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Towards optimal design of cancer nanomedicines: Μulti-stage 
nanoparticles for the treatment of solid tumors 

T. Stylianopoulos, E. A. Economides, J. W. Baish, D. Fukumura, R. K. Jain  

Description of the Mathematical Model 

We represent the tumor vasculature as a 2-dimensional percolation network at the 
percolation threshold, with one inlet and one outlet as shown in Supplementary Fig. 1 
1. These network structures have been found to represent tumor vasculature in animal 
models well 10, though real angiography images could be used to represent additional 
heterogeneity present in unusual vascular networks or be applied to 3-dimensional 
structures. We repeated the simulations for five network realizations and the average 
values are presented. 

Fluid Flow Equations 

The mathematical model requires coupling of fluid flow in the vascular and interstitial 
spaces. Blood flow rate in a vessel (Qvascular ) is assumed to be axial and follows 

Poiseuille's equation 18, 

4
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where d is the vessel diameter, Δpv is the vascular pressure difference that corresponds 
to a vascular length Δx and μ is the blood viscosity. 

Fluid flow rate across the vessel wall (Qtransvascular ) follows Starling's 

approximation 3, 

( )Q L S p pp v itransvascular = − ,       (2) 

where Lp is the hydraulic conductivity of the vessel wall, S is the surface area of the 
vessel and pi is the interstitial fluid pressure. In the equation above, we neglect 
osmotic pressures.  

Interstitial volumetric fluid flow rate ( Qtissue ) follows Darcy's law, 

piQ K Attissue C x
∆

= −
∆

,        (3) 

where Kt is the hydraulic conductivity of the interstitial space and Δpi is the interstitial 
pressure difference that corresponds to a tissue length Δx. Δx is the distance between 
two interstitial nodes (Supplementary Fig. 1 B), taken to be 50 μm, the same as the 
vascular length in Eq. 1. Ac is the tissue cross-sectional area, which is related to the 
vascular density, Sv, and the diameter of the vessel, d, by A d SvC π=  (Ref. 2). 
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Drug Delivery Equations 

Coupling of nanoparticle transport between the vascular and interstitial spaces is 
based on the following assumptions. 

Inside the blood vessels diffusion is negligible and thus, the mass balance is 
convection dominated: 

dc Cv vu
dt x

∆
= −

∆
,         (4) 

where u is the axial blood velocity which is determined by dividing Qvascular in Eq. 1 
by the cross sectional area of the vessel, Cv is the intravascular concentration of the 
nanoparticle and ΔCv is the concentration difference that corresponds to a vascular 
length Δx. 

The amount Φ of nanoparticles (or drug for a single stage system) that is transferred 
across the vessel wall between the vascular and interstitial space is given by Starling's 
approximation as 3  

( )(1 )
1

PeC e cv iL S p pp v i Pee
σ

−
Φ = − −

−
  with 

( )
(1 )

p pv iPe Lp P
σ

−
= − ,                (5, 6) 

where Pe is the Péclet number across the vessel wall, and P is the vascular 
permeability of the nanoparticle through the pores of the wall. Therefore, Φ is 
subtracted from Eq. 4 and added to the equation for the interstitial transport of the 
nanoparticles, as shown in Eqns. 12, 15 and 19 for the three delivery systems.  

Using theory for transport of particles through cylindrical pores we calculate the 
hydraulic conductivity, Lp, vascular permeability, P, and reflection coefficient, σ, by 
the equations 6:  

2
, , 1 ,

8
r HDo oL P Wp L L

γ γ
σ

µ
= = = −           (7) 

where γ is the fraction of vessel wall surface area occupied by pores, ro is the pore 
radius, L is the thickness of the vessel wall, and Do is the diffusion coefficient of the 
particle in free solution at 37 oC.  

