ¹⁵	Steno 16-18	RASS ¹³	Lund CKD ¹⁹	Lund
					Donor ¹⁹
Study Characteristics					
Type	CP	RCT	RCT	CP	CP
Center	SC	SC	MC	SC	SC
N	313	245	211	343	7
Filtration Marker	EDTA	EDTA	Iohexol	Iohexol	Iohexol
Dates	1993-2007	1989-2003	1998-2006	2003	2003
Clinical Characteristics					
Age (years), mean (SD)	59 (15)	43 (9)	33 (9)	58 (16)	59 (10)
Age categories, N (%)					
<40	38 (12)	110 (45)	161 (76)	46 (13)	2 (29)
40-65	159 (51)	134 (55)	50 (24)	182 (53)	5 (71)
>65	116 (37)	1 (0)	0 (0)	115 (34)	0 (0)
Sex (Female), N (%)	90 (29)	85 (35)	109 (52)	167 (49)	5 (71)
Blacks, N (%)	25 (8)	0 (0)	5 (2)	0 (0)	0 (0)
Diabetes, N (%)	72 (23)	245 (100)	211 (100)	66 (19)	0 (0)
Type	Type 1 and 2	Type 1	Type 1	Type 1 and 2	None
Height (cm), mean (SD)	168 (9)	173 (9)	171 (9)	170 (10)	174 (9)
Weight (kg), mean (SD)	74 (16)	72 (12)	76 (14)	74 (17)	79 (10)
BMI (kg/m ²), mean (SD)	26 (4)	24 (3)	26 (4)	26 (5)	26 (2)
<20, N (%)	22 (7)	20 (8)	0 (0)	39 (11)	0 (0)
20-25, N (%)	117 (37)	147 (60)	98 (46)	139 (41)	2 (29)
25-30, N (%)	119 (38)	66 (27)	84 (40)	112 (33)	5 (71)
>30, N (%)	55 (18)	12 (5)	29 (14)	53 (15)	0 (0)
GFR (mL/min/1.73 m ²), mean (SD)	35 (18)	72 (31)	128 (19)	64 (33)	88 (18)
Serum creatinine (mg/dL), mean (SD)	2.4 (1.2)	1.5 (0.8)	0.8 (0.1)	1.5 (1.1)	1.0 (0.2)
Standardized Cystatin C (mg/dL), mean (SD)	2.0 (0.7)	1.3 (0.6)	0.8 (0.1)	1.6 (0.8)	1.0 (0.2)

RASS, Renin Angiotensin System Study; MC, multicenter; SC, Single Center; CP, clinical population; SC, single center; MC, multi-center; GFR, glomerular filtration rate; BMI, body mass index; SD, standard deviation; EDTA, ethylenediaminetetraacetic acid. To convert GFR from mL/min/1.73 m² to mL/s/m², multiply by 0.0167. To convert serum creatinine from mg/dL to µmol/L, multiply by 88.4.

Table S2: Serum Cystatin C Measurements or Calibration by Study

Study	Date	Sample Size	Instrument	Calibration Equation to IFCC Serum Cystatin C
Direct Measurem	ents at Cleveland Clinic	Size		
MDRD Study ³	Jul 2004	1,047	CCRL BN-II	IFCC Scys = $1.12 \times (0.083 + 0.789 \times MDRD Scys)$
AASK ⁶	May 2005	1,645	CCRL BN-II	IFCC Scys = $1.12 \times (0.083 + 0.789 \times AASK Scys)$
CSG^7	Apr 2005	386	CCRL BN-II	IFCC Scys = $1.12 \times (0.083 + 0.789 \times CSG Scys)$
NephroTest ¹⁵	Sep 2005	438	CCRL BN-II	IFCC Scys = $1.12 \times (0.083 + 0.789 \times Paris Scys)$
Steno ¹⁶⁻¹⁸	Dec 2005	260	CCRL BN-II	IFCC Scys = $1.12 \times (0.083 + 0.789 \times \text{Steno Scys})$
RASS ¹³	Feb 2007	524	CCRL BN-II	IFCC Scys = $1.12 \times (0.105 + 0.848 \times RASS Scys)$
NHS	Feb 2007	58	CCRL BN-II	IFCC Scys = $1.12 \times (0.105 + 0.848 \times NHS Scys)$
GRONIGEN 11	Mar 2007	200	CCRL BN-II	IFCC Scys = $1.12 \times (0.105 + 0.848 \times Groningen Scys)$
CCF Prospective	Apr 2007	200	CCRL BN-II	IFCC Scys = $1.12 \times (0.105 + 0.848 \times CCF Scys)$
CRISP ¹⁴	May 2007	218	CCRL BN-II	IFCC Scys = $1.12 \times (0.105 + 0.848 \times CRISP Scys)$
Lund ¹⁹	CCRL: Oct 2005	200	CCRL: BNII	IFCC Scys = $1.12 \times (0.083 + 0.789 \times (-0.574 + 1.611 \times 1.008) \times (-0.574 + 1.008) \times (-0.$
	Lund: Feb-Oct 2003		Lund: Hitachi Mod P	Grubb/Lund Scys))
$DCCT^6$	CCRL: Feb-Mar 2006	197	CCRL: BNII	IFCC Scys = $1.12 \times (0.083 + 0.789 \times (0.018 + 0.882 \times DCCT)$
	DCCT: Feb-Apr 2005		DCCT: ProSpec	Scys))
CRIC ⁸	CCRL: 2003	39*	CCRL: BN-II	IFCC Scys = $1.12 \times (0.083 + 0.789 \times (0.039 + 1.061 \times CRIC)$
	Penn: Feb 2008		Penn: BN-II	Cys)
$MAYO^{10}$	CCRL: Dec 2006	292	CCRL: BN-II	IFCC Scys = $1.12 \times (0.105 + 0.848 \times (0.076 + 1.023 \times Mayo)$
	Mayo: Oct 1999-Mar		Mayo: BN-II	Scys))
	2000			

