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I. Experimental Methods

a. Hi-C
Most of the Hi-C datasets used in our analyses were gener-

ated using either the in situ Hi-C protocol or the dilution Hi-C
protocol in our previous study (8) (GEO accession GSE63525).
All of the Hi-C data was processed using the computational
pipeline described in full detail in (8). In brief, the pipeline
uses BWA (S1) to map each read end separately to the b37
reference genome, removes duplicate and near-duplicate reads,
removes reads that map to the same fragment, and filters the
remaining reads based on mapping quality score. Contact
matrices were generated at base pair delimited resolutions of
2.5Mb, 1Mb, 500kb, 250kb, 100kb, 50kb, 25kb, 10kb, and
5kb, as well as fragment-delimited resolutions of 500f, 200f,
100f, 50f, 20f, 5f, 2f, and 1f. All Hi-C contact matrices were
normalized using a matrix balancing algorithm (S2) in order
to correct for coverage biases. All analyses performed in this
study were performed on the KR-normalized data. The loca-
tions of contact domains and loops used in our analyses were
annotated as described in (8).

i. Previously generated Hi-C data

The primary Hi-C map used in our analyses was a one-
kilobase resolution map consisting of over 4.9 billion contacts,
generated in the GM12878 human lymphoblastoid cell line us-
ing the MboI restriction enzyme. All analyses involving con-
tact domains in this map were performed using a list of 9,274
domains annotated via the Arrowhead algorithm. Hi-C maps
and domain annotations generated in the IMR90, K562, HeLa,
HMEC, and NHEK cell lines using in situ Hi-C and the MboI
restriction enzyme were also used for supplementary analysis.
In addition, in situ Hi-C data sets generated in GM12878 us-
ing the DpnII restriction enzyme and dilution Hi-C data sets
generated in the GM12878 cell line using the dilution Hi-C
protocol and the HindIII or NcoI restriction enzymes were
also used for analysis of single-fragment cyclization probabili-
ties. Native Hi-C data sets (with no crosslinking) generated in
GM12878 using the MboI restriction enzyme were also used
in the cyclization probabilities analysis as a control. All of
these Hi-C datasets were previously reported in (8) and have
been previously uploaded to GEO accession GSE63525. All
domain and loop annotations from these previously reported
maps that were used in this study are also available at GEO
accession GSE63525.

ii. New Hi-C datasets
We also generated 6 additional Hi-C datasets using the in

situ Hi-C protocol, varying the duration of crosslinking. In
brief, the in situ Hi-C protocol involves crosslinking cells with
formaldehyde, permeabilizing them with nuclei intact, digest-
ing DNA with a suitable 4-cutter restriction enzyme (in our ex-
periments we used MboI), filling the 5’-overhangs while incor-
porating a biotinylated nucleotide, ligating the resulting blunt-
end fragments, shearing the DNA, capturing the biotinylated
ligation junctions with streptavidin beads, and analyzing the
resulting fragments with paired-end sequencing. In order to
test the possibility that the strength of formaldehyde crosslink-
ing could affect the contact probability scalings observed, we
performed experiments using 1, 5, or 10 minutes of crosslink-
ing with 1% formaldehyde at 22C or 37C. For each experiment,
we computed the genome-wide contact probability scaling (de-
fined below) at distances from 30kb to 300kb and compared
to contact probability of the primary map (crosslinked at 22C
for 10 minutes). The values of γ obtained are listed in Table
S2.

For our genome engineering experiments, we generated 5 in
situ Hi-C libraries (using the same protocol from (8)) from
Hap1 wild-type cells that were deeply sequenced to create our
genome-wide wild-type Hap1 Hi-C map. We also generated 63
in situ Hi-C libraries from Hap1 wild-type and various mutant
cell lines that we performed hybrid selection on to generate Hi-
C2 libraries (see section I.e below for information on the Hi-C2

protocol).
All new in situ Hi-C libraries generated as part of this study

are detailed in Table S6.

b. Nuclear Volume
All cell lines were cultured according to the supplier’s in-

structions. Adherent cell lines were grown on the surface
of pre-cleaned glass slides in the appropriate growth media,
then stained with 2M CellTracker Red CMTPX fluorescent
dye (Life Technologies, C34552) in fresh serum-free medium
for 45 minutes at 37C, 5% CO2. Suspension cell lines were
harvested by centrifugation at 300xG for 5 minutes and re-
suspended in serum-free medium with CellTracker Red for
staining, as above. After incubation, medium with dye was
removed and cells were again incubated in fresh medium for 30
minutes. Cells were then washed with 1X phosphate-buffered
saline (PBS) and fixed in 4% formaldehyde in 1X PBS for 15

2 www.pnas.org/cgi/doi/10.1073/pnas.1518552112 Sanborn et al.
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minutes at ambient temperature. After fixation, cells were
washed twice with 1X PBS. Suspension cell lines were diluted
to a concentration of 1 × 106 cells/mL in 1X PBS and were
allowed to attach to the surface of poly-L-lysine coated micro-
scope slides. Nuclei were stained with DAPI (100ng/mL) for
30 minutes at ambient temperature in the dark. Slides were
imaged with either an LSM 700 or an LSM 780 laser scanning
inverted confocal microscope (Zeiss), 40X oil objective, ZEN
2011 imaging software (Zeiss), at 405nm and 594nm. Nuclear
and cytoplasmic volumes were determined using Volocity v.6
software (Perkin Elmer). The intensity threshold of each chan-
nel was kept constant for all measurements.

c. 3D DNA FISH
3D DNA fluorescence in situ hybridization (FISH) was per-

formed essentially as described in (8), based on the Oligopaints
method of (S3). Briefly, probes were designed with OligoAr-
ray as a pool of 32bp sequences tiling nine 30kb target loci (3
per region at a density of 9-16 probes per kilobase), flanked
by 21bp primer sequences unique to each locus (Table S5).
The 74bp full sequences were ordered as an oligonucleotide
pool (CustomArray, Inc.). Forward primers were synthesized
with a 5’ conjugated fluorophore (Alexa Fluor 488, ATTO 565,
or Alexa Fluor 647) and purified by HPLC (Integrated DNA
Technologies). IMR90 cells were cultured on Lab-Tek II glass
chamber slides (Thermo Fisher Scientific). Further details on
experimental procedures (including measures to minimize bias
due to chromatic aberration), microscopy, and image process-
ing can be found in (8).

d. CRISPR workflow
In brief, our CRISPR workflow consisted of the following

steps: (i) identifying chromatin loops using HiCCUPS (8),
(ii) identifying unique, correctly oriented CTCF motifs within
loop anchors (as defined in (8)), (iii) rationally designing a
CRISPR guide RNA or multiple guide RNAs to cut within or
around the CTCF motif while optimizing for cutting efficiency
and minimizing off-target effects, (iv) optionally designing ho-
mology directed repair (HDR) templates to specifically invert
or replace the CTCF motif, (v) transfecting cells with the Cas9
and the guide RNA(s) (and optionally the HDR template),
(vi) sorting single transfected cells via fluorescence-activated
cell sorting (FACS), (vii) growing up and genotyping clonal
populations of cells, (viii) selecting clonal cell lines with mu-
tations disrupting the CTCF motif (or in the case of HDR, the
specific desired mutation), (ix) performing in situ Hi-C on the
selected mutated cell lines, and (x) performing hybrid selection
on the in situ Hi-C libraries for a region around the targeted
CTCF motif to generate Hi-C2 libraries that can easily and
cheaply be sequenced to read off the effects of our mutations
on genome folding.

While we performed our CRISPR experiments in the Hap1
cell line to be able to read off the effects of our mutations with-
out having to worry about allelic heterozygosity, our CRISPR
workflow is easily adaptable to other cell lines, as long as
one has a reasonable Hi-C map to identify loops and guide
predictions (in fact, since our extrusion model is very good
at predicting genome folding from CTCF ChIP-Seq alone, in
many cases the requirement for Hi-C data may not even be
essential). The steps in our workflow are described in detail
below.

i. Experimental Design
Three regions containing triple-hubs (three loci A, B and

C with all pair-wise loops present) were chosen for thorough
dissection. Since we did not have CTCF or cohesin ChIP-Seq

data for Hap1, the regions were chosen such that they showed
extremely similar patterns of chromatin folding to GM12878
and IMR90, so that ChIP-Seq data from those cell lines could
be used to identify precise motifs in loop anchors to target as
well as to simulate folding in the regions (see section III.d.iii
below).

The three hubs were chosen such that unique anchors (as
defined in (8)) were present at least at the middle loop an-
chor and ideally at one of the upstream or downstream loop
anchors as well. Motifs in loop anchors were identified using
FIMO (S4) using the CTCF motif position weight matrices
(PWMs) from Kim, et al (S5) and Schmidt, et al (S6). The
hubs were chosen such that all loops were clearly anchored by
correctly oriented motifs. Motifs to target via CRISPR were
only chosen if they were clearly unique among the correctly
oriented motifs in a ChIP-Seq binding site (i.e. there was
only one motif present or only one motif that was clearly the
strongest match when compared against both PWMs and in
the case of the middle loop anchor, the reverse CTCF motif
corresponding to the A-B loop was upstream of the forward
CTCF motif corresponding to the B-C loop).

Targeted motifs and regions are listed in Table S7 and S8.

ii. Guide RNA and HDR template design
Guide RNAs were designed using one of two strategies: (i) a

single guide RNA was designed to cut inside the target CTCF
motif or (ii) two guide RNAs were designed to cut flanking
both sides of the target CTCF motif.

Prospective guide RNAs were screened using the cutting
efficiency scoring scheme from Doench, et al (S7) and the
off-target scoring scheme from Hsu, et al (S8). Wherever
possible, guides with cutting efficiency scores of 0.4 or lower
were avoided, and guide RNAs with scores of lower than 0.25
were discarded altogether. Wherever possible, guides ranked
as high quality guides by the Hsu off target assessment al-
gorithm were used. In a few cases, where no high quality
guide was identified or when the cutting efficiency as ranked
by the Doench, et al algorithm was extremely low, a mid-
quality guide (with respect to off-targets) was used.

Guide RNAs for all mutations are listed in table S7.
All the HDR templates used in this study were ssODNs

(S9), either 200bp (IDT ultramers) or 100bp (Invitrogen cus-
tom DNA oligonucleotides) in size. They were designed such
that they contained the 20bp CTCF motif inverted (or a new
20bp CTCF motif), flanked by homology arms either 90bp or
40bp in size.

iii. Cell culture and transfection
This culture and transfection protocol was used for the 8

mutated cell lines generated entirely within our lab; 5 of the
mutated cell lines were ordered from Horizon Genomics and
created using their proprietary methods (see Table S7). The
experimental design and guide RNA design for all 13 experi-
ments was conducted as described above.

Hap1 cells (Horizon Genomics) were cultured according to
manufacturer’s conditions. 24 hours before transfection, 0.9M
Hap1 cells were plated in each well of a 6 well plate. Af-
ter 24 hours, when the cells were roughly 60% confluent, the
cells were transfected with the pSpCas9(BB)-2A-GFP (px458)
plasmid from the Zhang lab (S9). Guide RNAs were cloned
into the plasmid using the protocol provided at http://www.ge
nome-engineering.org/crispr/wp-content/uploads/2014/
05/CRISPR-Reagent-Description-Rev20140509.pdf (14).

The Hap1 cells were transfected (in antibiotic free media)
with 3µg of DNA using Turbofectin according to manufac-
turer’s instructions (a 3:1 ratio of Turbofectin to DNA was
used; 9µl of Turbofectin for 3µg of DNA). For single guide

Sanborn et al. PNAS Oct 2015 3
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RNAs, 3µg of the Cas9-gRNA plasmid was used. For double
guide RNA mediated deletions, 1.5µg of each Cas9-gRNA plas-
mid was used. For HDR, either 1.5µg of Cas9-gRNA plasmid
and 3µl 10µM 200bp ssODN or 1.875µg Cas9-gRNA plasmid
and 3.75µl 10µM 100bp ssODN were used. For HDR experi-
ments, the culture media was supplemented with 0.1µM SCR7
(S10, S11) 12-24 hours after transfection.

24-48 hours after transfection, GFP+ cells were sorted via
FACS (PI was also added to filter for dead cells). Transfection
efficiencies were usually between 5 and 10%. Populations of
500-10,000 cells were screened for gRNA cutting efficiency or
for HDR efficiency to judge roughly how many clones would
need to be screened. Single cells were sorted into individual
wells of a 96-well plate and allowed to grow for 10-14 days.
After that, roughly 32-96 clones were screened per transfec-
tion.

iv. Mutation strategy
Deletions were obtained either via a single guide RNA-

mediated cut within the CTCF motif or via two guide RNAs-
mediated double strand breaks on either side of the CTCF
motif. In the case of the single guide RNA mediated cuts,
clones were screened for mutations that were as small as pos-
sible, but also highly likely to completely disrupt CTCF bind-
ing (as judged by the strength of the motif match before and
after mutation). Mutations that were likely to completely ab-
rogate CTCF binding were selected for expansion. Mutations
generated via two double strand breaks were all generated by
Horizon Genomics and clones containing the region between
the two guide RNAs either cut out or inverted were selected
for expansion. Clones targeted with HDR were screened for
the 20bp inversion or 20bp replacement and successfully tar-
geted clones were selected for expansion.

v. in situ Hi-C on mutated cell lines
Expanded mutant clones were crosslinked as in (8) and sub-

sequently in situ Hi-C was performed on the pellets as de-
scribed in (8) and summarized above. On average, 4.3 in situ
Hi-C libraries were generated per mutated cell line for a total
of 56 in situ Hi-C libraries.

e. Hi-C2

i. Probe design
To design probes targeting a particular region for HYbrid

Capture Hi-C (Hi-C2), we first identified all restriction sites
within the target region. Since Hi-C ligation junctions occur
between restriction sites, we designed our bait probe sequences
to target sequences within a certain distance of the (MboI) re-
striction sites present in our target region. Specifically, we
performed a first pass, scanning all 120bp sequences with one
end within 80bp of a restriction site and selecting, for each
restriction end (i.e. both upstream and downstream of the
restriction site), the closest 120bp sequence to the restriction
site that had fewer than 10 repetitive bases (as determined by
the repeat masked hg19 genome downloaded from UCSC) and
had between 50% and 60% GC content. If there was no probe
satisfying those criteria, the closest probe with between 40%
and 70% GC content but satisfying all the other above criteria
was retained. The GC content bounds were chosen based on
the hybridization bias data presented in (28).