The parameters H and W account for hydrodynamic and electrostatic interactions and 
for dilute solutions are given by the equations 6: 

1 1 /

0
2 E kTH K e d

λ
β β

− − −= ∫ ,                            (8) 

( )1 2 /

0
4 1 E kTW G e d

λ
β β β

− −= −∫ ,               (9) 

where λ is the ratio of the particle size over the pore size, E is the electrostatic energy 
of interaction between the nanoparticle and the pore, k is Boltzmann's constant, T is 
the absolute temperature, K(λ,β) and G(λ,β) are hydrodynamic functions, and β is the 
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radial distance of the particle inside the pore divided by the pore radius to become 
dimensionless.  

To calculate the hydrodynamic functions, K(λ,β) and G(λ,β), the centerline 
approximation is employed, which suggests that use of the centerline values, K(λ,0) 
and G(λ,0) leads to reasonably accurate estimates of H and W. Therefore, Eqs 8-9 are 
written as: 

11 /

0
2 ( ,0) E kTH K e d

λ
λ β β

−− −= ∫ ,                           (10) 

( )1 2 /

0
4 ( ,0) 1 E kTW G e d

λ
λ β β β

− −= −∫ .             (11) 

Analytical expressions of the hydrodynamic coefficients K(λ,0) and G(λ,0) are given 
by Bungay and Brenner 4, 6. These expressions are composites of asymptotic centerline 
results for small and for closely fitting spheres, are valid for 0 1λ≤ <  and are 
accurate to within 10% for all values of λ (6,7). Notice that in the absence of 
electrostatic interactions, which is the case accounted in this study, E=0 and Eqs 10-
11 are written as 1( ,0)H Kφ λ−=  and ( )2 ( ,0)W Gφ φ λ= − , where φ  is the partition 

coefficient: ( )21φ λ= − ). 

 

Interstitial transport: 

Single Stage (chemotherapy) 

The equation system employed for the interstitial transport of the drug, its binding to 

cancer cells and its internalization by the cells is the following:  

Free drug: 

𝜕𝐶𝐹
𝜕𝑡

= −𝑣𝛻𝐶𝐹 + 𝐷𝐹𝛻2𝐶𝐹 −
1
𝜑
𝐾𝑂𝑁𝐶𝑟𝑒𝑐𝐶𝐹 + 𝐾𝑂𝐹𝐹𝐶𝐵 + 𝛷   (12) 

Bound drug: 
𝜕𝐶𝐵
𝜕𝑡

= 1
𝜑
𝐾𝑂𝑁𝐶𝑟𝑒𝑐𝐶𝐹 − 𝐾𝑂𝐹𝐹𝐶𝐵 − 𝐾𝐼𝑁𝑇𝐶𝐵     (13) 

Internalized drug: 
𝜕𝐶𝐼
𝜕𝑡

= 𝐾𝐼𝑁𝑇𝐶𝐵         (14) 

where, Cf, Cb and Ci are the concentrations of the free, bound and internalized drug in 
the interstitial space, Crec is the concentration of cell surface receptors, v is the 
interstitial fluid velocity given by Darcy's law, D is the diffusion coefficient, Kon, Koff 
and Kint are the association (binding), dissociation and internalization rate constants, 
respectively and φ is the volume fraction of tumor accessible to the drug and Φ is the 
transvascular flux of the drug given by Starling's approximation.  
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Two Stage System (nanocarrier + drug) 

The primary nano-carrier is delivered to the tumor and releases the drug. In the 
equations below CN is the concentration of the carrier, Kel the rate constant of release 
of the drug from the carrier and DN the diffusion coefficient of the carrier. We 
assumed the nano-carrier to contain α particles of chemotherapy. As we discuss in the 
main text, the choice of α does not affect our calculations because we assume the 
same dose of chemotherapy to be delivered independently of the load capacity of the 
carrier.   