* Calibration panel measured in triplicate at both CCF and Penn CCRL, Cleveland Clinic Research Laboratory; BN-II, Dade Behring Nephelometer; Scys, serum cystatin C

Table S3: Previously Developed Equations in CKD Populations Re-expressed for Use with Standardized Serum Creatinine or Serum Cystatin ${\bf C}$

MDRD Study equation ³	175 x standardized Scr ^{-1.154} x age ⁻²⁰³ x 0.75 [if female] x 1.210 [if black]
Cystatin C 1,2	127.7 * (-0.105 + 1.13 x standardized Scys) ^{-1.17} x age ^{-0.13} x 0.91 [if female] x 1.06 [if black]
Creatinine-Cystatin C ^{1,2}	177.6 * Scr ^{-0.65} x (-0.105 + 1.13 x standardized Scys) ^{-0.57} x age ^{-0.20} x 0.82 [if female] x 1.11 [if black]

Scr, serum creatinine; Scys, serum cystatin C. Units for serum creatinine are mg/dl; for cystatin C are mg/L; and for age is years.

Table S4: Forms of Variables and Coefficients in the CKD-EPI Equations Developed in Diverse Population

Creatinine			Cystatin C	Creatinine and Cystatin C		
Variable	Form for Estimating GFR on Log Scale	Coefficient (95% CI) for Estimating GFR on Natural Scale	Form for Estimating GFR on Log Scale	Coefficient (95% CI) for Estimating GFR on Natural Scale	Form for Estimating GFR on Log Scale	Coefficient (95% CI) for Estimating GFR on Natural Scale
Creatinine	2-slope spline on the log scale with sex specific knots (0.7 mg/dl for women and 0.9 mg/dl for men)	Above the knot All: Scr ^{-1.209} (-1.198, -1.220) Below the knot Women: Scr ^{-0.329} (-0.230, -0.428) Men: Scr ^{-0.411} (-0.314, -0.508)			2-slope spline on the log scale with sex specific knots (0.7 mg/dl for women and 0.9 mg/dl for men)	Above the knot All: Scr ^{-0.601 (-0.630, -0.571)} Below the knot Women: Scr ^{-0.248(-0.364, -0.132)} Men: Scr ^{-0.207 (-0.308, -0.107)}
Cystatin C			2-slope spline on the log scale with knots at 0.8 mg/L	Above the knot Scys ^{-1.328(-1.344, -1.312)} Below the knot: Scys ^{-0.499 (-0.610, -0.388)}	2-slope spline on the log scale with knots at 0.8 mg/L	Above the knot Scys ^{-0.711(-0.744, -0.678)} Below the knot: Scys ^{-0.375(-0.477, -0.274)}
Race	Black vs. White or other	1.159 (1.144, 1.170) if Black 1.0 if White or other			Black vs. White or other	1.08 (1.067, 1.093) if Black 1.0 if White or other
Sex	Female vs. Male	1.018 (1.007, 1.029) if Female	Female vs. Male	0.932 (0.921, 0.944) if Female	Female vs. Male	0.969 (0.958, 0.980) if Female
Age	Linear on the natural scale	1.0 if Male 0.993 (0.9925, 0.9933) Age	Linear on the natural scale	1.0 if Male 0.996 (0.9957, 0.9966) Age	Linear on the natural scale	1.0 if Male 0.995 (0.9948, 0.9957) Age