After the first pass, we removed one probe from any pair
of probes that overlapped. We then identified any gaps in the
probe coverage (intervals larger than 110bp) and identified any
restriction sites falling within those gaps. We then searched
for additional 120bp probes with a looser set of criteria: For
each restriction site within a gap, we scanned all 120bp se-

quences with one end within 110bp of a restriction site and
selected the closest sequence to the restriction site that had
fewer than 20 repetitive bases and had between 40% and 70%
GC content. After the second pass, we once again identified
gaps of at least 110bp in the probe coverage. For gaps that
fell within 5kb windows in the target region that were covered
by fewer than 5 probes, we performed a third probe design
pass. For each restriction site within these low coverage gaps,
we scanned all 120bp sequences with one end within 110bp of
a restriction site and selected the closest sequence to the re-
striction site that had fewer than 25 repetitive bases and had
between 25% and 80% GC content.

After all three passes, we identified 3107 probes cover-
ing region 1 (chr8:133-135Mb; 1.55 probes/kb), 2666 probes
covering region 2 (chr1:179.8-181.8Mb; 1.33 probes/kb), and
2497 probes covering region 3 (chr5:31-33Mb; 1.25 probes/kb).
15bp primer sequences (unique for each region) were appended
to either end of the 120bp probe sequence in order to allow
for synthesis of all probes together in one oligo pool and sub-
sequent amplification of region-specific sub-pools (see below).

ii. Probe construction
We obtained custom synthesized pools of 150bp (120bp

+ 15bp primer sequence on either end) single stranded
oligodeoxynucleotides from CustomArray, Inc. (Bothell, WA).
The oligonucleotides were of the form TCGCGCCCATAACTCN120

CTGAGGGTCCGCCTT for Region 1, ATCGCACCAGCGTGTN120CAC
TGCGGCTCCTCA for Region 2, and CCTCGCCTATCCCATN120CAC
TACCGGGGTCTG for Region 3. Region-specific sub-pools were
first amplified from the overall CustomArray oligo pool using
the following mix and PCR profile:

2µl oligo pool (160 ng)
6µl Primer 1 (10µM)
6µl Primer 2 (10µM)

36µl H2O
50µl 2X Phusion master mix

100µl TOTAL

Amplify for 10-18 cycles using the following PCR profile:

98C for 30s
98C for 10s
55C for 30s
72C for 30s cycle 10-18 times

72 for 7min
hold at 4C

where Primer 1 was CTGGGATCGCGCCCATAACTC for Re-
gion 1, CTGGGAATCGCACCAGCGTGT for Region 2, and
CTGGGACCTCGCCTATCCCAT for Region 3 and Primer 2 was
CGTGGAAAGGCGGACCCTCAG for Region 1, CGTGGATGAGGAGCC
GCAGTG for Region 2, CGTGGACAGACCCCGGTAGTG for Region
3.

After the initial amplification of the region-specific sub-pool,
a 1X SPRI clean up was performed on the 162bp PCR prod-
uct to remove primers and primer-dimers. We then performed
a second PCR amplification to add a T7 promoter, using the
following mix and PCR profile:

2µl first PCR product
12µl Primer 1-T7 (10µM)
12µl Primer 2 (10µM)
74µl H2O

100µl 2X Phusion master mix
200µl TOTAL

4 www.pnas.org/cgi/doi/10.1073/pnas.1518552112 Sanborn et al.
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Amplify for 12-18 cycles using the following PCR profile:

98C for 30s
98C for 10s
55C for 30s
72C for 30s cycle 12-18 times

72 for 7min
hold at 4C

where Primer 1-T7 was GGATTCTAATACGACTCACTATAGGGTCG
CGCCCATAACTC for Region 1, GGATTCTAATACGACTCACTATAG
GGATCGCACCAGCGTGT for Region 2, and GGATTCTAATACGACT
CACTATAGGGCCTCGCCTATCCCA for Region 3.

After the second PCR, once again, we performed a 1X SPRI
clean up to purify the 182bp PCR product. We then used the
purified second PCR product as the template in a MAXIScript
T7 transcription reaction (Ambion) as follows:

Xµl purified DNA template (1ug)
10µl T7 enzyme mix
10µl 10X transcription buffer
5µl 10mM ATP
5µl 10mM CTP
5µl 10mM GTP
4µl 10mM UTP
1µl 10mM Biotin-16-UTP
Yµl H2O

100µl TOTAL

After incubating the reaction for at least 90 minutes at
37oC, we added 1µl of TURBO DNase 1 and incubated at
37oC for 15 minutes to remove template DNA. We added 1µl
of 0.5M EDTA to stop the reaction and removed unincorpo-
rated nucleotides and desalted the RNA by purifying using a
Zymo Oligo Clean and Concentrator column (following man-
ufacturer’s instructions). Our RNA yield was typically 5-15µg
of RNA per reaction, so we measured the concentration of the
RNA prior to the column cleanup using a Qubit RNA assay
in order to determine whether to use one or two columns (the
capacity of one of the Zymo columns is 10µg). For long-term
storage of the RNA probes, we added 1U/µl of SUPERase-In
RNase inhibitor (Ambion) and stored at -80C.

iii. Hybrid selection
Final in situ Hi-C libraries were assessed for quality using

the metrics outlined in Rao and Huntley, et al (8). High qual-
ity libraries of sufficient complexity were selected for hybrid
capture. 500ng of Hi-C library was used as the pond for the
hybrid selection reaction; libraries were diluted to a concen-
tration of 20ng/µl (i.e. 25µl of library was used). For a few
libraries that were under 20ng/µl in concentration, as low as
250ng total was used (still in 25µl).

For the hybridization reaction, 25µl of pond was mixed
with 2.5µg (1µl) of Cot-1 DNA (Invitrogen) and 10µg (1µl)
of salmon sperm DNA (Stratagene). The DNA mixture was
heated to 95oC for 5 minutes and then held at 65oC for at
least 5 minutes. After at least 5 minutes at 65oC, 33µl of
prewarmed (65oC) hybridization buffer (10X SSPE, 10X Den-
hardt’s buffer, 10mM EDTA, and 0.2% SDS) and 6µl of RNA
probe mixture (500ng of RNA probes, 20U of SUPERase-
In RNase inhibitor; prewarmed at 65oC for 2 minutes) were
added to the DNA library for a total volume of 66µl. This
mixture was incubated at 65oC in a thermocycler for 24 hours.

After 24 hours at 65oC, 50µl of streptavidin beads (Dyn-
abeads MyOne Streptavidin T1, Life Technologies) were
washed three times in 200µl of Bind-and-Wash buffer (1M

NaCl, 10mM Tris-HCl, pH 7.5, and 1mM EDTA) and then
resuspended in 134µl of Bind-and-Wash buffer. The beads
were added to the hybridization mixture and incubated for
30 minutes at room temperature (with occasional mixing to
prevent the beads from settling). After 30 minutes, the beads
were separated with a magnet and the supernatant discarded.
The beads were then washed once with 200µl low-stringency
wash buffer (1X SSC, 0.1% SDS) and incubated for 15 min-
utes at room temperature. After 15 minutes, the beads were
separated on a magnet and the supernatant discarded. The
beads were then washed three times in high-stringency wash
buffer (0.1X SSC, 0.1%SDS) at 65oC for 10 minutes, each time
separating the beads with a magnet and discarding the super-
natant.

After the last wash, the DNA was eluted off the beads by
resuspending in 50µl of 0.1M NaOH and incubating for 10
minutes at room temperature. After 10 minutes, the beads
were separated on a magnet and the supernatant was trans-
ferred to a fresh tube with 50µl of 1M Tris-HCl, pH 7.5 (to
neutralize the NaOH).

To desalt the DNA, we performed a 1X SPRI cleanup us-
ing 3X concentrated SPRI beads (taking 3 volumes of SPRI
bead/solution mix, separating on a magnet, discarding 2 vol-
umes of SPRI solution and resuspending the beads in the re-
maining 1 volume). We eluted the DNA in 22.5µl of 1X Tris
buffer (10mM Tris-HCl, pH 8.0).

In order to prep the Hi-C2 library for sequencing, we added
25µl of 2X Phusion and 2.5µl of Illumina primers and ampli-
fied the library for 12-18 cycles. After PCR, we performed
two 0.7X SPRI cleanups to remove primers, etc. and then
quantified the libraries for sequencing.

iv. Hi-C2 data processing
Hi-C2 libraries were sequenced to a depth of between 600K-

60M reads (on average, 7.8M reads). All data was initially
processed using the pipeline published in our previous study
(8); however, additional processing was needed to properly
normalize the Hi-C2 data.

Normalization is an important problem to address in the
analysis and interpretation of all proximity ligation experi-
ments. We have previously shown that matrix balancing with
the KR algorithm is an effective tool for properly normalizing
Hi-C data (8). However, one requirement of the KR algo-
rithm is the requirement of a square symmetric matrix. As
hybrid selection strongly enriches for certain rows of the ma-
trix corresponding to the target region, there are large regions
of the overall matrix that are extremely sparse (entries corre-
sponding to interactions between two non-target loci). As a
result, performing KR matrix balancing on the overall matrix
generated by a Hi-C2 experiment does not efficiently correct
both first-order hybrid selection target-enrichment biases and
second-order hybridization biases within the target region.

To deal with this, we utilized the high resolution genome-
wide in situ Hi-C map of wild-type of Hap1 we had al-
ready generated. Since all genome-editing perturbations were
made within the region targeted using Hi-C2, for every Hi-C2

dataset, we spiked in data from the genome-wide wild-type
Hap1 map corresponding to regions of the chromosome-wide
matrix where both loci fall outside of the target region. Spiked
data was added such that the average coverage of a locus in the
overall chromosome-wide matrix was equal to the average cov-
erage of loci within the target region. By spiking in data from
the wild-type map where we expect to see no change (since
there were no perturbations), we could remove the first-order
bias from hybrid-selection target enrichment, and use KR ma-
trix balancing on the entire chromosome-wide matrix (which
is no longer extremely sparse) to correct the second-order hy-

Sanborn et al. PNAS Oct 2015 5
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bridization biases. Several different flavors of this normaliza-
tion scheme were implemented yielding extremely similar re-
sults; they are described below and the results of the various
normalizations are shown in Figure S14. Method e. below is
the method used for all Hi-C2 data shown in the main figures
of this study.

a. Raw gap-filling: For a given resolution, the average in-
trachromosomal coverage of the loci within the target region
(defined as the entire interval tiled by probes not specifically
the loci that were covered by a probe) was calculated from
the raw uncorrected Hi-C2 matrix. Similarly, the average in-
trachromosomal coverage of all loci was calculated from the
raw uncorrected genome-wide Hap1 wild-type Hi-C map. A
matrix consisting of all entries corresponding to two loci that
were both outside the target region was constructed from the
raw uncorrected genome-wide Hap1 Hi-C map. This matrix
was multiplied by the ratio of the average coverage of loci
within the target region in the Hi-C2 data to the average cov-
erage of all loci from the genome-wide Hap1 wild-type Hi-C
data and then summed with the Hi-C2 matrix (thereby fill-
ing in the extremely sparse areas of the Hi-C2 matrix). This
summed matrix was then corrected with the KR matrix bal-
ancing algorithm. The resulting normalization factors were
used as correction factors for the Hi-C2 data.

b. KR gap-filling: The KR gap-filling normalization was
performed similarly to the method described above, but to
avoid corrected Hi-C biases and Hi-C2 biases together, the
method above was performed on KR normalized data. Specif-
ically, the KR correction factors derived from the genome-wide
Hap1 wild-type Hi-C map were used to perform an initial cor-
rection of the Hi-C2 data. After the initial correction, the av-
erage intrachromosomal coverage of the loci within the target
region (defined as the entire interval tiled by probes not specif-
ically the loci that were covered by a probe) was calculated
from the Hi-C2 matrix. Similarly, the average intrachromo-
somal coverage of all loci was calculated from the corrected
genome-wide Hap1 wild-type Hi-C map. A matrix consisting
of all entries corresponding to two loci that were both outside
the target region was constructed from the raw uncorrected
genome-wide Hap1 Hi-C map. This matrix was multiplied by
the ratio of the average coverage of loci within the target re-
gion in the Hi-C2 data to the average coverage of all loci from
the genome-wide Hap1 wild-type Hi-C data and then summed
with the Hi-C2 matrix (thereby filling in the extremely sparse
areas of the Hi-C2 matrix). This summed matrix was then
corrected with the KR matrix balancing algorithm. The re-
sulting normalization factors were used as correction factors
for the Hi-C2 data.

c. Raw gap-filling with rescaling: Filling in the sparse areas
of the Hi-C2 matrix corrects for first order target enrichment
biases from hybrid capture to some extent, but does not ac-
count for the fact that differential enrichments may be present
for entries of the matrix corresponding to one on-target loci
and one off-target loci vs. entries corresponding to two on-
target loci. To address this, before performing gap-filling as
in the above methods, we first calculated for each locus in the
target region, the ratio of the number of contacts formed be-
tween the locus and off-target loci to the number of contacts
formed between the locus and other on-target loci using the
genome-wide Hap1 wild-type Hi-C data. We then calculated
the same ratio using the Hi-C2 data. The ratio of these ratios
provided a scaling factor for each on-target locus which we
used to scale all entries in the Hi-C2 matrix corresponding to
contacts between the on-target locus and off-target loci. Af-
ter performing this correction, we followed the method from
method a, i.e. a matrix consisting of all entries corresponding
to two loci that were both outside the target region was con-

structed from the raw uncorrected genome-wide Hap1 Hi-C
map. This matrix was multiplied by the ratio of the average
coverage of loci within the target region in the Hi-C2 data
(using the rescaled Hi-C2 data) to the average coverage of
all loci from the genome-wide Hap1 wild-type Hi-C data and
then summed with the Hi-C2 matrix (thereby filling in the
extremely sparse areas of the Hi-C2 matrix). This summed
matrix was then corrected with the KR matrix balancing al-
gorithm. The resulting normalization factors were used as
correction factors for the Hi-C2 data.

d. KR gap-filling with rescaling: This method is the same
as method c., except that as in method b., the Hi-C2 data
was initially corrected with the KR factors derived from the
Hap1 genome-wide wild-type Hi-C matrix and the KR cor-
rected wild-type Hi-C data was used for gap-filling.

e. Raw gap-filling with rescaling and thresholding: We no-
ticed that for a few very sparse (under-covered) rows in the
Hi-C2 data, our normalization methods would actually over-
correct, leading to highly-covered streak artifacts in the data.
In order to remove these artifacts, we added a final filtering
step, where loci with a normalization factor (C) of less than
0.33 (where Mi,j is divided by Ci and Cj to get the corrected
entry M∗i,j) were thresholded so that their normalization fac-
tors were raised to 0.33 (this was implemented after the KR
matrix balancing was run, not as a constraint during the run-
ning of the algorithm). The threshold of 0.33 was chosen based
on empirical observation of rows that led to streaky artifacts.
This method is the same as method c. except with the afore-
mentioned thresholding.

f. KR gap-filling with rescaling and thresholding: This
method is the same as method d. except with the addition
of the thresholding described in method e.