𝜕𝐶𝑁
𝜕𝑡

= −𝑣𝛻𝐶𝑁 + 𝐷𝑁𝛻2𝐶𝑁 − 𝐾𝑒𝑙𝐶𝑁 +  𝛷     (15) 

𝜕𝐶𝐹
𝜕𝑡

= 𝛼𝐾𝑒𝑙𝐶𝑁 − 𝑣𝛻𝐶𝐹 + 𝐷𝐹𝛻2𝐶𝐹 −
1
𝜑
𝐾𝑂𝑁𝐶𝑟𝑒𝑐𝐶𝐹 + 𝐾𝑂𝐹𝐹𝐶𝐵  (16) 

𝜕𝐶𝐵
𝜕𝑡

= 1
𝜑
𝐾𝑂𝑁𝐶𝑟𝑒𝑐𝐶𝐹 − 𝐾𝑂𝐹𝐹𝐶𝐵 − 𝐾𝐼𝑁𝑇𝐶𝐵     (17) 

𝜕𝐶𝐼
𝜕𝑡

= 𝐾𝐼𝑁𝑇𝐶𝐵         (18) 

 

Multi-stage System: 

CN1 is the concentration of the primary nanoparticle and CN2 is the concentration of 
the secondary particle. Kel1 is the rate constant for the release of the secondary particle 
from the primary and Kel2 the rate constant for the release of the drug from the 
secondary particle. α is the number of secondary particles released by the primary and 
β the number of the drug particles released by the secondary particle.   
𝜕𝐶𝑁1
𝜕𝑡

= −𝑣𝛻𝐶𝑁1 + 𝐷𝑁1𝛻2𝐶𝑁1 − 𝐾𝑒𝑙1𝐶𝑁1 +  Φ     (19) 

𝜕𝐶𝑁2
𝜕𝑡

= 𝛼𝐾𝑒𝑙1𝐶𝑁1 − 𝑣𝛻𝐶𝑁2 + 𝐷𝑁2𝛻2𝐶𝑁2 − 𝐾𝑒𝑙2𝐶𝑁2    (20) 

𝜕𝐶𝐹
𝜕𝑡

= 𝛽𝐾𝑒𝑙2𝐶𝑁2 − 𝑣𝛻𝐶𝐹 + 𝐷𝐹𝛻2𝐶𝐹 −
1
𝜑
𝐾𝑂𝑁𝐶𝑟𝑒𝑐𝐶𝐹 + 𝐾𝑂𝐹𝐹𝐶𝐵  (21) 

𝜕𝐶𝐵
𝜕𝑡

= 1
𝜑
𝐾𝑂𝑁𝐶𝑟𝑒𝑐𝐶𝐹 − 𝐾𝑂𝐹𝐹𝐶𝐵 − 𝐾𝐼𝑁𝑇𝐶𝐵     (22) 

𝜕𝐶𝐼
𝜕𝑡

= 𝐾𝐼𝑁𝑇𝐶𝐵         (23) 

To reduce the model parameters, Kel2 was taken to be the same as the Kel1  and 
simulations were also run keeping the values of the one the same and varying the 
value of the other. 

 

Fraction of killed cells 

The fraction of killed cells is calculated as 1-SF, where SF is the fraction of surviving 
cells. The fraction of surviving cells is calculated from the equation:

( )expF peakS Iω= − ⋅  according to the work of Eikenberry 7. Eikenberry fitted the 
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exponential decay equation to experimental data by Kerr et al. 12 for the fraction of 
non-small cell lung tumor cells surviving at different doses of chemotherapy 
(doxorubicin) in vitro. In this equation ω=0.4938 and Ipeak is the peak intracellular 
concentration of chemotherapy used in 12 in ng/105cells. Assuming that a cell occupies 
4x10-9 ml 8 and that 1 mole of doxorubicin is 579.98g, then 1 ng/105 cells is 
approximately 10-6 moles/L. Therefore, the fraction of surviving cells was calculated 
as ( )6exp 10F IS Cω= − ⋅ ⋅ , where CI is concentration of the internalized doxorubicin.  