Formulation of the equations are shown in Table 2

Variables included in the CKD-EPI cystatin C equation are spline log cystatin C, sex and age. Serum cystatin C is modeled as a two-slope linear spline with a knot at 60 nmol/L (0.8 mg/L) and allows for a steeper slope of logarithm of GFR vs. logarithm of cystatin C above the knot [-1.328 (-1.344, -1.312)] and a less steep slope below the knot [0.499 (-0.610, -0.388)]. Females and older adults have lower GFR than males and younger adults (7% lower for men vs. women and 2% lower GFR per 5 years of age for the same level of cystatin C).

Variables included in the CKD-EPI creatinine and cystatin C equation are spline log serum creatinine, spline log serum cystatin C, sex, race and age. Log creatinine is modeled as it is in the CKD-EPI creatinine equation; a two-slope linear spline term with sex-specific knots at 62 µmol/L (0.7 mg/dL) in women and 80 µmol/L (0.9 mg/dL) in men. Log cystatin C is modeled as in the cystatin C equation. Above the knots for log creatinine

and log cystatin C, the slopes are similar to each other [-0.601 (-0.630, -0.571)] and [-0.711(-0.744, -0.678), respectively] and are approximately half the size of the corresponding coefficients in the equations with each marker alone. The relationship between sex and estimated GFR varies according to the level of serum creatinine. The predicted female-to-male ratio in GFR varies from 0.87 to 0.93 when the serum creatinine is between 44 to 71 μ mol/L (0.5 and 0.8 mg/dL), and is 0.83 when serum creatinine is \geq 80 μ mol/L (\geq 0.9 mg/dL). For every additional 5 years of age, there is a 2% lower GFR. The coefficient for Blacks predicts an 8% higher GFR for the same level of creatinine or cystatin C compared to 16% in the CKD-EPI creatinine equation. The addition of diabetes or weight did not improve performance.

To convert serum creatinine from mg/dL to µmol/L, multiply by 88.4. Coefficients for cystatin C and creatinine-cystatin C equations derived from pooled development and internal validation datasets.

Table S5: Newly Developed Equations that May Be of Interest in Research

-	
Spline Log Cystatin C	109 x min(standardized Scys /0.8,1) ^{-0.683} x max(standardized Scys /0.8,1) ^{-1.367}
Spline Log Cystatin C, Age, Sex, Race	132 x min(standardized Scys/0.8,1) $^{-0.491}$ x max(standardized Scys/0.8,1) $^{-1.329}$ x 0.996 Age x 0.932 [if female] x 0992 [if black]
Spline Log Cystatin C, Age, Sex, Diabetes	126 x min(standardized Scys/0.8,1) $^{-0.362}$ x max(standardized Scys/0.8,1) $^{-1.318}$ x 0.997 $^{\rm Age}$ x 0.934 [if female] x 1.068 [if diabetes]
Spline Log Cystatin C, Age, Sex, Weight	132 x min(standardized Scys/0.8,1) $^{-0.567}$ x max(standardized Scys/0.8,1) $^{-1.329}$ x 0.996 $^{\rm Age}$ x 0.949 [if female] x 1.002 $^{\rm Weight-80}$

For all of the above equations, min indicates minimum of standardized Scys /0.8 or 1, and max indicates maximum of standardized Scys/08 or 1.

Units of cystatin C are mg/L, units for age is years and units for weight is kilograms.

Table S6: Comparison of Performance of Equations in the Development Dataset by Level of GFR and Race