Method e. was used for all Hi-C2 data described in the main
text and shown in the main figures of this study. (It was cho-
sen because it makes no assumptions about underlying biases
in the data except for the assumption that biases for loci that
were not targeted for perturbation or for hybrid selection have
identical biases to those present in the wild-type Hi-C data.)

II. Computational analysis of Hi-C
maps

a. Measurements of chromatin flexibility

i. Cyclization probability measurements
At the smallest scale, models of chromatin structure rely on

an estimate of the Kuhn length of a chromatin fiber (S12).
Polymer theory predicts that higher order structures can only
form at scales an order of magnitude larger than the Kuhn
length. Because direct estimates of chromatin flexibility in
vivo have not previously been available, inferences about the
Kuhn length of chromatin have been based on theoretical,
computational, and in vitro models (2, 15, 22, S13, S14).

If LK is the Kuhn length of nuclear chromatin, measured in
base pairs, single fragments of chromatin of length L will form
few cycles when L < LK and many cycles when L > LK . To
empirically measure LK , we filtered for Hi-C contacts formed
by the two ends of a single chromatin fragment. We employed
two criteria. First, for each restriction enzyme, we examined
only contacts occurring between two ends of a single restric-
tion fragment, assuming full cutting of the enzyme. Second,
depending on the forward or reverse orientation of the align-
ment of each read end to the template, four “contact orienta-
tions” are possible. Contacts occurring between two ends of

6 www.pnas.org/cgi/doi/10.1073/pnas.1518552112 Sanborn et al.
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a single fragment are necessarily “outer” contacts, character-
ized by reverse alignment of the upstream read and forward
alignment of the downstream read. At small distances, outer
contacts predominantly correspond to single fragments. Thus,
we further restricted our analysis to outer contacts.

Cyclization probability at length L was computed as the
number of single-fragment outer contacts of length L divided
by the total number of restriction fragments of length L,
binned logarithmically. Because contact maps are aggregated
over samples from many cells, cyclization probability is a rel-
ative measure. Thus, we normalized to a probability distribu-
tion. Cyclization probability was computed on five Hi-C maps:
two maps using restriction enzymes HindIII and NcoI, which
recognize a six-basepair sequence and have cutting sites on av-
erage every 3.6kb; two maps using restriction enzymes MboI
and DpnII, which recognize a four-basepair sequence and have
cutting sites on average every 420bp; and one “native” map
using MboI and no cross-linking preparation (8) (Fig 1B, Fig
S1B)

ii. Cyclization probability is consistent across compartments
We also computed cyclization probability with single-

fragment outer contacts grouped by each of the five subcom-
partments as identified in (8). Cyclization counts and restric-
tion fragment lengths were compared against subcompartment
boundaries and partitioned. Fragments that spanned more
than one subcompartment were discarded; fewer than 0.1% of
fragments were discarded in this manner. Cyclization proba-
bility was computed as described above, summing over only
cyclization counts and restriction fragment lengths within each
subcompartment. Plots of cyclization probability as function
of fragment length were extremely consistent across all five
subcompartments (Fig S1A).

In order to search for variation in local flexibility, we addi-
tionally examined cyclization probability of the MboI exper-
iment in 1Mb windows across the genome. We consistently
observed a steep rise in probability for distances less than 1kb
and a flattening at distances larger than 1kb, consistent with
genome-wide and compartment-wide averages. We noticed
some variability in cyclization probability at distances larger
than 1kb ? the probability in some regions showed slight in-
crease as a function of distance while the probability in many
regions remained flat for large distances, perhaps reflecting
local variability. However, this analysis significantly noisier
since few cycles are formed at large distances within each in-
dividual window.

iii. Contact probability decays at distances greater than 5kb
Genome-wide contact probability was computed (as de-

scribed in Section II.b.i) on the primary GM12878 Hi-C map
(Fig S2A). The contact probability decay is reliable at dis-
tances larger than the typical restriction fragment, which is
around 2kb for maps using the MboI restriction enzyme (due
to cutting inefficiency). We observe a contact probability de-
cay at distances larger than 5kb, suggesting that LK < 5kb.

iv. Cyclization probability data are inconsistent with the 30-
nm fiber

The persistence length is the length of a polymer at which
the tangent vectors at the two ends of the polymer become
uncorrelated. For a worm-like chain, the Kuhn length is twice
the persistence length. Coarse-grain computer simulations of
the 30-nm fiber have estimated its persistence length to be
between 120nm and 265nm across a range of parameters (15,
S15-17). At a linear fiber density of 6 or 7 nucleosomes per

11nm, 200bp per nucleosome, this is equivalent to a persistence
length between 15kb and 30kb, suggesting a Kuhn length be-
tween 30kb and 60kb.

The 30-nm fiber is significantly less flexible than a 10-nm
fiber or a 10-nm fiber compacted into a polymer melt. Be-
cause the 30-nm fiber is characterized by a helical structure
with six nucleosomes, or roughly 1.2kb, per turn, it is only
flexible at length scales an order of magnitude larger, and is
clearly inconsistent with our measurements of chromatin flex-
ibility. More generally, our data are inconsistent with any re-
peating helical structure since cyclization probability is flat at
distances larger than 1kb whereas repeating structures should
show characteristic spikes at regular intervals. A view of chro-
matin as a melt of 10-nm fibers is consistent with many recent
studies (29, 30, S18-20).

v. Experimental ionic conditions are comparable to physio-
logical conditions

Ionic concentrations are known to affect fiber flexibility,
with high concentration causing greater fiber compaction and
decreased flexibility. In situ Hi-C experiments are conducted
at high salt concentrations (10mM NaCl + 10mM MgCl2)
comparable to physiological conditions and simulations of 30-
nm fibers described above.

b. Measurements of local contact probability

i. Definition of contact probability
The contact probability of two points separated by

linear distance s was computed as the ratio I(s) =
Iactual(s)/Ipossible(s). The numerator Iactual(s) is computed
as the number of contacts observed occurring at distance s.
The denominator Ipossible(s) is computed as the possible num-
ber of contacts occurring at distance s; for a chain of length
N , Ipossible(s) = N − s − 1. All contact probability plots are
displayed on log-log axes with distance s binned logarithmi-
cally.

Contact probability may be computed across the whole
genome or within a specific window. For genome-wide chro-
matin contact probability, Iactual(s) and Ipossible(s) were each
aggregated over all chromosomes. For contact probability
within a specified window, Iactual(s) and Ipossible(s) were com-
puted as the number of actual Hi-C contacts and possible con-
tacts at distance s with at least one end in the chosen region.

Contact probability often exhibited a power law I(s) ∼ s−γ,
or “contact probability scaling”, within a range of values of s.
We measured γ as the slope of the best-fit line on I(s), when
plotted on log-log axes, within a chosen range of distances.

ii. Local contact probability scalings are highly reproducible
Local contact probability scaling exponents were highly re-

producible across biological replicates. We partitioned chro-
mosome 1 into 4,517 50kb windows and measured γ for three
different distance regimes (10-100kb, 10-350kb, 10-1000kb)
in each window and on each of the primary and replicate
GM12878 Hi-C maps. Values of γ obtained from the pri-
mary and replicate maps were highly correlated in each regime
(Pearson coefficients 0.93, 0.97, 0.98 respectively, Fig S2E).

iii. Contact probability within domains exhibits a power law
with γ ≈ 0.75

To measure γ within contact domains, we computed contact
probability in a 50kb window at the center of each domain (Fig
2A). To obtain reliable measurements of intra-domain behav-
ior, domains containing other domains in their interiors were
excluded. For the GM12878 map, all such domains of size
200kb or larger were used; for all other cell types, all domains

Sanborn et al. PNAS Oct 2015 7
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of size 300kb or larger were used. Contact probability mea-
sured in this manner for all domains in the GM12878 map
with sizes 200-220kb, 500-600kb, and 900-1200kb are plotted
in Figure 2C.

For each domain of size L, we measured the contact
probability exponent γ between distances of 10kb and
L/2−50kb−20kb. All contacts in this distance range are nec-
essarily intra-domain and 20kb from the domain boundary,
avoiding boundary effects. Distributions of γ were consistent
across domains of different sizes (Fig 2D), as well as across 6
additional cell types (Fig 2E, Table S1).

As an additional measurement of γ, we computed aggre-
gated intra-domain contact probability, taking all contact
pairs with both ends inside a single domain. All domains larger
than 100kb that did not contain sub-domains were included,
for a total of 5,265 domains. The intra-domain contact prob-
ability exhibited a clear scaling with γ = 0.76 between 10kb
and 1Mb (Figure 2B). Notably, by using only intra-domain
contacts in this aggregate measure, the scaling extended to dis-
tances larger than in genome-wide aggregate measurements.

iv. Directional contact probability exhibits similar values of γ
To assess whether local contact probability exponents var-

ied substantially within domain, we compared exponents on
different windows within single domains. Specifically, for a
domain with left and right endpoints A and B, we picked two
consecutive 50kb windows R1 = [(A+B)/2−50kb, (A+B)/2]
and R2 = [(A+B)/2, (A+B)/2 + 50kb] flanking the domain
center. On R1 we computed the “leftward” contact probabil-
ity, counting only actual and possible contacts (s1, s2) such
that s1 < s2 and s2 lies in R1, and measured the intra-domain
scaling exponent γ1. Analogously, on R2 we computed the
“rightward” contact probability, counting only actual and pos-
sible contacts (s1, s2) such that s1 < s2 and s1 lies in R2, and
measured the intra-domain scaling exponent γ2. In this man-
ner, the two measurements contained no common contacts.
We found that γ1 and γ2 were uncorrelated and the distri-
butions of each were similar to distributions of our original
measurements of γ through the domain center (Fig S2F).

v. Values of γ are consistent across compartments
To assess the variability of γ between nuclear subcompart-

ments, we computed γ for each of 1,730 domains that were
more than 80% contained in a single subcompartment. We ex-
amined the five subcompartments as identified in (8) (exclud-
ing B4 which occupies a very small proportion of the genome).
Contact probability scalings were extremely consistent across
all subcompartments (Fig S2C), including both active com-
partments A1 (mean γ = 0.743) and A2 (mean γ = 0.725), as
well as all three inactive compartments B1 (mean γ = 0.746),
B2 (mean γ = 0.768), and B3 (mean γ = 0.774).

While values of γ were consistent between nuclear subcom-
partments, we note that domains in different nuclear subcom-
partments display different size distributions. Domains in A
type compartments tend to be smaller (A1 median=140kb,
mean = 190kb; A2 median=145kb, mean=200kb) than
domains in B type compartments (B1 median=200kb,
mean=265kb; B2 median=330kb, mean=425kb; B3 me-
dian=280kb, mean=360kb).

vi. Aggregate measures of contact probability consistently
overestimate γ

We found that the existence of domains skews the value of
γ when it is measured on aggregate contact probability over
distances of several hundred kilobases to several megabases.
Specifically, because contacts are enhanced between two loci
in the same domain and depleted between loci in different do-

mains, windows with many domains exhibit a steeper drop-off
in contacts. To demonstrate this, we partitioned the genome
into 567 windows of length 5Mb and measured the contact
probability scaling at distances of 300Kb to 3Mb. When we
plotted the values of γ obtained against the number of do-
mains intersecting the window, a clear dependence emerged,
where regions with many small domains exhibited larger val-
ues of γ (Fig S2B).

c. Fractal models are inconsistent with intra-
domain contact probability

Interpreting the contact probability exponent γ requires a
full understanding of which values of γ may be achieved by
which structures. The γ value of the fractal globule can be
studied in terms of mathematical fractal curves, which are
scale-free and densely packed, like the fractal globule. Because
they are computationally tractable, they are often used to ap-
proximate the fractal globule (S21). Approximate numerical
studies of fractal curves have suggested that the fractal glob-
ule can exhibit values of γ ranging from 1 to 1.33 (5, 17).
However, no rigorous bounds have been derived.

Here we prove mathematically that any fractal (regular,
scale-free) structure must have γ between 1 and 2. These
results are illustrated in Figure 3B and are derived in full
mathematical rigor in Section IV. Notably, contact domains
have exponent γ ≈ 0.75, inconsistent with the fractal globule
model.

Domain contact probability in Figure 3B was measured in a
50kb window through the domain center, as in Figure 2B.
Each trace in Figure 3B was renormalized to allow direct
comparison of contact probability for Hi-C domains and frac-
tal curves. Linear distances (x-direction) were normalized to
place the start and end of the scaling regime at the left and
right boundaries of the plot: contact domain scalings ran from
10kb to half the domain size; fractal curve and fractal globule
scalings ran through the whole length with one point excluded
at each end to avoid boundary effects. Contact probabilities
(y-direction) were renormalized so that all traces pass through
a single point in the upper left.

d. Analysis of chromatin loop networks

i. Hubs are detected as (nearly) isolated cliques in the loop
network

Chromatin hubs, collections of loci that simultaneously co-
localize in the nucleus, are thought to play a crucial role in
gene regulation and chromatin packaging. Chromatin hubs
manifest clearly in Hi-C contact maps as collections of loci
with loops forming between all pairs of loci (8).