 

Boundary conditions  

We modeled a bolus injection of the particles so that the concentration at the inlet of 
the vascular network decreases exponentially, / dt K

v oC C e−= . Co is the initial 
concentration at the inlet of the vascular network and Kd is a time constant that 
describes the exponential decay in the blood and corresponds to the blood half-life. In 
the case of the single stage system, Cv and Kd are the concentration and blood half-life 
of the chemotherapy; for the two-stage system, Cv and Kd are the corresponding 
values for the nano-carrier, and for the multi-stage system, Cv and Kd are the 
corresponding values for the primary particle. The concentration of the different 
delivery systems was matched so that the amount of chemotherapy to be the same in 
all cases. The initial amount of chemotherapy was determined as D*A in 9, where 
A=0.13 L-1 and D=100mg. Converting D*A in moles/L (using the fact that 1 mole 
doxorubicin is 579.98g) we get Co=2.24x10-5 M chemotherapy.  

In the inlet the vascular pressure is set to 30 mmHg and at the outlet is set to 5 mmHg 
3, 20. The concentrations and pressures at the boundaries of the interstitial space are set 
to zero as well (Supplementary Fig. S1).  

 

Numerical Solution Strategy 

The equations of the fluid transport problem are summarized below: 

Poiseuille’s equation 𝑄 =
𝜋𝐷4

128𝜇
∙
𝑑𝑃
𝑑𝑧

 ⇔  𝑄 = 𝐺𝑣 ∙ 𝛥𝛲𝑣 

Starling’s approximation 𝑄 = 𝐿𝑝𝑆(𝑃𝑣 − 𝑃𝑖) ⇔  𝑄 = 𝐺𝑤 ∙ 𝛥𝛲𝑤 

Darcy’s equation 𝑄 = 𝐾𝑡𝐴𝑐
𝛥𝑃𝑖
𝛥𝑥

 ⇔  𝑄 = 𝐺𝑡 ∙ 𝛥𝛲𝑡 

where:  
4

128v
DG

z
π
µ

=
⋅∆

 vascular conductivity 

w pG L S=    transvascular conductivity 

t c
t

K AG
x

=
∆

   interstitial conductivity 
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We first solve the steady-state fluid problem to calculate the fluid pressures. The 
vascular and interstitial spaces are discretized by computational nodes 
(Supplementary Fig. 1B). Each node belonging to the vascular space is assigned a 
pore diameter taken randomly by a unimodal distribution with a given mean and 
standard deviation. Therefore, each of the "vascular" nodes has its own values of Lp, 
P, and σ (Eq. 7). Conservation of fluid requires that at each node the volume of fluid 
entering the node is the same as the fluid exiting the node, i.e., 0Qi i =∑  for each 

node i. This results in a linear system of equations of the form ⋅ =G P b , where G is 
the conductivity matrix, P is the vector of unknowns that contains the vascular and 
interstitial fluid pressures and the vector b of the right hand side has zero elements 
unless a boundary condition is applied. 

Subsequently, we solve the transient transport problem to calculate the concentration 
of the nanoparticles and the drug. The transient nanoparticle transport problem is 
solved with a finite difference scheme. Central differencing for diffusion, upwind 
differencing for convection and an explicit Euler method for time integration were 
used. The connectivity between vascular and interstitial nodes remains the same as in 
the fluid flow problem. 

 

One-dimensional Steady State Solution 

Useful insights can be obtained from a simplified model in which the governing 
equations are considered under steady state conditions in a one-dimensional 
geometry. Here we seek the concentrations of the nanoparticles, free drug and bound 
drug as functions of the distance from the blood vessel wall located at x=0. A non-
zero, but constant interstitial velocity is assumed that advects material away from 
(𝑣 > 0) or toward the vessel wall (𝑣 < 0). We further assume that the vascular 
concentration 𝐶𝑣 varies slowly so that nearly steady state conditions develop near the 
blood vessel wall. The concentration of bound drug will serve as a proxy for the 
concentration of internalized drug which in turn determines the surviving fraction of 
cells. Careful organization of the resulting solutions yields analytical expressions for 
characteristic lengths scales that relate the penetration of each stage of the drug 
delivery system to the diffusion, advection, release rates and binding rates.   
 