Variables included in each equation	Group	Differoments Diffe	d GFR- d GFR)	% of Es greate 20% or Measur	RMSE	
		Median	IQR	1-P ₂₀	1-P ₃₀	
	Overall	0.4	14.9	31.8	15.1	0.228
	Estimated GFR					
	>90	2.6	26.4	23.9	9.5	0.196
Spline Log Creatinine,	60-90	-0.7	20.8	34.4	15.6	0.230
Age, Sex, Race*	<60	0.1	9.5	35.3	18.0	0.243
	Race					
	Black	0.0	14.3	34.8	16.3	0.237
	Non-Black	0.6	15.6	29.9	14.3	0.221
	Overall	0.2	15.1	33.8	17.2	0.235
	Estimated GFR					
	>90	0.0	26.5	27.3	11.8	0.216
Log Cystatin C	60-90	1.3	21.9	34.5	18.0	0.235
Log Cystatin C	<60	0.1	9.9	37.0	19.8	0.244
	Race					
	Black	-0.3	14.1	34.4	18.5	0.242
	Non-Black	0.7	16.2	33.4	16.4	0.230
	Overall	0.4	15.0	33.2	16.6	0.232
	Estimated GFR					
	>90	2.7	24.5	24.8	10.5	0.207
C-1: I C4-4: C	60-90	-1.3	21.1	36.2	18.2	0.234
Spline Log Cystatin C	<60	0.2	9.8	36.8	19.3	0.245
	Race					
	Black	-0.6	14.3	35.6	19.6	0.245
	Non-Black	1.2	16.0	31.7	14.6	0.223
	Overall	0.3	14.3	31.3	15.1	0.224
	Estimated GFR					
	>90	1.2	24.1	21.9	8.6	0.189
Spline Log Cystatin C,	60-90	-0.5	18.9	31.9	15.4	0.222
Age, Sex	<60	0.4	10.1	36.4	18.7	0.242
	Race					
	Black	0.1	13.1	32.8	17.3	0.235
	Non-Black	0.5	15.3	30.2	13.6	0.216
	Overall	0.3	14.2	31.1	15.1	0.224
	Estimated GFR					
Spline Log Cystatin C,	>90	1.3	23.8	21.8	8.6	0.189
Age, Sex, Race	60-90	-0.6	19.1	31.3	15.2	0.221
	<60	0.4	10.1	36.4	18.9	0.243

	Race					
	Black	0.2	13.1	32.7	17.2	0.235
	Non-Black	0.4	15.3	30.1	13.8	0.216
	Overall	0.1	12.1	24.1	9.8	0.195
	Estimated GFR					
Spline Log Creatinine,	>90	0.4	22.8	17.9	6.3	0.176
Log Cystatin C, Age,	60-90	-0.5	15.5	25.0	10.2	0.194
Sex, Race	<60	0.1	8.0	27.2	11.6	0.206
Sea , Ituee	Race					
	Black	0.3	11.7	26.2	11.2	0.204
	Non-Black	0.0	12.7	22.7	8.9	0.188

GFR, glomerular filtrate rate; IQR, interquartile range; RMSE, root mean square error *Similar to CKD-EPI creatinine equation but re-expressed in the development dataset. Median difference refers to measured GFR – estimated GFR. Interquartile range of the difference refers to the 25-75 th percentile. Units of GFR in ml/min/1.73 m 2 . To convert GFR from mL/min/1.73 m 2 to mL/s/1.73 m 2 , multiply by 0.0167.

Table S7: Performance within the Development Dataset with Data Available on Proteinuria, overall and by proteinuria subgroup

Equation	Group	N	Difference (Measured GFR- Estimated GFR) ml/min/1.73 m ²		% of Estimates greater than 20% or 30% of Measured GFR		RMSE
			Median	IQR	P_{20}	P_{30}	
Creatinine (CKD-	Overall	4852	0.7	14.6	68.9	85.9	0.223
EPI , ³)	Proteinuria < 70 mg/24 hours	2279	2.8	19.7	73.1	89.6	0.206
	Proteinuria > 70 mg/24 hours	2287	-0.6	10.9	65.0	82.5	0.236
Cystatin C	Overall	4852	0.1	13.9	69.6	85.3	0.222
	Proteinuria < 70 mg/24 hours	2279	1.1	18.3	74.4	88.3	0.206
	Proteinuria > 70 mg/24 hours	2287	-0.5	10.7	64.9	82.3	0.238
Creatinine-	Overall	4852	0.2	11.9	76.4	90.7	0.193
cystatin C	Proteinuria < 70 mg/24 hours	2279	0.8	16.4	79.8	92.2	0.182
	Proteinuria > 70 mg/24 hours	2287	-0.1	8.9	73.4	89.2	0.204

GFR, glomerular filtrate rate; IQR, interquartile range; RMSE, root mean square error Median difference refers to measured GFR – estimated GFR. Interquartile range of the difference refers to the 25-75th percentile. To convert GFR from mL/min/1.73 m² to mL/s/1.73 m², multiply by 0.0167.