We identified hundreds of chromatin hubs in GM12878 by
converting Hi-C loop calls (as annotated by HiCCUPS (8))
into a “loop network” where each node in the network cor-
responds to a genomic locus and each edge in the network
corresponds to a chromatin loop. Due to variability in HiC-
CUPS, which is performed at 5kb and 10kb resolution, we
grouped any two loop anchors within 20kb into a single locus
with a single corresponding node in the network. An edge is
drawn between two loci if there exists a Hi-C loop between a
loop anchor in each of the loci. Hubs are then detected in the
network as isolated cliques.

ii. An extended list of loops accounts for false negative loops
The loops reported in (8) use conservative parameters to

avoid false positive loops, and therefore may have some miss-
ing false negative loops. However, failing to identify any one of
N(N−1)/2 loops will prevent a hub of size N from being iden-
tified. Thus, we allow for a margin when detecting hubs of size

8 www.pnas.org/cgi/doi/10.1073/pnas.1518552112 Sanborn et al.
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4 or larger. Specifically, for a hub of size N ≥ 4, we allowed
up to N − 2 to be called from an extended list of chromatin
loops. This extended list was detected from the GM12878 Hi-
C map using HiCCUPS (8) with much more relaxed thresh-
olds. (Specifically, the allowed false discovery rate (FDR) in
the Benjamini-Hochberg FDR control procedure was increased
from 10% to 50% and thresholds for the lower left, vertical, and
horizontal filters were reduced to 1. Loop calls from 5kb, 10kb,
and 25kb resolution were combined.) Significantly decreasing
threshold stringency would typically confound analysis by in-
creasing the number of false positives; however, this effect is
dramatically mitigated here since any loop in the extended
list that is not formed between genomic loci in the original list
may be discarded. In this way, the number of allowed loops is
increased from 9,273 to 13,295, significantly reducing the false
negative rate of the loop list.

Using this approach, we detected 69 isolated cliques of size
3, 16 cliques of size 4, and 1 clique of size 5. We found that
allowing for a small number of loops (≤ N − 2) between loci
inside the clique and loci outside the clique allowed us to call
more hubs without lowering quality. By doing so, we identi-
fied 145 cliques of size three, 86 cliques of size four, 5 cliques
of size five, and 1 clique of size 6.

iii. Hubs often involve a series of consecutive loops
The detected hubs were often formed between consecutive

loop anchors. Of the 237 detected hubs, 152 of them involved
only consecutive loop anchors; i.e. all loop anchor loci be-
tween the first and last loop anchor of the hub belong to the
hub itself.

iv. Hubs are consistent with looping between pairs of con-
vergent CTCF motifs

Our previous study demonstrated that loops typically lie be-
tween convergently-oriented DNA motifs that bind a complex
containing CTCF and cohesin (8). We find that the detected
hubs are strongly consistent with this property. A list of the
most probable CTCF binding sites was assembled by identi-
fying the best match to the consensus CTCF binding motif
(S5) within each peak in the ENCODE CTCF ChIP-Seq data
from GM12878 and the orientation each site was determined
by whether the binding motif was on the forward or reverse
strand (8). We then matched each hub locus with any CTCF
binding site that was within 15kb of any loop anchor in the
locus. The first hub locus, which forms several downstream
loops, was associated with a forward-oriented motif in 231 of
237 hubs. The last hub locus, which forms several upstream
loops, was associated with a reverse-oriented motif in 232 of
237 hubs.

v. Middle loci of hubs show strong enrichment for pairs of
divergent CTCF motifs

Of the 336 middle hub loci, 235 were associated with mo-
tifs of both orientations. When we examined middle loci that
were associated with exactly one motif of each orientation,
59 of the pairs were in the divergent configuration (a reverse
motif followed by a forward motif) while only 7 of the pairs
were in the convergent configuration (89.4% versus 10.6%).
We observed an even stronger effect when we generalized this
measurement to middle loci with more than two motifs. In
this analysis, a set of CTCF motifs at middle hub loci was
counted as divergent when it contained one or more reverse
motifs followed by one or more forward motifs. Similarly, a set
of CTCF motifs at middle hub loci was counted as convergent
when it contained one or more forward motifs followed by one
or more reverse motifs. We found that 145 middle hub loci

were associated with a divergent arrangement of CTCF motifs
while only 12 were associated with a convergent arrangement
of CTCF motifs (92.4% versus 7.6%).

vi. All observed effects are highly enriched over suitable null
models

Hubs detected from the Hi-C loop list were significantly en-
riched relative to a randomly shuffled control. From the loop
network and the extended loop network, we computed the
distribution of loops L(d) as a function of genomic distance d.
From a given loop network, a shuffled network was generated
with number of nodes and edges equal to the original network,
but with randomly chosen edges. The probability of drawing
edge (a, b) was proportional to deg(a)·deg(b)·L(|a−b|). In this
manner, we computed 10,000 shuffled networks of the original
loop list. In addition, we computed 10,000 corresponding ex-
tended networks by shuffling the extended loop list and adding
the appropriate number of new edges.

On each of 10,000 randomly shuffled networks with corre-
sponding extended networks, we ran our hub detection algo-
rithm. When cliques were required to be perfectly isolated, we
detected an average of only 10.8 hubs of size three, 0.571 hubs
of size four, and 0.008 hubs of size five. When cliques were
allowed N-2 outside loops, we detected an average of only 42.5
hubs of size three, 6.95 hubs of size four, 0.362 hubs of size
five, and 0.024 hubs of size six.

Enrichment of CTCF binding orientations was computed
relative to the null model of a randomly chosen locus on the
genome. That is, the percentage of hub loci within 15kb of a
forward CTCF motif, a reverse CTCF motif, or CTCF motifs
in both orientations was compared with the percentage of the
same observations occurring for a randomly chosen locus in
the genome.

vii. An “exclusion domain” often forms between two loci that
loop to a common third locus

We observed in our genome editing experiments that dele-
tion of the first or last locus (A or C) in a 3-clique (A, B, C)
disrupted both the corresponding loops and the contact do-
mains. However, deletion of one of the two anchor motifs at
the middle locus (B) disrupted the corresponding loop but did
not eliminate the domain spanned by the loop. This behavior
is predicted by the extrusion simulations: for example, exis-
tence of the B-C loop excluded extrusion complexes between
A and B from passing B. We dubbed this configuration an
“exclusion domain”.

Upon closer examination, we observed exclusion domains
throughout the wild type genome. We examined pairs of loops
(A, B) and (C, D) such that either the upstream loop anchors
(A and C) or the downstream loop anchors (B and D) coincide
(within 20kb). Assume for clarity that loci A and C coincide
and B lies upstream of D; other situations are analogous. We
filtered out cases that overlap with a compartment boundary
(specifically, we require no compartment flip to occur between
min(A, C) − 20kb and D + 20kb) in order to rule out the
influence of compartments on domain formation.

We then examined the frequency of overlap of each of the
three regions A-B, A-D, and B-D with the list of contact
domains reported in (8); overlap was defined by a distance
of min(50kb, 0.2×domain size). These frequencies were com-
pared with a control in which contact domains were reshuffled
in the chromosome, averaged over 100 replicates. Since loops
are formed between A-D and A-B, we observed domains in
about 40% of cases, consistent with previous observations of
loop domain formation. Specifically, in 986 cases, we observed
399 domains (40.5%) between A-B, a 14.4-fold enrichment,
and 404 domains (41.0%) between A-D, a 12.4-fold enrich-
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ment. Notably, we observed significant enrichment of contact
domains formed between B-D despite the lack of a loop: a
total of 158 cases (16.0%) or a 6.3-fold enrichment. Because
there is no loop between B-D but B and D each loop to the
same distal locus, these are exclusion domains.

To ensure that the detection of exclusion domains was not
driven by false positive loops, we repeated the analysis and fil-
tered out all cases in which a loop formed between B-D (within
a 30kb threshold) in an expanded list of loops containing 99%
more loops. These loops were detected in GM12878 using HiC-
CUPS (8) but with relaxed thresholds (FDR rate of 10% and
lower left, vertical, and horizontal thresholds of 1.3, 1.4, and
1.5). Enrichment of exclusion domains remained: out of 818
cases we observed 99 exclusion domains (12.1%), a 4.7-fold
enrichment. In this case, we observed 333 (40.7%) domains at
A-B (14.5-fold) and 329 (40.2%) domains at A-D (12.4-fold).

We also repeated the analysis and filtered for loops associ-
ated with CTCF motifs oriented appropriately for the exclu-
sion effect. Specifically, when X and Y looped downstream to
Z we required that X and Y were associated with (within a
20kb window of) forward CTCF motifs and Z was associated
with a reverse CTCF motif; when X and Y looped upstream
to Z we required that X and Y were associated with reverse
CTCF motifs and Z was associated with a forward CTCF mo-
tif. Enrichment was similar. When false negative loops were
simultaneously filtered, in 444 cases we observed 59 (13.3%)
exclusion domains (5.1-fold enrichment), 189 (42.6%) domains
between A-B (14.9-fold), and 190 (42.8%) domains between A-
D (13.2-fold).

III. Polymer simulations

It has been known for decades that the higher-order folded
structure of chromatin plays an important role in the bio-
logical function of the cell, particularly through partitioning
into chromatin domains (S22) and loops (4, S23). However,
the exact physical nature of this folding has been difficult to
characterize because the principles governing this higher-order
organization were entirely unclear. Possible mechanisms un-
derlying chromatin compaction have included looping on a
backbone (9, S24), looping through diffusion (S25, S26), com-
paction through confinement (5, 10), and supercoiling (S27).
Other approaches use chromatin contact maps to define a pop-
ulation of physical models but do not reveal biological prin-
ciples underlying the 3D organization (S28, S29). However,
these models are appropriate only at scales larger than chro-
matin domains. Currently, no convincing models exist for
chromatin at the scale of domains. Previous models have been
limited by inexact experimental measurements of the folded
state, typically measurements of distance distributions using
3D-FISH or coarse Hi-C maps.

Using our new kilobase-resolution Hi-C maps, we are able to
comprehensively examine the folding within contact domains
genome wide. Here we show using molecular dynamics simu-
lations that the tension globule and the extrusion model are
consistent with the folding of chromatin within these domains.

a. Molecular dynamics simulations

i. Polymer properties
Coarse-grained molecular dynamics simulations were used

to investigate the properties of collapsing polymers. Chains of
identical monomers were simulated under Brownian-like con-

ditions using Langevin dynamics. Monomers were taken to
have mass m = 1 and radius σ = 1. Each monomer represents
1kb of DNA. Polymers up to 10Mb (10,000 monomers) were
simulated.

Successive monomers in the chain were held together by stiff
harmonic bonds described by Ubond(r) = (kbond/2) · (r − r0)2

with resting length r0 = 1/
√

2 (distance units) and kbond =
1000 (energy units). All other pairs of atoms interact using
pairwise forces, denoted by Upair(r), whose details depend
upon the type of simulation being run (see below). Monomer
volume exclusion was implemented by a repulsive Lennard-
Jones potential with εLJ = 1 (energy units) and σ = 1 (dis-
tance units).

No 3-body or 4-body bond-angle or torsion-angle forces were
used. Due to repulsive interactions between the first and
third of three consecutive monomers, angle between consec-
utive bonds was typically 90 degrees or larger.

Polymers were initialized as a random walk with step size
L0 = 3 · r0 and then statically minimized (with velocity ze-
roed at each step) to relax to regular bond lengths r0. This
resulted in more extended random initial states. Changing the
expansion factor had negligible effect on the properties of the
final collapsed states (Fig S9C).

ii. Simulation dynamics
The equations of motion were integrated using Langevin

dynamics with a time step of 0.005 in units of τm, where
τm =

√
mσ2/ε. Parameters such as the temperature T (in

units of ε/kB) and the damping coefficient, ζ = 1/tdamp (tdamp
measures the time over which momentum decays by a factor
of 2, in units of τm) were varied to explore a wide variety of
behavior. The number of time steps was chosen to ensure full
collapse, and compactness of the final states was verified by
measuring monomer density as a function of distance from the
center of mass. All simulations were run using LAMMPS (23).
Images of polymer collapse were rendered in Visual Molecular
Dynamics (S30).

iii. Simulations of tension globules
In tension globule simulations and extrusion model simula-

tions, all pairs of atoms experienced an attractive short-range
force described by the Lennard-Jones 6-12 potential

Upair(r) = 4εLJ((σ/r)12 − (σ/r)6)

with εLJ = 1 and σ = 2−1/6 so that Upair(r) is minimized at
r = 1 and cutoff distance of rcut = 2.5 (distance units). This
mimics the effect of immersing the polymer in a poor solvent
(21, S31-32).

Tension globule simulations were characterized by moder-
ate temperature and over-damping; i.e. an environment in
which momentum does not significantly accumulate. The
tension globules shown in Figure 4B-C were simulated with
N = 10000 monomers, temperature T = 1, and damping co-
efficient, ζ = 1/tdamp with tdamp = 35 for 510,000 time steps
(Sim #1 in Table S4).