For the two-stage delivery system transport of the first stage is governed  
 

𝐷𝑁1
𝑑2𝐶𝑁1
𝑑𝑥2

− 𝑣 𝑑𝐶𝑁1
𝑑𝑥

− 𝐾𝑒𝑙1𝐶𝑁1 = 0      (24) 
 
which we solve subject to the boundary conditions 𝐶𝑁1(0) = 𝐶𝑣 and 𝐶𝑁1 bounded for 
large x where we neglect the concentration difference across the vessel. This 
assumption affects the magnitude of the concentration in the tissue, but does not 
change the penetration distances.  The solution is given by  
 
𝐶𝑁1(𝑥) = 𝐶𝑣exp (− 𝑥

𝐿𝑁1
)       (25) 
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where the characteristic length is given by  𝐿𝑁1 = 2𝐷𝑁1

(𝑣2+4𝐾𝑒𝑙1𝐷𝑁1)1/2−𝑣
 which reduces to 

𝐿𝑁1 = �𝐷𝑁1
𝐾𝑒𝑙1

�
1/2

 in the absence of advection. We note that advection out of the vessel 

(𝑣 > 0) increases the penetration of the first stage while advection toward the vessel 
(𝑣 < 0) decreases penetration. After release from the primary nanoparticle transport 
of the free drug is governed by 
 

𝐷𝐹
𝑑2𝐶𝐹
𝑑𝑥2

− 𝑣 𝑑𝐶𝐹
𝑑𝑥

− 1
𝜑
𝐾𝑜𝑛𝐶𝑟𝑒𝑐𝐶𝐹 + 𝛼𝐾𝑒𝑙1𝐶𝑁1 = 0    (26) 

 
where we have assumed that return from the bound state is much slower than the 
binding rate. Further we define 𝐾𝐹 ≡

1
𝜑
𝐾𝑜𝑛𝐶𝑟𝑒𝑐. We solve subject to 𝐶𝑁2(0) = 0 and 

𝐶𝑁2 bounded for large x, that is, the concentration at the vessel wall is held low by 
rapid clearance by the blood. The concentration of the first stage is known from 
equation 25. We obtain 
 
𝐶𝐹(𝑥) = 𝐴𝐹 �exp �− 𝑥

𝐿𝐹
� − exp (− 𝑥

𝐿𝑁1
)�     (27) 

 
where the characteristic length scale is given by  𝐿𝐹 = 2𝐷𝐹

(𝑣2+4𝐾𝐹𝐷𝐹)1/2−𝑣
  which reduces 

to 𝐿𝐹 = �𝐷𝐹
𝐾𝐹
�
1/2

 in the absence of advection and multiplicative coefficient is  𝐴𝐹 =

𝛼𝐾𝑒𝑙1𝐶𝑣

𝐷𝐹�
1

𝐿𝑁1
�
2
+ 𝑣
𝐿𝑁1

−𝐾𝐹
 which reduces to 𝐴𝐹 =

𝛼
𝐾𝑒𝑙1
𝐾𝐹

𝐶𝑣

� 𝐿𝐹
𝐿𝑁1

�
2
−1

 in the absence of advection.  

 
In steady state the bound drug concentration may be estimated from 
 
 𝐶𝐵 = 𝐾𝑜𝑛𝐶𝑟𝑒𝑐

𝜑(𝐾𝑜𝑓𝑓+𝐾𝑖𝑛𝑡)
𝐶𝐹        (28) 

 
Analysis of multistage delivery follows a similar pattern. Equations 24 and 25 apply 
to the first stage as before. Transport of the second stage (secondary nanoparticle) is 
governed by  
 

𝐷𝑁2
𝑑2𝐶𝑁2
𝑑𝑥2

− 𝑣 𝑑𝐶𝑁2
𝑑𝑥

− 𝐾𝑒𝑙2𝐶𝑁2 + 𝛼𝐾𝑒𝑙1𝐶𝑁1 = 0    (29) 
 
which we solve subject conditions similar to those for the free drug in the two-stage 
system 𝐶𝑁2(0) = 0 and 𝐶𝑁2 bounded for large x. The expression for the concentration 
for the second stage nanoparticle is formally similar to that for the free drug above, 
that is  
 