Table S8: Performance of Cystatin C Estimating Equation with and without Diabetes in Development and External Validation Datasets

Variables included in each equation	Group	N	Differ (Measure Estimate ml/min/	ed GFR- d GFR)	greater th 30% of N	stimates an 20% or Measured FR	RMSE
			Median	IQR	1-P ₂₀	1-P ₃₀	
Development							
-	Overall	5352	0.3	14.3	31.3	15.1	0.224
	Estimated GFR						
	>90	1556	1.2	24.1	21.9	8.6	0.189
Spline Log	60-90	1081	-0.5	18.9	31.9	15.4	0.222
Cystatin, Age, Sex	<60	2715	0.4	10.1	36.4	18.7	0.242
	Diabetes						
	No	3626	-0.6	12.4	34.3	17.5	0.230
	Yes	1726	2.9	18.7	25.0	9.9	0.210
	Overall	5352	0.2	14.3	30.4	14.6	0.222
	Estimated GFR						
	>90	1529	0.1	23.9	20.7	7.8	0.185
Spline Log Cystatin	60-90	1100	0.1	19.3	30.8	15.2	0.220
C, Age, Sex,	<60	2723	0.3	9.9	35.7	18.1	0.242
Diabetes	Diabetes						
	No	3626	0.1	12.4	33.3	16.7	0.229
	Yes	1726	0.4	18.5	24.3	10.1	0.208
External Validation							
	Overall	1119	3.4	16.4	33.0	14.1	0.234
	Estimated GFR						
	>90	320	8.5	22.6	19.4	2.2	0.164
Spline Log Cystatin	60-90	229	6.0	19.6	29.3	12.7	0.208
C, Age, Sex	<60	570	0.4	11.0	42.1	21.4	0.274
-, g -, ~	Diabetes						
	No	525	-0.1	15.1	42.3	21.0	0.263
	Yes	594	5.9	16.4	24.7	8.1	0.205
	Overall	1119	1.9	15.7	31.6	14.7	0.231
	Estimated GFR	1117	1.,	10.7	31.0	1	0.231
	>90	335	7.1	21.9	15.2	2.4	0.152
Spline Log Cystatin C, Age, Sex, Diabetes	60-90	220	4.8	19.7	300	12.7	0.206
	<60	564	-0.3	10.3	42.0	22.9	0.275
	Diabetes	201	0.5	10.5	.2.0	22.7	0.273
	No	525	0.8	15.1	42.3	21.3	0.262
	Yes	594	3.0	16.0	22.2	8.9	0.199

The addition of diabetes in models with cystatin C led to a small improvement in bias or RMSE in subgroups with diabetes or higher levels of GFR, but given the small number of studies, this

small improvement may not be generalizable, and we concluded not to recommend use of this equation in clinical practice.

GFR, glomerular filtrate rate; IQR, interquartile range; RMSE, root mean square error Median difference refers to measured GFR – estimated GFR. Interquartile range of the difference refers to the $25-75^{th}$ percentile. To convert GFR from mL/min/1.73 m² to mL/s/1.73 m², multiply by 0.0167.

Table S9: Performance of Cystatin C Estimating Equation with and without Weight in Development and External Validation Datasets

Variables included in each equation	Group	N	Differ (Measure Estimate ml/min/	ed GFR- ed GFR)	% of Estimates greater than 20% or 30% of Measured GFR		RMSE
			Median	IQR	1-P ₂₀	1-P ₃₀	
Development							
	Overall	5352	0.3	14.3	31.3	15.1	0.224
	BMI						
Spline Log Cystatin	< 20	214	-1.5	14.5	36.0	23.8	0.258
C, Age, Sex	20-25	1585	-0.9	16.0	31.4	14.4	0.220
	25-30	1881	0.1	13.8	28.9	13.9	0.213
	>30	1671	1.5	12.7	33.3	15.9	0.235
	Overall	5352	0.2	14.2	30.7	14.7	0.222
	BMI						
Spline Log Cystatin	< 20	214	0.3	15.2	35.5	21.0	0.254
C, Age, Sex, Weight	20-25	1585	0.4	16.0	30.5	13.4	0.219
	25-30	1881	0.2	13.8	27.9	13.8	0.213
	>30	1671	0.1	13.1	33.5	16.2	0.232
External Validation							
	Overall	1119	3.4	16.4	33.0	14.1	0.234
	BMI						
Spline Log Cystatin	< 20	81	-0.5	15.6	45.7	23.5	0.262
C, Age, Sex	20-25	503	3.5	15.2	28.0	12.9	0.229
	25-30	386	2.8	16.7	34.2	13.7	0.221
	>30	149	5.2	17.1	39.6	14.1	0.265
	Overall	1119	3.9	16.3	33.3	13.9	0.235
	BMI						
Spline Log Cystatin	< 20	81	0.9	16.0	45.7	17.3	0.265
C, Age, Sex, Weight	20-25	503	5.1	15.5	29.2	13.5	0.233
	25-30	386	3.0	16.7	34.2	14.0	0.222
	>30	149	4.3	17.1	38.3	13.4	0.256