We also simulated tension globules with pairwise monomer
interactions modeled by a Yukawa potential instead of
Lennard-Jones (Fig S10, Table S4C), a model of screened elec-
trostatic interactions, similar to observed inter-nucleosomal
forces (S33-36). The classic form of the Yukawa potential has
energy proportional to e−mr/r, where screening constant m
determines how quickly the force decays. To interpolate be-
tween repulsive Lennard-Jones forces for r < σ and Yukawa

10 www.pnas.org/cgi/doi/10.1073/pnas.1518552112 Sanborn et al.
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forces for r > σ we used the form

Upair(r) =

 ε
(

b
a−b

(
σ
r

)a − a
a−b

(
σ
r

)b)
r < σ

βε
(

b
a−b

(
σ
r

)a − α a
a−b

(
σ
r

)b
e−m(r−σ)

)
r ≥ σ

where a = 12, b = 1, and β and α are chosen to match the
boundary condition at r = σ, namely, β = (a − b)/(αa − b)
and α = 1/(1 +mσ/b).

iv. Simulations of fractal globules
Fractal globules were generated using molecular dynamics

simulations by crushing a random polymer with global forces.
In addition to repulsive Lennard-Jones, an external harmonic
force was added to pull each monomer inward toward the ori-
gin Uext(r) = (kext/2) · r2. These forces do not depend on the
relative position between atoms, only their position relative
to the origin. This is mathematically equivalent to adding a
long-range attractive quadratic term (kext/4N)·r2 between all
pairs of monomers. This compressive force mimics the effects
of crowding experienced by chromosomes confined within the
space of the cell nucleus. Simulations driven predominantly
by external forces exhibited qualitatively different collapses as
well as values of γ near 1.0 (Fig 4A, Fig S10).

v. Simulations of tension globule loop domains
Tension globule simulations incorporating loops used

Lennard-Jones potential with parameters identical to sim-
ulation #1 in Table S4. A harmonic bond with strength
kloop = 1000 and resting length r0 = 1 was introduced be-
tween several select pairs of monomers to form a loop at the
beginning of simulation. In addition, a harmonic bond with
strength ktether = 50 and resting length rtether (variable de-
pending on polymer length, ranging from 50 to 300) was intro-
duced between the first and last monomers in order to tether
the start and end of the polymer apart. After the initial static
minimization step, an additional equilibration step was run for
500,000 timesteps, incorporating only repulsive Lennard-Jones
forces and temperature T = 1, to relax the looping contour
into a natural state. Afterwards, standard tension globule col-
lapse was simulated. Looping monomers for the simulations
displayed in Figure 4D were chosen to match the positions of
loops observed in Hi-C data. Simulations were run on a 3Mb
polymer with rtether = 100, and the contact map was com-
puted by aggregating over 530 globules.

vi. Simulations of loop extrusion
In the extrusion model, an extrusion complex with two bind-

ing domains binds to two locations on the chromosome, and
each domain walks in opposite directions along the chromatin
fiber, pulling pairs of distal loci into close proximity. In sim-
ulation, we represent the extrusion complex by a harmonic
bond with coefficient kbond = 10 and length 1.0. The extru-
sion complex is initially bound to two consecutive monomers
and sliding outwards every T0 timesteps; i.e. the bond shifts
from monomers (a, b) to monomers (a − 1, b + 1). The spe-
cific value of T0 does not have a substantial impact on the
final result and is typically taken to be 200 or 500 timesteps.
The sliding dynamics may be made stochastic by assuming a
probability p of stepping outwards, a probability q of stepping
inwards, and a probability 1 − p − q of remaining in place,
and the results will be essentially the same as long as p is
substantially larger than q to drive the overall movement out-
wards. Similarly, the leftward and rightward movements may
be decoupled with negligible effect on outcome. For simplicity,

we assume the extrusion complex takes regular, equally sized
steps outwards.

Extrusion complexes may interact with oriented CTCF mo-
tifs, represented as special monomers that cause the extru-
sion complex to halt and fix in position with some probability.
These motifs are oriented: the downstream binding domain
may be bind to and halt at a reverse-oriented motif with some
probability but will be unaffected by a forward-oriented motif,
while the upstream binding domain may be bind to and halt at
a forward-oriented motif with some probability but will be un-
affected by a reverse-oriented motif. As input to the extrusion
simulation, a list of two binding strengths for each monomer
(one for each orientation) is required; almost all the values will
be 0. As we show in Section III.b.i, probabilities can be cal-
culated in a simple, principled manner from CTCF ChIP-seq
data of a particular region of the genome, and the resulting
simulations recapitulate the contact map of that region very
well.

The extrusion complexes are bound to the polymer at a
density that depends on their concentration. Our extrusion
simulations typically contained 2,000 to 3,000 monomers and
8 to 15 extrusion complexes. Extrusion complexes cannot pass
each other; if two binding domains of two different extrusion
complexes are adjacent on the polymer, one of the colliding
complexes dissociates. A mobile complex may collide with a
halted complex and dissociate, but a halted complex cannot
dissociate in this manner (Fig S12C). In addition to dissoci-
ation due to collisions, the extrusion complexes can be made
to dissociate at a fixed rate that depends on their processiv-
ity. At every extrusion step, each complex, including halted
ones, has a halted probability Pdissociate of randomly falling
off. All simulations shown here have Pdissociate = 0, but al-
lowing small values of Pdissociate (e.g. < 0.002, or processivity
> 500 steps) will not change results significantly. Simulations
are run for a large number of extrusion steps (typically 4,000)
and thus represent a steady state of extrusion dynamics.

Most extrusion simulation presented use similar conditions
as the tension globule, with inter-monomeric attractive forces
modeled by the Lennard-Jones potential, high viscosity, and
moderate temperature. Results are robust to changes in the
physics of the system (Fig S12A).

b. Simulated CTCF binding locations

i. Assigning extrusion complex binding strengths from CTCF
ChIP-seq tracks

In order to model the 3D structure of a region in GM12878
using extrusion in a simple, principled way, we used the EN-
CODE CTCF ChIP-Seq data (S37) from GM12878 (tracks
from the Broad Institute or Stanford University) to directly
define the oriented binding strengths. First, a genomic region
of length N kilobases was chosen to be modeled by a simu-
lated polymer with length N , and the CTCF ChIP-seq signal
s (binned at 1kb) was converted into a binding strength; i.e.
a probability of binding defined by P = 1 − λ/(s − s∗) for
s > s∗ and P = 0 otherwise, where s∗ is the median ChIP-
seq signal in the region and λ is a normalization constant.
Since ChIP-seq signal is variable between regions and the ab-
solute value of the signal is not directly interpretable as a
binding strength, the normalization constant λ is chosen to
yield binding strengths in an appropriate range. Low values
of λ cause extrusion to halt at a large number of weak ChIP-
seq peaks, preventing proper extrusion coverage, while high
values of λ causes extrusion to occur irrespective of ChIP-seq-
defined boundaries, preventing the formation of distinct loops
and domains. Second, a list of the most probable CTCF bind-
ing sites was assembled by identifying the best match to the
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consensus CTCF binding motif (S5) within each peak in the
CTCF ChIP-seq track, and the orientation of each site was
determined by whether the binding motif was on the forward
or reverse strand. Each non-zero halting probability was then
oriented according to the orientation of the nearest CTCF
binding site within 5kb.

ii. Assigning tension globule loops from CTCF ChIP-seq
tracks

We also explored automatically assigning loops for tension
globule simulations based on CTCF ChIP-seq signals. Ori-
ented binding probabilities were computed as described above.
A loop was formed between the two loci A and B (with A < B)
proportional to the forward probability of A times the reverse
probability of B times the probability A did not bind to any
other locus between A and B. In simulation, 10 loops were
chosen according to this distribution and the endpoints of the
polymer were tethered 150 units apart (Fig S11E).

c. Analysis of the tension globule

i. Tension globule contact probability matches experimental
observations

For each globule, two monomers were said to be in contact
if they were separated by less than ρ = 1.5 (distance units).
With this definition, we generated contact maps (Fig S8B)
and computed contact probability (as described above) aggre-
gated over many replicates of the same simulation. Figure 4C
shows contact probability of 450 individual tension globules.
While changing the value of ρ affected the total number of
contacts measured per globule, it did not significantly affect
the contact probability scaling exponent (Fig S9).

ii. Contact probability scalings are robust to changes in sim-
ulation parameters

We performed numerous additional simulations, each with
at least 100 replicates, to verify that our observations were
robust to changes in simulation parameters. Changes to the
damping strength, temperature, initial extent, polymer length,
and simulation time had no significant effect on γ (Fig S9, Ta-
ble S4). Qualitatively, simulations with temperature T < 0.7
not collapse fully, settling into an extended ?stringy? state,
and globules with T � 2.0 retained too much thermal energy
to fully compact. After polymers were fully collapsed into a
globular state, running the simulation for additional time did
not significantly affect the value of γ.

Tension globule collapse due to Yukawa forces was qualita-
tively similar, displaying sub-globule formation and tension-
driven linear compaction (Fig S10). Because the attractive
forces decay less quickly with distance, the tension forces are
stronger and values of γ ranged between 0.7 and 0.6. Exact
value of γ as well as the distance range of the scaling depended
on the screening strength parameter m. (Fig S10, Table S4).

iii. The tension globule exhibits a linear axis
In the later stages of collapse, tension-driven forces cause

sub-globules to compact in an anisotropic manner, generat-
ing a visually apparent linear axis. Sub-regions of the tension
globule tend to form flat slices perpendicular to the linear axis
(Fig S8E). Strikingly, the axial and lateral views of the tension
globule are similar to images of metaphase chromatin (S38).

We measured the predominance of the linear axis by com-
puting the typical angle between displacement vectors of re-
gions separated by genomic length L. Specifically, for each
genomic length L < N/3, we subdivided the polymer into
N/L regions of length L, and computed the center of mass

of each region. Then, for any three consecutive regions with
centroids A, B, and C respectively, we computed the angle be-
tween the vectors AB and BC, and averaged all such angles.
This measurement distinguished the internal structure of the
tension and fractal globule (Fig S8D). Fractal globules have
displacement angles around 90 degrees or less for all values of
L, while tension globules have obtuse displacement angles for
large values of L.

iv. The tension globule is unknotted
To evaluate the topological state of the tension globule, we

computed the determinant of the Alexander polynomial, a
knot invariant. A value of 1 indicates an unknot; large values
reflect high levels of knottedness. The Alexander polynomial
determinant was computed in Knotplot using the “alex” com-
mand, with the two endpoints of the globule joined along the
exterior to create a closed contour. Fig S8G shows the values
obtained for 100 tension globules compared to 100 equilibrium
globules (8), with each globule containing 4,000 monomers.
Tension globules are comparatively highly unknotted.

v. Tension vs. fractal structure depends on ratio of internal
and external forces

Simulations incorporating both internal inter-monomeric
Lennard-Jones forces Upair and external crowding forces Uext
showed a transition between fractal and tension globule behav-
ior (Fig 4A). The relative strengths of these forces were varied
by changing the values of εLJ , the Lennard-Jones coefficient,
and kext, the external force coefficient. In order to renormalize
the force strengths to have the same potential energy at unit
distance, the ratio of internal to external force strengths was
computed as R = εLJ/(kext/2). The values of εLJ and kext
were each varied between 1 and 0.0001 in order to achieve val-
ues of R between 0.0002 and 2000. All simulations used 10Mb
polymers and tdamp = 30, and the contact probability scaling
was measured between 15kb and 1Mb.

Fractal globules are necessarily simulated in the absence
of temperature because introduction of thermal fluctuations
produces a length scale and prevents full compaction of the
globule. On the other hand, low-temperature simulations
with strong Lennard-Jones forces do not collapse fully and
instead stagnate in an extended, stringy position. To accu-
rately transition between the two regimes, simulation temper-
ature was varied together with the Lennard-Jones coefficient
as T = min(1.0, 2εLJ). Exact parameter values and scaling
exponents are listed in Table S4B.

The fractal-tension transition was also simulated using the
Yukawa potential for intermonomeric forces (Fig S10). The
crushing force was fixed in strength at kext = 10 while the
Yukawa coefficient εY ukawa varied in strength from 0.001 to 1.
Weakly-screened Yukawa forces (m = 0.2) were chosen. Sim-
ulations with weakly-screened Yukawa forces do not require
thermal fluctuation for full collapse, so all simulations were
performed with T = 0 and tdamp = 10. Exact parameter val-
ues are listed in Table S4C.

vi. Contact probability of simulated loop domains matches
experimental observations

Loop domains of size 500kb and 1Mb were simulated as de-
scribed in Section III.a.v. Simulations of 500kb loops used
10Mb polymers with 18 loops separated by 50kb of spacing.
Simulations of 1Mb loops used 10Mb polymers with 9 loops
separated by 50kb of spacing. Contact probability was aggre-
gated over N = 50 globules and computed on 100kb windows
running through the center of each domain. By running multi-
ple replicates, contact probability scalings were computed for
a total of 36 500kb loop domains and 27 1Mb loop domains

12 www.pnas.org/cgi/doi/10.1073/pnas.1518552112 Sanborn et al.
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(Fig S11B). Mean γ value of 0.768 (standard deviation 0.077)
was in excellent agreement with intra-domain values of γ mea-
sured from Hi-C data.

d. Analysis of the extrusion model

i. Contact probability of extruded domains matches experi-
mental observations

To determine the contact probability exponent of the extru-
sion model, we simulated 3Mb polymers each containing three
loop domains of size 980kb separated by 20kb. These do-
mains were formed using binding strengths of 0.9 and placed
at 10kb/1010kb/2010kb (forward) and 990kb/1990kb/2990kb
(reverse). A total of 140 replicates were run for 4,000 extrusion
steps and contacts were measured after 2,000 and 4,000 steps.
Every set of 20 replicates was aggregated, contact probability
was measured through a 100kb locus at the center of each of
the three domains (Fig. 5C), and values of γ were found to
be 0.72± 0.06 between distances of 20kb and 400kb (the edge
of the domain) for these 42 simulated extrusion domains, in
excellent agreement with intra-domain values of γ measured
from Hi-C data.

While a large proportion of Hi-C domains are associated
with loops at their corners, domains may appear in many
contexts; e.g. without associated loops or at compartment
flips (8). The values of γ remain similarly around 0.75 across
the wide variety of domains observed. Note that a contact
probability scaling of γ ≈ 0.75 for loop-less domains is also
well-explained by the extrusion model. Indeed, loop extrusion
simulations will exhibit scalings around 0.75 even in the ab-
sence of CTCF-binding motifs that cause loops to form.

ii. The extrusion model accurately recapitulates Hi-C contact
maps, including loops and domains

We computed binding strengths from CTCF ChIP-seq
tracks of four regions of the genome from GM12878 cells and
simulated those regions polymers undergoing loop extrusion.
Specifically, we simulated chr 4: 20.3-22.6Mb; chr 3: 62-64Mb;
chr 5: 110.45-111.75Mb; chr 7: 15-17.5Mb. Simulations were
run with temperature T = 2.0 and tdamp = 10 for 200,000
time steps to collapse the polymer from an extended state
and then 4,000 extrusion steps (each 200 time steps). At least
100 replicates were run for each region. Domains and loops are
evident in the contact map after around 500 extrusion steps.
Contact maps were aggregated for simulations at 1,000, 2,000,
3,000, and 4,000 extrusion steps. (Substantial reorganization
occurs due to continuous extrusion, so the structures at these
times are not similar.) In all cases, the contact maps of the
simulated polymers accurately recapitulated the contact maps
observed from Hi-C (Fig 5D, Fig S12D).

iii. The extrusion model accurately predicts changes in 3D
structure after CRISPR editing

The extrusion model accurately recapitulates Hi-C contact
maps by assigning extrusion complex binding strengths from
CTCF ChIP-seq data with a single normalization constant.
From this wild-type model, we were able to generate de novo
predictions for the Hi-C contact map after CTCF motifs have
been deleted or reversed using genome-editing. Focusing on
three regions containing triples of loci which form three loops,
we generated predictions for 13 different deletions and inver-
sions of the CTCF at the loci (Table S4E). In every single
case, the extrusion model correctly predicted the positioning
of loops and domains in the corresponding genome-editing ex-
periments (Fig 7, Fig S14-16, Section I.d). Experiments were
performed in Hap1 cells for which high-quality CTCF ChIP-

seq tracks were not available, so wild-type simulations used
GM12878 ChIP-seq data.