𝐶𝑁2(𝑥) = 𝐴2 �exp �− 𝑥

𝐿𝑁2
� − exp (− 𝑥

𝐿𝑁1
)�     (30) 
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where  𝐿𝑁2 = 2𝐷𝑁2
(𝑣2+4𝐾𝑒𝑙2𝐷𝑁2)1/2−𝑣

  and  𝐴2 = 𝛼𝐾𝑒𝑙1𝐶𝑣

𝐷𝑁2�
1

𝐿𝑁1
�
2
+ 𝑣
𝐿𝑁1

−𝐾𝑒𝑙2
 which for no advection 

reduce to  𝐿𝑁2 = �𝐷𝑁2
𝐾𝑒𝑙2

�
1/2

 and  𝐴2 =
𝛼
𝐾𝑒𝑙1
𝐾𝑒𝑙2

𝐶𝑣

�𝐿𝑁2𝐿𝑁1
�
2
−1

, respectively. Now we add a third stage 

which is the transport of the free drug after release from the secondary nanoparticle 
governed by 
 

𝐷𝐹
𝑑2𝐶𝐹
𝑑𝑥2

− 𝑣 𝑑𝐶𝐹
𝑑𝑥

− 1
𝜑
𝐾𝑜𝑛𝐶𝑟𝑒𝑐𝐶𝐹 + 𝛽𝐾𝑒𝑙2𝐶𝑁2 = 0     (31) 

 
For the distribution of the free drug we obtain 
 
𝐶𝐹(𝑥) = −(𝐴𝐹1 + 𝐴𝐹2) exp �− 𝑥

𝐿𝐹
� + 𝐴𝐹1 exp �− 𝑥

𝐿𝑁1
� + 𝐴𝐹2exp (− 𝑥

𝐿𝑁2
)   (32) 

 
where 𝐿𝐹 = 2𝐷𝐹

(𝑣2+4𝐾𝐹𝐷𝐹)1/2−𝑣
,  𝐴𝐹1 = 𝛽𝐾𝑒𝑙2𝐴2

𝐷𝐹�
1

𝐿𝑁1
�
2
+ 𝑣
𝐿𝑁1

−𝐾𝐹
 and 𝐴𝐹2 = −𝛽𝐾𝑒𝑙2𝐴2

𝐷𝐹�
1

𝐿𝑁2
�
2
+ 𝑣
𝐿𝑁2

−𝐾𝐹
  

which reduces to 𝐴𝐹1 =
𝛽
𝐾𝑒𝑙2
𝐾𝐹

𝐴2

� 𝐿𝐹
𝐿𝑁1

�
2
−1

 and 𝐴𝐹2 =
𝛽
𝐾𝑒𝑙2
𝐾𝐹

𝐴2

1−� 𝐿𝐹
𝐿𝑁2

�
2 without advection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

Supplementary Tables and Figures 

Supplementary Table 1. Values of model parameters employed in our analysis. 

Parameter Value Reference 

Kd    (blood circulation 
decay constant) 

22 h for 20 nm particles  

10 h for 100 nm particles 

 
15, 17 

Kel (release rate constant) 1.18 x10-4 s-1  from data of Gelatin 100 nm 
multistage particles 

1.5 x10-5 s-1  fitting a first order kinetic to 
BIND-014  

2.1 x10-6 s-1 fitting a first order kinetic to 
Doxil  

11, 22 

Kon (binding rate 
constant) 

1x101 - 1x106  M-1 s-1    19, 21 

Koff (unbinding rate 
constant) 

8x10-3 s-1  21 

Kint (cell uptake rate 
constant) 

5x10-5 s-1  21 

Vessel wall pore 
diameter 

200 ± 60 nm (hyper-permeable tumor) 5 

D (particle diffusion 
coefficient) 