GFR, glomerular filtrate rate; IQR, interquartile range; RMSE, root mean square error; BMI, body mass index. Units of BMI are kg/m^2

Median difference refers to measured GFR – estimated GFR. Interquartile range of the difference refers to the 25-75th percentile. To convert GFR from mL/min/1.73 m² to mL/s/1.73 m², multiply by 0.0167.

Table S10: Performance of Equations Developed in CKD Populations in the External Validation Dataset

Description	Overall								
		<60	60-89	<u>></u> 90					
Bias, Median Difference (95% CI)									
Creatinine (MDRD Study ⁴)	6.3 (5.4 - 7.8)	3.3 (2.4 - 4.2)	15.1 (11.9 - 19.4)	17.2 (13.0 - 20.4)					
Cystatin C ^{1,2}	6.0 (4.9 - 7.1)	2.0 (0.8 - 3.1)	12.4 (9.6 - 14.9)	16.0 (12.7 - 17.8)					
Creatinine-cystatin C ^{1,2}	4.9 (4.2 - 5.9)	2.0 (1.3 - 2.9)	10.7 (7.7 - 13.0)	13.5 (9.7 - 16.0)					
Precision, IQR of the Difference (9	95% CI)								
Creatinine (MDRD Study ⁴)	19.4 (17.4 - 21.1)	11.4 (10.3 - 12.4)	22.8 (20.5 - 27.9)	27.7(24.3 - 34.5)					
Cystatin C ^{1,2}	18.7 (17.5 - 20.0)	13.1 (11.9 - 14.3)	21.1 (17.6 - 24.0)	25.1 (21.4 - 26.9)					
Creatinine-cystatin C ¹ ²	15.3 (14.0 - 16.3)	9.2 (8.3 - 9.9)	15.0 (13.3 - 17.6)	23.3 (19.9 - 26.4)					
Accuracy, Percentage of Estimates Different from Measured GFR by More than 30% (1-P ₃₀) (95% CI)									
Creatinine (MDRD Study ⁴)	17.4 (15.2 - 19.7)	17.9 (15.0 - 20.9)	22.0 (17.2 - 27.1)	10.7 (6.8 - 14.8)					
Cystatin C ^{1 2}	15.8 (13.8 - 18.0)	21.8 (18.7 - 25.3)	10.6 (6.8 - 14.8)	6.4 (3.7 - 9.5)					
Creatinine-cystatin C ^{1,2}	8.1 (6.6 - 9.8)	11.1 (8.6 - 13.7)	5.6 (2.9 - 8.7)	4.2 (2.1 - 6.7)					
Accuracy, Percentage of Estimates Different from Measured GFR by More than 20% (1-P ₂₀) (95% CI)									
Creatinine (MDRD Study ⁴)	43.4 (40.5 - 46.5)	41.9 (37.9 - 45.9)	50.2 (44.0 - 56.3)	39.5 (33.3 - 46.3)					
Cystatin C ^{1 2}	38.6 (35.8 - 41.6)	42.8 (38.9 - 46.8)	37.9 (31.8 - 43.8)	29.4 (23.7 - 35.0)					
Creatinine-cystatin C ^{1,2}	27.3 (24.8 - 30.0)	30.5 (26.9 - 34.2)	26.6 (21.3 - 32.6)	21.5 (16.6 - 26.5)					

See Table S3 for equations developed in the CKD populations

Table S11: Performance by Study in the Validation Dataset

Equation	Study	N	P ₃₀	RMSE	Within Study % Change vs. eGFR _{Cr,Cy}	
					P_{30}	RMSE
	NephroTest15	313	84.3	0.235	-4.0%	-17.4%
Creatinine (CKD-EPI, ³)	Steno ¹⁶⁻¹⁸	245	86.1	0.231	-7.9%	-23.3%
	RASS ¹³	211	95.7	0.188	-3.3%	-15.8%
	Grubb ¹⁹	350	85.4	0.224	-3.9%	-15.0%
	NephroTest ¹⁵	313	76.4	0.257	-13.1%	-28.7%
Crystatia C	Steno ¹⁶⁻¹⁸	245	94.7	0.198	1.3%	-5.5%
Cystatin C	RASS ¹³	211	97.6	0.175	-1.4%	-7.5%
	Grubb ¹⁹	350	81.1	0.265	-8.7%	-36.0%
	NephroTest ¹⁵	313	87.9	0.200	ref	ref
	Steno ¹⁶⁻¹⁸	245	93.5	0.188	ref	ref
	RASS ¹³	211	99.1	0.162	ref	ref
Creatinine-cystatin C	Grubb ¹⁹	350	88.9	0.194	ref	ref