All simulation parameters were tuned to the wild-type maps,
and predictions were made simply by altering the extrusion
complex binding strengths in a manner similar to the CRISPR
experiment. Deletion of a CTCF motif was simulated by al-
tering the binding strength at that location to 0. Inversion of
a CTCF motif was simulated by flipping the orientation of the
motif at that location.

Note that on chromosome 1, the GM12878 ChIP-seq data
showed CTCF binding at two locations near 181.1Mb that
are not evident in the Hap1 wild-type contact maps, so the
binding strengths of these two loci were dampened in our sim-
ulations of the wild-type recapitulation and all predictions for
that region (Fig 7B). It is possible that this CTCF signal cor-
responds to a subdivision of the domain between E and F into
two subdomains; however, this is not entirely resolvable by
our current Hi-C maps. Because this procedure was followed
identically for simulations of wild-type and edited conditions,
it does not affect the validity of the in silico predictions.

iv. These properties are robust to changes in the attractive
forces and the initial configuration

We find that the state achieved in the extrusion model pre-
dominantly results from the extrusion dynamics and not from
the exact physics of the system. Changes in viscosity and
temperature did not affect results (Fig S12A). Notably, loop
extrusion produced very similar contact maps (Fig S12A) and
contact probability scaling (Fig S12B) when performed using
inter-monomeric attractive forces or using a global attractive
potential. (Extrusion alone is not sufficient, however, as some
attractive forces are required for collapse.) Moreover, because
the extrusion simulations represent a steady state, the results
described are identical when the simulation is started from an
extended chain or a collapsed state, such as a tension globule
or a fractal globule (Fig S12A).

v. The extrusion model predicts that loops will be intra-
chromosomal and tend to be short

The extrusion model makes particular predictions about the
distribution and locations of loops. First, the sliding of the
extrusion complex necessitates that the resulting loops are
formed between two loci on the same chromosome. This is
in contrast to a model in which loops are formed when an-
chors come into close contact through random diffusion, which
would allow for inter-chromosomal looping. Indeed, in our Hi-
C maps we have observed no loops occurring between two
distinct chromosomes (8).

Second, in the extrusion model, genomic distances at which
loops are formed is limited by the processivity of the extru-
sion complex. Thus, although loops could hypothetically form
between any two loci on the same chromosome, the extrusion
model predicts that the loops formed will tend to be rela-
tively short. Indeed, median length of loops observed in our
GM12878 Hi-C map was around 275kb (8).

vi. Loop extrusion promotes an unentangled, unknotted
topology

Classically, loops of DNA were thought to occur through
a diffusive process, much like numerous other mechanisms in
the cell, that randomly brought the loop anchors into close
proximity in 3D. However, uncontrolled diffusion and subse-
quent looping would drive the chromatin fiber towards a highly
entangled state. In contrast, loop extrusion promotes a disen-
tangled state by forming a small loop and growing the size of
the loop locally as the extrusion complex processes across the
DNA (Fig S12F). We observe that two well-mixed domains in
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simulation tend to un-mix when extrusion complexes repeat-
edly act upon the polymer. Loop extrusion in the cell may
play a crucial role in keeping the chromatin fiber unentangled
and locally accessible.

Loop extrusion could also play a role in controlling or reduc-
ing the knottedness of the chromatin fiber. Note that if the
actual loading of the extrusion complex creates a knot (e.g.
a trefoil knot), the knot would persist, but not get complex-
ified, during the subsequent extrusion. In general, sliding of
the extrusion will not change the knottedness, in contrast to
diffusion-based looping, and would instead slide knots along
the chromatin fiber. In fact, this suggests a potential mech-
anism for unknotting DNA through synergistic action of the
extrusion complex and topoisomerase II. As loop extrusion
slides and tightens existing knots, purely random passage of
double-stranded DNA by topoisomerase II would drive the
fiber towards an unknotted state.

e. The tension globule and the extrusion
model are consistent with 3D DNA FISH
measurements

Physical 3D distances between 30kb-wide loci were mea-
sured experimentally using three-color 3D DNA FISH as de-
scribed in Section I.c. Three different regions were measured in
IMR90, yielding 3D distance distributions between 5 pairs of
loci at 4 genomic distances: 320kb, 490kb, 545kb, and 1,090kb.
All pairs of loci lie within a single contact domain. Locations
of loci are listed in Table S5.

Tension globule distance distributions were measured from
simulation #1 (Table S4A) while extrusion model distance dis-
tributions were measured from simulation #79 (Table S4E).
For each genomic distance, several pairs of monomers with the
appropriate genomic separation were chosen randomly from
each simulation and the 3D distances were measured.

The diameter of a single monomer was chosen to represent
a length of 0.65µm to produce the best fit between experi-
mental and simulated distance histograms. The two-sample
Kolmogorov-Smirnov (K-S) test was used to determine how
well each pair of distributions match. The mean K-S test
statistic was 0.15 for the tension globule vs. experimental
data (Fig S13B), 0.19 for the extrusion model vs. experimen-
tal data (Fig S13C), and 0.18 for the two different FISH pairs
at the same genomic distance.

f. SMC3 and RAD21 are positioned on loop
anchors 20bp towards the loop interior

A list of the most probable CTCF binding sites was assem-
bled as described in Section III.b.i. From this list, we identified
CTCF sites that are the unique CTCF motif within the loop
anchor (8), and partitioned these loop anchor CTCF sites into
two groups corresponding to the upstream or the downstream
loop anchors. Next, we plotted ChIP-seq signals for SMC3
(SYDH TFBS) and RAD21 (two replicates from HAIB TFBS
and SYDH TFBS) relative to the CTCF binding sites, aggre-
gated over all sites in each group (S37). As previously demon-
strated, there is a strong enhancement of interactions of both
proteins near CTCF binding sites. However, we also observed
an additional bias of the interaction position: interaction of
SMC3 or RAD21 is shifted 20bp towards the interior of the
loop (Fig S18). When averaged over both loop anchors or over
all CTCF motifs, SMC3 or RAD21 interactions show no such
positional bias. Interactions of CTCF protein at CTCF sites
(UTA TFBS) show a slight shift towards the exterior of the

loop.

g. Monte Carlo simulations of large fractal
globules using Confined-BFACF

Studying densely packed polymers is an area of interest as
it related to many important biological entities, for example
DNA in a nucleus. One common way to study densely packed
polymers is to model the polymers using molecular dynam-
ics simulations. However, these simulations can get cumber-
some - the computational complexity is often O(N2), making
studying long chains (with N = 104 to 106) in three spatial
dimensions rather difficult.

An alternative approach is to model polymers as self-
avoiding walks on a lattice. While real polymers are obvi-
ously not constrained such that their monomers lie on a lat-
tice, nevertheless it is thought that these lattice walks share
many properties with real polymers. We further restrict our
exploration here to self-avoiding lattice polygons, i.e. poly-
mers whose ends are connected, so that the topology of the
polymers may be specified.

To generate these polymers, we use a novel algorithm called
Confined-BFACF, which we adapted from the previously de-
scribed Markov Chain Monte Carlo algorithm BFACF (S39,
S40). Confined-BFACF was used to generate the fractal glob-
ule shown in Figure 3B. In this algorithm, each iteration of
BFACF accepts a lattice self-avoiding polygon (SAP) as input
and outputs a SAP. At every iteration, the algorithm picks an
edge of the current SAP at random and proposes to move that
edge by one unit in one of the 4 directions perpendicular to the
edge. To keep this edge connected with the rest of the poly-
mer, the vertices connected to the edge may then need to be
deleted, or new ones will need to be added, depending on the
result of the translation. Edge translations fall into three cat-
egories: negative moves, where two vertices must be deleted;
positive moves, where two vertices must be added; and neu-
tral moves, where the net change in number of vertices is zero.
The probability with which the algorithm chooses a direction
to move the edge in is pre-computed by first determining which
of the three categories such a move would result in (positive,
negative, or neutral), and weighing the direction probabilities
accordingly. The parameter z determines the relative proba-
bility of the algorithm choosing positive, negative, or neutral
moves: p(positive) = z2/(1 + 3z2), p(negative) = 1/(1 + 3z2),
and p(neutral) = (1+z2)/(2+6z2) (a fifth option of not mov-
ing the edge at all is given such that the probabilities add to
1).

Once a move is proposed, the algorithm checks to see if
the move violates self-avoidance, in which case the move is
rejected and the previous SAP is retained for that iteration.
When running Confined BFACF, the SAP is initially placed
in the center of a containing volume. At each iteration, the
algorithm checks if the proposed move will cause the SAP to
go outside the containing volume, in which case the move is
rejected.

To create large unknotted spherical globules, a small unknot
(typically 6 monomers) is placed in the center of a confining
spherical volume. The algorithm is run with a bias towards
growing, typically with z = 5, and the algorithm is run until
the polymer has filled up the confining volume. The BFACF
algorithm preserves the topology of the polygon (S41), so the
final configuration of the polymer, though contorted and ran-
dom, is still topologically unknotted.

14 www.pnas.org/cgi/doi/10.1073/pnas.1518552112 Sanborn et al.
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IV. Mathematical theory

a. Introduction
Loosely speaking, a fractal is a mathematical object which

can be broken down into parts with each part similar to the
original whole. A fractal exhibits fine structure at arbitrarily
small scales as a result of its self-similarity. Beyond their fas-
cinating and beautiful mathematical properties, fractals have
found numerous applications in modeling natural phenomena
and data compression.

Many fractals are constructed through an iterative process.
This construction may be understood geometrically, where a
finite path is chosen to form a base motif, a rewrite rule is
defined which positions multiple shrunken copies of the base
motif and connects them into a more complex path, and this
process is iterated ad infinitum. For example, this iterative
construction of the Dragon curve is shown in Figure 3A. Sec-
tion 5 discusses these constructions in a manner that avoids
mathematical abstraction and may be instructive for the gen-
eral reader.

In Section 2, we present a general mathematical construc-
tion of self-similar curves. For example, the same Dragon
curve can be defined via the iterative action of two contracting
similarities mapping R2 → R2:

Φ0(x, y) = ρ−π/4(x/2, y/2),

Φ1(x, y) = ρπ/4(x/2, y/2) + (
√

2/2,
√

2/2),

where ρθ : R2 → R2 is a counterclockwise rotation of an-
gle θ around the origin. Beginning with the compact set
A0 = {0} × [0, 1] ⊂ R2, we recursively define

Ak = Φ0(Ak−1) ∪ Φ1(Ak−1).

The first few iterations exhibit increasingly rough behavior
(Fig 3A). The sets {Ak}∞k=0 converge to a compact set A, a
self-similar set. For each k, Ak is parameterizable by a contin-
uous curve fk : I → Ak, where I := [0, 1], and the limit set A
is traced out by the limit function f = lim fk. This continuous
map f : I → A is an example of a self-similar curve.

In fact, the Dragon curve is also a space-filling curve since
the path it traces forms a two-dimensional set. This iterative
method was used by Giuseppe Peano in 1890 to create the
first space-filling curve. The Peano curve traces out a two-
dimenisonal square, defying conventional wisdom at the time
which held that higher-dimensional sets were “too large” to be
covered by lower-dimensional sets by a continuous mapping.

It is useful to extend the notion of dimension to non-integral
values in order to understand and compare complicated fractal
sets. For example, the boundary of the Dragon curve (Fig 3A)
has zero two-dimensional area, yet it is so finely folded that it
has infinite one-dimensional length. Thus, in some sense it is
larger than 1D but smaller than 2D.

Based on this intuition, there are two common ways to
measure non-integral dimensions: the box-counting dimension
(also known as the Minkowski dimension) and the Hausdorff
dimension. These measures are consistent with our usual no-
tion of integral dimension – that is, Rn has box-counting and
Hausdorff dimension both equal to n – and can be used to
compare the “sizes” of many different fractal sets.

The box-counting dimension is more commonly used in ap-
plied settings because it can be easily measured on data. The
general notion is to perform some measurement Nδ(X) on X
“at the scale δ” and see how the measurement varies as δ grows
small. If the measurement exhibits a power law Nδ(X) ∼ δ−d,
then the box-counting dimension is defined to be d. Typically,

Nδ(X) counts the number of boxes in an overlaid grid with
side length δ that intersect the set X.

The Hausdorff dimension similarly measures the size of a
set at infinitesimally small scales. However, it is more sen-
sitive, using infinite covers of sets with diameter at most δ,
making the Hausdorff dimension more difficult to empirically
calculate and cleaner to manipulate theoretically. First, the
s-dimensional Hausdorff measure of a set X, denoted Hs(X),
is defined as

lim
δ→0

inf

{
∞∑
i=1

Diameter(Ui)
s : {Ui} is a δ-cover of X

}
.

Then there is some critical value s0 for which Hs(X) = ∞
when s < s0 and Hs(X) = 0 when s > s0. The value s0 is
defined to be the Hausdorff dimension of X.

The box-counting and Hausdorff dimensions are often equal
for many tractable sets, including any self-similar set. An
rigorous overview of the properties of the box-counting and
Hausdorff dimensions can be found in a number of standard
texts (S43, S44).

After understanding the dimension of the image of a self-
similar curve, it is natural to ask next about dimensions of
subsets of the curve. For example, what is the dimension of
the set of points in [0, 1] which map to a given line intersecting
the Dragon curve? (Fig 3A) Yet, in the 125-year history of
self-similar curves, it is not known how they transform dimen-
sions of sets other than the entire unit interval. In general,
dimension behaves unpredictably for arbitrary smooth maps.