5x10-10 cm2/s for 100 nm particles 

7x10-8 cm2/s for 20 nm particles 

3x10-7 cm2/s for 10 nm particles 

8x10-7 cm2/s for 5 nm particles 

3x10-6 cm2/s for 1 nm particles 

16 

α, β (number of particles 
in the nanoparticle 
carrier) 

α=800, β=10 for a multistage 100 nm particle 

α=4, β=5 for a multistage 20 nm particle 

α=10000 for a two-stage 100 nm particle 

α=20 for a two-stage 20 nm particle 

14, 22 

φ (tumor volume fraction 
accessible to drugs) 

0.3 for 1 nm particles 

0.1 for 5 nm particles 

0.05 for 100 nm particles 

19, 21 

Crec (concentration of 1x10-5 M 13 
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cell surface receptors) 

R (length of the domain) 0.5 cm 3 

Kt (interstitial space 
hydraulic conductivity) 

3x10-8 cm2/mmHg s 3 

Pv (pressure at the inlet) 30 mmHg 3 

Sv (vascular density) 200 cm-1 3 

μblood (blood viscosity) 3x10-5 mmHg s 2 

d (vessel diameter) 15 μm 2 
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Supplementary Figure 1. A) Computational domain showing the vascular 
percolation network (red color) and the boundary conditions. B) The domain is 
discretized in vascular and interstitial nodes, which are interconnected. Qv, Qw and Qt 
denote vascular, transvascular and interstitial fluid flow rate, respectively.    
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Supplementary Figure 2. Results from simplified 1-dimensional model. 
Optimization contour plots of the fraction of killed cells (𝐶𝐵 > 0.05𝐶𝑣) as a function 
of binding rate constant (Kon) and rate constant of release (Kel) for the 20 nm two-
stage (A) and multi-stage (B) nanoparticles neglecting advection. The maximum 
distance from a blood vessel is 0.05 cm. Compare to Figure 5 in the main paper.  

         A   Two-Stage Delivery System                               B   Multi-Stage Delivery System 
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Supplementary Figure 3. Comparison of steady state multi-stage drug distribution 
without and with advection. Properties for a 20 nm first stage, a 5 nm second stage 
and a 1 nm free drug with 𝐾𝑒𝑙1 = 𝐾𝑒𝑙2 = 3𝑥10−3 𝑠−1 and  𝐾𝑜𝑛 = 1𝑥103𝑀−1 𝑠−1. No 
advection (A), 𝑣 = 0 gives 𝐿𝑁1= 0.0048 cm, 𝐿𝑁2=0.0163 cm and 𝐿𝐹= 0.0095 cm, 
while flow from the vessel (B), 𝑣 = 1𝑥10−5 cm/s gives 𝐿𝑁1=0.0068 cm, 𝐿𝑁2= 0.0181 
cm and 𝐿𝐹 =0.0096 cm. Advection by the interstitial fluid (𝑣 > 0) can aid distribution 
of the drug. 
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Supplementary Figure 4. Optimization contour plots for a 20 nm, two-stage 
nanoparticle with the ability to bind to cancer cells. Two binding rate constants of the 
nanoparticle were used, (A) one for low binding affinity: 1x102 M-1s-1 and (B) one for 
high binding affinity 1x104 M-1s-1. The contour plots are a function of the binding rate 
constant of the chemotherapy and the release rate constant from the nanoparticle. The 
blood half-life of the nanoparticle was taken to be Kd=10h.  
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Supplementary Figure 5. Fraction of killed cells for an 100nm, multistage 
nanoparticle. In panel (A) the release rate constant Kel1 of the secondary particle was 
kept to 1.18x10-4 s-1 and the release rate constant Kel2 was varied. In panel (B) the 
release rate constant Kel2 was kept to 1.18x10-4 s-1 and Kel1 was varied. Kon was set to 
1.5x104 M-1s-1 for both cases. 
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