Dark gray shading indicates that the P_{30} or RMSE for the creatinine-cystatin C equation is 5% or better than the creatinine or cystatin C equations

Light gray shading indicates that the P_{30} or RMSE for the creatinine-cystatin C equation is 0.1-5% better than the creatinine or cystatin C equations

RMSE, root mean square error; P_{30} , percentage of estimates within 30% of measured GFR; RASS, RASS, Renin Angiotensin System Study;

Table S12: Reclassification of People with Measured GFR of Greater and Lower than 60 ml/min per 1.73 m² Using Estimated GFR Computed from the Creatinine to the Creatinine-Cystatin C equation across Subgroups in the Validation Dataset

Group	Number (percent)	mGFR < 60 ml/min/1.73 m ² Number (percent)			$mGFR \ge 60 \text{ ml/min/1.73 m}^2$ Number (percent)			NRI (95% CI),
		Correct eGFRcr≥60 and eGFRcr-cys<60	Incorrect eGFRcr<60 and eGFRcr-cys≥60	Net	Correct eGFRcr<60 and eGFRcr-cys≥60	Incorrect eGFRcr≥60 and eGFRcr-cys<60	Net	p-value
Age								
< 40	357 (32)	3 (4.1)	2 (2.7)	1.4	9 (3.2)	2 (0.7)	2.5	3.8 (-2.5-10.2) 0.24
40-65	530 (47)	8 (2.9)	5 (1.8)	1.1	17 (6.6)	4 (1.6)	5.0	6.1 (1.8-10.5) 0.01
>65	232 (21)	6 (3.2)	1 (0.5)	2.7	2 (4.4)	3 (6.7)	-2.2	0.5 (-9.7-10.6) 0.93
Sex								
Female	456 (41)	5 (2.6)	4 (2.0)	0.5	10 (3.8)	5 (1.9)	1.9	2.4 (-1.8-6.6) 0.26
Male	663 (59)	12 (3.6)	4 (1.2)	2.4	18 (5.5)	4 (1.2)	4.3	6.7 (3.0-10.3) <0.001
Diabetes								
Yes	594 (53)	7 (3.4)	1 (0.5)	2.9	11 (2.8)	4 (1.0)	1.8	4.7 (1.4-8.1) 0.01
No	525 (47)	10 (3.0)	7 (2.1)	0.9	17 (8.6)	5 (2.5)	6.1	7.0 (1.7-12.3) 0.01
BMI								
< 20	81 (7)	6 (13.0)	3 (6.5)	6.5	1 (2.9)	1 (2.9)	0.0	6.5 (-8.5-21.6) 0.40
20-25	503 (45)	8 (3.7)	3 (1.4)	2.3	11 (3.8)	6 (2.1)	1.7	4.1 (-0.1-8.2) 0.05
25-30	386 (35)	3 (1.6)	2 (1.1)	0.5	13 (6.6)	2 (1.0)	5.6	6.1 (1.6-10.6) 0.01
>30	149 (13)	0 (0.0)	0 (0.0)	0.0	3 (4.6)	0 (0.0)	4.6	4.6 (-1.0-9.7) 0.08

mGFR, measured GFR. eGFRcr, estimated GFR from creatinine; eGFRcr-cys, estimated GFR from creatinine and cystatin C; NRI, net reclassification index; BMI, body mass index. Units of age are years and units of BMI are kg/m².

Table S13: Reclassification of Measured GFR Above and Below Different Thresholds Using Estimated GFR Computed from the Creatinine to the Creatinine-Cystatin C equation in the Validation Dataset