Transformation of Hausdorff dimension has been explored
greatly in the field of stochastic processes. In 1955, McKean
proved a dimension scaling result for two-dimensional Brown-
ian motion, showing that if B is a Brownian motion path in
R2 and X ⊂ (0,∞), then

dimH B(X) = 2 · dimH X

almost always (13).
In Section 3 we prove an original theorem, a deterministic

analog of McKean’s theorem, showing that self-similar curves
scale the dimension of any subset of I. That is, if the self-
similar curve f : I → Rn has d-dimensional image, then

dim f(X) = d · dimX

for any X ⊂ I, where dim denotes either Hausdorff or box-
counting dimension.

Measurements of a contact probability power law I(s) ∼ s−γ
have emerged as a crucial tool for linking measurements of spa-
tial contacts of nuclear DNA to models of its folded structure.
The fractal globule model has been shown to exhibit values
of γ between 1 and 1.2, but it is unclear what range of ex-
ponents can be achieved by general fractal models of folding.
By computing contacts of finite self-similar paths, we apply
our dimension scaling result to characterize contact probabil-
ity scalings of a wide range of fractal structures (Fig S3, Table
S3).

In Section 4, we derive an explicit formula for γ for a self-
similar curve f . First, we show that the contact probability
exponent effectively measures the box-counting dimension of
the contact map. Next, we apply our dimension scaling result
to compute the dimension of the contact map in terms of the
packing density di = dimB Image(f) and the surface rough-
ness de = dimB Exterior(Image(f)). Specifically, we show that
finite self-similar paths converging to f will have contact prob-
ability exponent γ = 2− de/di. Since 0 ≤ de < di, any fractal
model will have 1 < γ ≤ 2 and thus cannot explain the expo-
nents of γ = 0.75 observed for Hi-C contact domains.

The boundary case of γ = 2 can be achieved when de = 0,
such as for the Sierpinski arrowhead curve (Fig S3). Values
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of γ arbitrarily close to 1 are only achieved when the exte-
rior dimension nearly matches interior dimension. In Section
5, we construct an original family of self-similar space-filling
curves, dubbed “Inside-Out Hilbert curves”, with arbitrarily
rough boundaries and γ arbitrarily close to 1, the first curves
of this kind.

b. Construction of self-similar curves
A self-similar curve is a curve which can be decomposed

into parts each directly similar to the whole. Classically, self-
similar curves are constructed by choosing a short lattice path
to serve as a base motif and iteratively constructing exponen-
tially longer paths. The self-similar curve is the mathematical
limit of this process. Several examples are shown in Fig. S3.
Here we outline a formal definition of self-similar curves in
terms of iterated function systems.

Let X be a closed subset of Rn and let |x| denote the vector
length of x ∈ X. The map Φ : X → X is called a contracting
similarity if there is a constant c with 0 < c < 1 such that
|Φ(x)− Φ(y)| = c · |x− y| for all x, y ∈ X.

Def inition 1. Given X ⊂ Rn and N ≥ 2, a family of contract-
ing similarities {Φ0, · · · ,ΦN−1} with Φi : X → X for all i is
called an iterated function system on X, abbreviated as IFS.
An attractor of an IFS is a non-empty compact set A ⊂ X
that satisfies

A =

N−1⋃
i=0

Φi(A). [1]

In fact, every IFS uniquely defines an attractor A. If A0 ⊂
X is any non-empty compact set and Ak+1 = ∪N−1

i=0 Φi(Ak) for
each k ∈ N, then the sequence (Ak)k∈N converges to A (S44,
S45).

An IFS describes the self-similar structure of its unique at-
tractor set A. Here we define self-similar curves, a continu-
ous surjective function f : [0, 1] → A that respects the self-
similarity imposed by the IFS. To construct a self-similar curve
on A, we first define a notion of indexing the self-similar set
A.

Let ΩN denote the collection of all finite-length sequences
of integers in {0, · · · , N − 1}; ΩkN denote the collection of se-
quences in ΩN with length k; Ω∞N denote the collection of
all infinite sequences of integers in {0, · · · , N − 1}. Given
ω = (i1, i2, · · · ) ∈ Ω∞N , one can show that there is a unique
point xω such that

∞⋂
k=1

Φi1 ◦ · · · ◦ Φik (A) = {xω}.

Define the indexing function ρF : Ω∞N → A that maps the
index ω ∈ Ω∞N to the associated point xω ∈ A. Notice that

Φj ◦ ρF (i1, i2, · · · ) = ρF (j, i1, i2, · · · ) [2]

for any (i1, i2, · · · ) ∈ Ω∞N and j ∈ {0, 1, · · · , N − 1}.
Construction 2. (Self-Similar Curve) Let A be the attractor of
the IFS F = {Φ0, · · · ,ΦN−1} on Rn. Subdivide the unit
interval I = [0, 1] into N parts given by subdivisions 0 =
x0 < x1 < · · · < xN = 1. Construct the IFS on I given by
S = {σ0, · · · , σN−1} where σk(t) = (xk+1 − xk)t+ xk; that is,
σk maps I to [xk, xk+1]. Consequently, I is the attractor of S.

Define a function fS,F : I → A by requiring that f(ρS(ω)) =
ρF (ω) for all ω ∈ Ω∞N . With this definition, the value of fS,F
on {xk} = σk−1(I) ∩ σk(I) is ambiguous. It is necessary to
ensure that the “ends are connected.” That is, write a0 :=
ρF ((0, 0, · · · )) = Φ0(a0) and aN−1 := ρF ((N−1, N−1, · · · )) =
ΦN−1(aN−1), and then require Φk(aN−1) = Φk+1(a0) for

k = 0, · · · , N − 2. One can verify that f(S,F) is then well-
defined and automatically continuous.

The function fS,F constructed in this manner is said to be
the self-similar curve described by (S,F). This construction
captures the notion of self-similarity through the iterated func-
tion systems since fS,F restricted to σk(I) behaves as fS,F on
I with fS,F ◦ σk ≡ Φk ◦ fS,F . See Fig S4A for an example of
an IFS that describes the Hilbert curve.

In many cases, there is a simple formula which computes the
dimension of a self-similar set from the contracting ratios of
the associated IFS. First, one must verify that the sets Φi(A)
do not overlap significantly:

Def inition 3. The IFS {Φ0, · · · ,ΦN−1} on Rn satisfies the open
set condition if there exists a bounded, non-empty open set
U ⊂ Rn such that

I. Φi(U) ⊂ U for all i = 0, · · · , N − 1;
II. Φi(U) ∩ Φj(U) = ∅ when i 6= j.

Write the Hausdorff dimension of X ⊂ Rn as dimH X and
the Minkowski or “box-counting” dimension as dimB X. Write
the s-dimensional Hausdorff measure of X as Hs(H). The fol-
lowing simple formula can be used to compute the dimension
of the attractor set (S43):

Theorem 4. Let F = {Φ0, · · · ,ΦN−1} be an IFS of contracting
similarities on Rn that satisfies the open set condition. Sup-
pose Φi has similarity ratio Ri < 1 and A is the attractor of
F . Let s > 0 be the unique solution to

N−1∑
i=0

Rsi = 1. [3]

Then dimH A = dimB A = s and 0 < Hs(X) <∞.

c. Dimension scaling theorem for self-similar
curves

i. Overview
We investigate how a fractal curve f transforms the dimen-

sion of subsets of the unit interval. It is known how to compute
the dimension of the image of f using methods such as Theo-
rem 4. We prove a formula relating the dimension of f(X) to
the dimension of X for a general set X ⊂ [0, 1].

Hausdorff and box-counting dimensions often behave poorly
under transformations – in general, dimension is not pre-
served under a homeomorphism. However, transformation of
Hausdorff dimension has been explored greatly in the field of
stochastic processes. In 1955, McKean proved a dimension
scaling result for two-dimensional Brownian motion – if B is
a Brownian path in R2 and X ⊂ (0,∞), then dimH B(X) =
2 · dimH(X) almost always (13). Since the image of the full
Brownian path has dimension 2 almost always, McKean’s re-
sult can be restated as

dimH B(X) = dimH Image(B) · dimH X. [4]

In 1961, Blumenthal and Getoor conjectured that equation
[4] holds when B is a Lévy processes, a generalization of
Brownian motion (S46). While this conjecture turns out to
be false in general, numerous researchers have since computed
dimH B(X) under various conditions on X, B, or both. In
2005, Khoshnevisan and Xiao showed a general formula for
dimH B(X) in terms of X (S47, Corollary 2.6).

In fact, a general class of deterministic fractal curves do
transform dimensions in a uniform manner. In this section,
we give a proof of this original result. The fractal curves un-
der consideration are defined as follows:

16 www.pnas.org/cgi/doi/10.1073/pnas.1518552112 Sanborn et al.
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Def inition 5. Let f : I → Rn be a fractal curve described by the
IFSs S = {σ0, · · · , σN−1} on I and F = {Φ0, · · · ,ΦN−1} on
Rn as in Construction 2. Let ri be the scaling ratio of σi and
let Ri be the scaling ratio of Φi, for i = 0, · · · , N − 1. We say
that the fractal curve f is balanced if F satisfies the open set
condition and there is some constant β such that

ri = Rβi for i = 0, · · · , N − 1. [5]

The uniform dimension scaling of fractal curves is charac-
terized by the following theorem, a deterministic analogue to
McKean’s Theorem. The result applies to any subset of the
unit interval that is a Borel set, a very general class that in-
cludes any sets that can be formed from open sets using the
operations of countable union, countable intersection, or com-
plementation.

Theorem 6. Suppose that f : I → Rn is a balanced fractal curve
with image A = f(I), and let d = dimH A = dimB A. Then
for all Borel sets X ⊂ I,

dimH f(X) = d · dimH X and dimB f(X) = d · dimB X.

The proof is given below in two parts, separately proving
an upper bound and a lower bound on the dimension of f(X).
We first prove an upper bound (Corollary 9) by showing that
f is α-Hölder with α = 1/d and d = dim f(I). This arises
naturally because the self-similar structure of f guarantees
that small distances in the domain are mapped to correspond-
ingly small distances in the range. Next, we prove a lower
bound (Lemma 14) by using Frostman’s Lemma to pick a sub-
set X0 ⊂ X for which small balls in X0 have small Hausdorff
measure relative to their radius. We then show that the push-
forward by f of the Hausdorff measure on X0 gives a measure
µ on f(X0) that satisfies the mass principle µ(U) ≤ c|U |s for
all sufficiently small U and a particular s. This gives a lower
bound on dimH f(X0) and thus a lower bound on dimH f(X).
The lower bound on dimB f(X) follows similarly.

The condition that f is balanced is necessary for the uniform
dimension scaling result to hold. Given distinct α, β < 1/2,
define fα,β : I → I as the fractal curve described by (Fα,Fβ)
as in Construction 2, where

Fa := {t 7→ at, t 7→ (1− 2a)t+ a, t 7→ 1− a(1− t)}

for a = α, β. If f is not required to satisfy equation [5],
precomposing with fα,β (Fig S4B) would change the way the
function transforms dimension of specific subsets of I when
α 6= β.

In practice, one often wants to take a self-similar set A, the
attractor of some IFS F , and trace it entirely as the image
of a fractal curve. In this instance, the values of the Ri are
given and one can define an IFS S on I with the appropriate
ri so that the fractal curve described by S and F is balanced.
In any motif-based construction, the scaling ratios Ri are all
equal and one can simply choose ri = 1/N for each i.

ii. An upper bound on dim f(X)
A function f : Rm → Rn is α-Hölder if there exists some

c > 0 such that |f(x)−f(y)| ≤ c|x−y|α for all x, y ∈ Rm. This
uniform upper bound on the way that f transforms distances
gives an upper bound on the way it transforms dimensions
(S43).

Lemma 7. Suppose that f : A ⊂ Rm → Rn is α-Hölder. Then
for any X ⊂ A,

dimH f(X) ≤ α−1 · dimH X

dimB f(X) ≤ α−1 · dimB X.

Given a sequence ω = (i1, · · · , ik) ∈ ΩkN , define the short-
hand notation Φω = Φi1 ◦· · ·◦Φik . Balanced fractal curves are
naturally α-Hölder because the relation f(σω(I)) = Φω(A) for
ω ∈ ΩN allows small distances in the domain of f to govern
small distances in the range of f .

Lemma 8. Suppose that f : I → Rn is a balanced fractal curve
with image A, and let d = dimH A = dimB A. Then f is
1/d-Hölder.

Proof. Let f be a fractal curve described by the IFSs
{σ0, · · · , σN−1} on I and F = {Φ0, · · · ,ΦN−1} on Rn. Let
ri and Ri be the scaling ratios of σi and Φi respectively, for
i = 0, · · · , N − 1. Since f is balanced, let d′ be the constant

such that ri = Rd
′
i for i = 0, · · · , N − 1. Then

∑N−1
i=0 Rd

′
i = 1.

Hence, by Theorem 4, d′ = dimH A = dimB A = d.
We now show that f satisfies

|f(s)− f(t)| ≤ c|s− t|1/d for all s, t ∈ [0, 1]

for some constant c. Let r = min ri. Since |f(s)− f(t)| ≤ |A|
for all s, t ∈ [0, 1], it suffices to prove this equation for s, t such

that |s− t| < r if we choose c ≥ |A|r−1/d.
Take s, t ∈ I distinct with |s − t| < r. Truncate each

(i1, i2, · · · ) ∈ Ω∞N after the first index ik such that

|s− t| ≤ ri1 · · · rik ≤ |s− t|r
−1. [6]

(This is always possible since |s − t| < r.) Let Q denote the
set of all (finite) sequences obtained in this way. Since every
infinite sequence is truncated to some element of Q, we have

I =
⋃
ω∈Q

σω(I).