Measured GFR	Number (percent)		hold ml/min/1.73 er (percent)	$mGFR \ge threshold ml/ming$ Number (percent)			3 m ²	NRI (95% CI)
Threshold, ml/min/1.73 m ²		Correct eGFRcr≥ threshold and eGFRcr-cys < threshold	Incorrect eGFRcr < threshold and eGFRcr-cys ≥ threshold	Net	Correct eGFR crr< threshold and eGFR cr-cys ≥threshold	Incorrect eGFRcr≥ threshold and eGFRcr-cys < threshold	Net	p-value
>90	1119 (100)	21 (2.8)	6 (0.8)	2.0	27 (7.3)	24 (6.5)	0.8	2.8 (-1.2-6.8) 0.17
75	1119 (100)	16 (2.5)	5 (0.8)	1.7	25 (5.3)	18 (3.8)	1.5	3.2 (0-6.3) 0.04
45	1119 (100)	16 (4.0)	5 (1.2)	2.7	12 (1.7)	13 (1.8)	-0.1	2.6 (0-5.2) 0.05
30	1119 (100)	12 (5.5)	2 (0.9)	4.6	17 (1.9)	14 (1.6)	0.3	4.9 (1.4-8.5) 0.01
<15	1119 (100)	2 (3.9)	1 (2.0)	2.0	8 (0.7)	2 (0.2)	0.6	2.5 (-4.2-9.2) 0.46

mGFR, measured GFR. eGFRcr, estimated GFR from creatinine; eGFRcr-cys, estimated GFR from creatinine and cystatin C; NRI, net reclassification index.

Supplemental References

- 1. Inker LA, Eckfeldt J, Levey AS, et al. Expressing the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) Cystatin C Equations for Estimating GFR With Standardized Serum Cystatin C Values. Am J Kidney Dis 2011;58:682-4.
- 2. Stevens LA, Coresh J, Schmid CH, et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis 2008;51:395-406.
- 3. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:604-12.
- 4. Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 2006;145:247-54.
- 5. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. New England Journal Medicine 2001;345:851-60.
- 6. Ibrahim H, Mondress M, Tello A, Fan Y, Koopmeiners J, Thomas W. An alternative formula to the Cockcroft-Gault and the modification of diet in renal diseases formulas in predicting GFR in individuals with type 1 diabetes. J Am Soc Nephrol 2005;16:1051-60.
- 7. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. New England Journal Medicine 1993;329:1456-62.
- 8. Feldman HI, Appel LJ, Chertow GM, et al. The Chronic Renal Insufficiency Cohort (CRIC) Study: Design and methods. J Am Soc Nephrol 2003;14:S148-53.
- 9. Poggio ED, Wang X, Greene T, Van Lente F, Hall PM. Performance of the modification of diet in renal disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease. J Am Soc Nephrol 2005;16:459-66.
- 10. Rule AD, Larson TS, Bergstralh EJ, Slezak JM, Jacobsen SJ, Cosio FG. Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med 2004;141:929-37.
- 11. Bosma RJ, Doorenbos CR, Stegeman CA, van der Heide JJ, Navis G. Predictive performance of renal function equations in renal transplant recipients: an analysis of patient factors in bias. Am J Transplant 2005;5:2193-203.
- 12. Rook M, Hofker HS, van Son WJ, van der Heide J, Ploeg R, Navis G. Predictive capacity of pre-donation GFR and renal reserve capacity for donor renal function after living kidney donation. Am J Trans 2006;6:1653-9.
- 13. Mauer M, Drummond K. The early natural history of nephropathy in type 1 diabetes: I. Study design and baseline characteristics of the study participants. Diabetes 2002;51:1572-9.
- 14. Chapman AB, Guay-Woodford LM, Grantham JJ, et al. Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort. Kidney Int 2003;64:1035-45.
- 15. Froissart M, Rossert J, Jacquot C, Paillard M, Houillier P. Predictive performance of the modification of diet in renal disease and Cockcroft-Gault equations for estimating renal function. J Am Soc Nephrol 2005;16:763-73.
- 16. Jacobsen P, Andersen S, Rossing K, Jensen BR, Parving HH. Dual blockade of the reninangiotensin system versus maximal recommended dose of ACE inhibition in diabetic nephropathy. Kidney Int 2003;63:1874-80.

- 17. Mathiesen ER, Hommel E, Giese J, Parving HH. Efficacy of captopril in postponing nephropathy in normotensive insulin dependent diabetic patients with microalbuminuria. Brit Med J 1991;303:81-7.
- 18. Tarnow L, Rossing P, Jensen C, Hansen BV, Parving HH. Long-term renoprotective effect of nisoldipine and lisinopril in type 1 diabetic patients with diabetic nephropathy. Diabetes Care 2000;23:1725-30.
- 19. Grubb A, Nyman U, Bjork J, et al. Simple cystatin C-based prediction equations for glomerular filtration rate compared with the modification of diet in renal disease prediction equation for adults and the Schwartz and the Counahan-Barratt prediction equations for children. Clin Chem 2005;51:1420-31.