Thus, there exist ω, ω′ ∈ Q such that s ∈ σω(I) and t ∈ σω′(I).
In fact, one can choose ω and ω′ such that σω(I) and σω′(I) are
either equal or adjacent intervals in I, since each such interval
has length at least |s−t|. We conclude that σω(I)∩σω′(I) 6= ∅
and hence Φω(A) ∩ Φω′(A) 6= ∅. Since f(s) ∈ Φω(A) and
f(t) ∈ Φω′(A),

|f(s)− f(t)| ≤ |Φω(A)|+ |Φω′(A)|

= |A|
∏
i∈ω

Ri + |A|
∏
j∈ω′

Rj

= |A|
∏
i∈ω

r
1/d
i + |A|

∏
j∈ω′

r
1/d
j

≤ 2|A|r−1/d · |s− t|1/d

by equation [6]. �

Lemma 7 and Lemma 8 immediately imply
Corollary 9. Suppose that f : I → Rn is a balanced fractal curve
with image A = f(I), and let d = dimH A = dimB A. Then
for any set X ⊂ [0, 1],

dimH f(X) ≤ d · dimH X and dimB f(X) ≤ d · dimB X.

iii. A lower bound on dim f(X)
Our proof of the lower bound on the dimension of f(X) is

inspired by the proof of the dimension of attractors (Theorem
9.3 in (S43)). We use the mass distribution principle (Princi-
ple 4.2 in (S43)):
Lemma 10. Let µ be a measure defined on X with µ(X) > 0.
Suppose that, for some s > 0, there exist c, ε > 0 such that

µ(U) ≤ c|U |s for all U ⊂ X such that |U | ≤ ε.

Then Hs(X) ≥ c−1µ(X) and s ≤ dimH X.

Sanborn et al. PNAS Oct 2015 17
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The following Lemma by Frostman is often useful in con-
structing a measure based on the Hausdorff dimension of a set
((S48), Theorem 8.8).

Lemma 11. (Frostman) Suppose that X ⊂ Rn is a Borel set with
0 < Hs(X) ≤ ∞. Let Br(x) denote the ball of radius r cen-
tered at the point x. Then there exists a compact set X0 ⊂ X
and a constant b such that 0 < Hs(X0) <∞ and

Hs(X0 ∩Br(x)) ≤ brs

for all r > 0 and x ∈ Rn.

To each IFS F one can associate, by repeated sub-division,
a canonical measure on its attractor A that respects its self-
similar structure. Consider ‘cylindrical’ subsets of Ω∞N defined
by

Oi1,··· ,ik := {ω ∈ Ω∞N : ω begins with (i1, · · · , ik)}.

Let s = dimH A so that
∑N−1
i=0 Rsi = 1, and define µ̃

to be the measure on Ω∞N that satisfies µ̃(Oi1,··· ,ik ) =
(Ri1 · · ·Rik )s for each (i1, · · · , ik) ∈ ΩN . Then µ̃(Oi1,··· ,ik ) =∑N−1
i=0 µ̃(Oi1,··· ,ik,i), so µ̃(Ω∞N ) = 1. One can show that µ̃ in-

deed extends to a measure on all of Ω∞N ; it can be alternatively
computed as

µ̃(O) = inf

{∑
ω

µ̃(Oω) : O ⊂
⋃
ω

Oω and ω ∈ ΩN

}
.

Recall the indexing map associated with F , ρF : Ω∞N → A.
Def inition 12. The canonical measure µ on A associated with
the IFS F is the push-forward of the measure µ̃ on Ω∞N by the
indexing function ρ; that is,

µ(A) := µ̃(ρ−1
F (A)) for all A ⊂ A.

It is easily checked that the canonical measure µ satisfies
µ(A) = 1 and that µ(Φi1,··· ,ik (A)) = (Ri1 · · ·Rik )s ((S43),
Proposition 1.7).

To give the proof of Theorem 4, we require the following
small result ((S43), Lemma 9.2):

Proposition 13. Let {Ui} be a collection of disjoint open subsets
in Rn. Suppose that each Ui contains a ball of radius a1 and
is contained in a ball of radius a2. Then any ball with radius
r > 0 intersects at most (1 + 2a2/r)

n(a1/r)
−n of the closures

Ui.

Proof. If the ball B with radius r > 0 meets Ui, then Ui is
contained in the ball B′ concentric with B with radius r+2a2.
Now if B meets exactly m of the Ui, B

′ contains m disjoint
balls of radius a1. By comparing n-dimensional volumes of
these balls, we find that m(a1)n ≤ (r + 2a2)n which proves
the desired result. �

We complete the proof of Theorem 6 by showing the follow-
ing result.

Lemma 14. Suppose that f : I → Rn is a balanced fractal curve
with image A = f(I), and let d = dimH A = dimB A. Then
for any Borel set X ⊂ [0, 1],

dimH f(X) ≥ d · dimH X and dimB f(X) ≥ d · dimB X.

Proof. Let f be a fractal curve described by the IFSs
{σ0, · · · , σN−1} on I and F = {Φ0, · · · ,ΦN−1} on Rn. Let
ri and Ri be the scaling ratios of σi and Φi respectively, for
i = 0, · · · , N − 1. Since f is balanced, let d′ be the con-

stant such that ri = Rd
′
i for i = 0, · · · , N − 1. By assump-

tion
∑N−1
i=0 ri = 1, so

∑N−1
i=0 Rd

′
i = 1. Hence, by Theorem 4,

d′ = dimH A = dimB A = d.
Part (i): Hausdorff dimension.

Fix s < dimH X. Since Hs(X) = ∞, by Frostman’s
Lemma there exists X0 ⊂ X compact and b > 0 such that
0 < Hs(X0) <∞ and

Hs(X0 ∩Bρ(x)) ≤ bρs for all x ∈ X and ρ > 0. [7]

Define the measure µ on f(X0) to be the push-forward by
f of Hs restricted to X0; i.e.

µ(A) := Hs(f−1(A) ∩X0) for all A ⊂ f(X0).

We will bound µ(Bρ(y)) as a function of ρ for any y ∈ f(X0)
and use Lemma 10 to show that dimH f(X0) ≥ sd.

Let B be a ball of radius ρ with 0 < ρ < 1 and let
R = minRi. Truncate each (i1, i2, · · · ) ∈ Ω∞N after the first
index ik such that

Rρ ≤ Ri1 · · ·Rik ≤ ρ. [8]

Let Q denote the set of all (finite) sequences obtained in this
way. Let U be an open set defined from the open set condition
3 for the IFS F . Since the sets {Φi(U) : i = 0, · · · , N − 1}
are disjoint, applying the functions {Φi} recursively shows
that, for ω, ω′ ∈ ΩN , Φω(U) and Φω′(U) are disjoint if and
only if neither ω nor ω′ is a prefix of the other. Thus,
{Φω(U) : ω ∈ Q} is a collection of disjoint sets. It also follows

easily from the open set condition that A ⊂ U . Consequently,

A ⊂
⋃
ω∈Q

Φω(A) ⊂
⋃
ω∈Q

Φω(U).

Choose a1, a2 ∈ R so that U contains a ball of radius a1 and is
contained in a ball of radius a2. For all ω = (i1, · · · , ik) ∈ Q,
the set Φω(U) contains a ball of radius a1(Ri1 · · ·Rik ) and
therefore a ball of radius a1Rρ, and is contained in a ball
of radius a2(Ri1 · · ·Rik ) and therefore a ball of radius a2ρ.
Let Q′ denote the set of sequences ω ∈ Q such that B in-
tersects Φω(U). By Proposition 13, Q′ has at most q1 =
(1 + 2a2)n(a1R)−n elements.

Similarly, for some ω ∈ Q and ε > 0 consider a ball Bω of
radius a2ρ · (1 + ε) that contains Φω(U). By Proposition 13,
Bω intersects at most (1 + 2/(1 + ε))n(a1R/a2(1 + ε))−n of

the sets Φω′(U) for ω′ ∈ Q. Since this is true for all ε > 0, it

follows that Φω(U) is disjoint from all but q2 = 3n(a1R/a2)−n

of the sets Φω′(U) for ω′ ∈ Q.

For each ω ∈ Q, let Q′ω = {ω′ ∈ Q : Φω(U) ∩ Φω′(U) 6= ∅}.
For each ω ∈ Q, Q′ω has at most q2 elements. Since f◦σω′(I) ⊂
Φω′(U), the set f−1 ◦Φω(U) intersects σω′(I) only if ω′ ∈ Q′ω.
Thus,

µ(B) ≤
∑
ω∈Q′

µ(Φω(U))

=
∑
ω∈Q′

Hs(f−1 ◦ Φω(U) ∩X0)

≤
∑
ω∈Q′

∑
ω′∈Q′ω

Hs(σω′(I) ∩X0). [9]

For ω′ = (i1, · · · , ik) ∈ Q, σω′(I) is an interval with length
ri1 · · · rik = Rdi1 · · ·R

d
ik
≤ ρd by equation [8]. By equation

[7], Hs(σω′(I) ∩X0) ≤ b(ρd)s, so

µ(B) ≤
∑
ω∈Q′

∑
ω′∈Q′ω

Hs(σω′(I) ∩X0)

≤
∑
ω∈Q′

∑
ω′∈Q′ω

b(ρd)s

= q1q2b · ρds. [10]

18 www.pnas.org/cgi/doi/10.1073/pnas.1518552112 Sanborn et al.
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Since this is true for all ballsB with radius ρ, dimH f(X0) ≥ ds
by Lemma 10. Because X0 ⊂ X, we have shown that
dimH f(X) ≥ dimH f(X0) ≥ ds for all s < dimH X. Con-
sequently, dimH f(X) ≥ d · dimH X.
Part (ii): Box-counting dimension.

Fix ρ > 0. Let B be a collection of K balls, each of radius
at most ρ, which covers f(X). Define Q ⊂ ΩN exactly as in
Part (i). Again, each ball B ∈ B intersects at most q sets in

{Φω(U) : ω ∈ Q}. Defining Q′ to be the set of ω ∈ Q such
that Φω(U) intersects some B ∈ B, we see that Q′ has at most
Kq1 elements. Similarly define Q′ω for each ω ∈ Q′; each Q′ω
has at most q2 elements. From the reasoning in Part (i), it

follows that f(X) ⊂ ∪ω∈Q′Φω(U) and

X ⊂ f−1(f(X))

⊂
⋃
ω∈Q′

f−1 ◦ Φω(U)

⊂
⋃
ω∈Q′

⋃
ω′∈Q′ω

σω′(I). [11]

As above, σω′(I) is an interval of length at most ρd for all
ω ∈ Q, so {σω′(I) : ω ∈ Q′, ω′ ∈ Q′ω} is a cover of X using at
most q1q2K intervals with diameter at most ρd.

For δ > 0 and a set A, let Nδ(A) denote the smallest number
of balls of diameter at most δ required to cover A. Equation
[11] shows that Nρd(X) ≤ q1q2K. Taking the minimum over
all possible K, we have

Nρd(X) ≤ q1q2 ·Nρ(f(X)).

Consequently,

dimB X = lim
ρ→0

logNρd(X)

− log ρd

≤ lim
ρ→0

log(q1q2 ·Nρ(f(X)))

− log ρd

≤ lim
ρ→0

d−1 · logNρ(f(X)) + log q1q2
− log ρ

= d−1 · dimB f(X).

�

d. Derivation of contact probability critical
exponent for self-similar paths

Measurements of the contact probability exponent have
emerged as a crucial tool for linking measurements of spa-
tial contacts of nuclear DNA to models of its folded structure.
The fractal globule model has been shown to exhibit a con-
tact probability exponent ranging from −1 to −1.33, but it
is unclear what range of exponents can be achieved by gen-
eral fractal models of folding. By computing contacts of paths
constructed by discrete sampling self-similar curves, we apply
the theory derived above to characterize contact probability
scalings of a wide range of fractal structures. Particularly rele-
vant to chromatin models are motif-based space-filling curves,
such as the Dragon curve or the Hilbert curve, in which dense
packing leads to numerous self-contacts (Fig S3).

In this section, we derive an explicit formula for the con-
tact probability scaling exponent for motif-based self-similar
curves. Let f be such a curve, and set di = dimB f(I) =
dimH f(I), the interior dimension of the curve. We will also
define a set Ef consisting of the points lying on the exterior
of the curve, also known as the dynamical boundary, and de-
fine the exterior dimension of the curve to be de = dimB Ef .
When f is space-filling, Ef is simply the topological boundary

of the set f(I). We will show that the contact probability of
finite self-similar paths converging to f will scale with critical
exponent de/di − 2.

i. Dimension of the contact map derives from surface dimen-
sion

For any curve f : I = [0, 1] → Rn, one can compute the
corresponding contact map Cf = {(s, t) ∈ [0, 1]2 : f(s) =
f(t), s 6= t}. The image of Cf is the set of points with multiple
preimages, or

Mf := {p ∈ A : ∃(s, t) ∈ Cf s.t. f(s) = f(t) = p},

which we call the multiple points of f . We assume henceforth
that Mf is not empty.

When f is a balanced self-similar curve described by the
iterated function systems F = {Φ0, ...,ΦN−1} and S =
{σ0, ..., σN−1}, the dimensions of Cf and Mf can be related
using the following variant of the Theorem 6:

Lemma 15. Let f be a balanced fractal curve with image A,
contact map Cf ⊂ I2, and multiple points Mf ⊂ A. Define
the map g : Cf → Mf by g : (s, t) 7→ f(s) = f(t). Then for
any Borel set X ⊂ Cf ,

dimH g(X) = dimH A · dimH X,

dimB g(X) = dimB A · dimB X

The proof of this result closely follows the proof of Theo-
rem 6 and is given in the Appendix. As a consequence,
dimH Cf = (dimHMf )/(dimH A).

Because of self-similarity, Mf is dense in A, so dimBMf =
dimB A. That is, the box-dimension of the multiple points
does not give any information about the prevalence of these
self-contacts. Therefore, we consider the points which lie on
the exterior of A that form external contacts when mapped
into the interior of A. Formally, choose U ⊂ Rn such that F
satisfies the open set condition with U , and define the exterior
set Ef to be

Ef = {p ∈ ∂U ∩ A : ∃ω ∈ ΩN s.t. Φω(p) ∈Mf}.

We show in the Appendix that Ef is independent of the choice
of U . The exterior set, also known as the “dynamical bound-
ary,” generalizes the notion of boundary to self-similar sets.
When f is space-filling – that is, it contains and is contained
in open n-dimensional balls – Ef coincides with ∂A, the topo-
logical boundary of A ((S49), Proposition 2.8).

In particular, since Mf is a countable union of images of
Ef , dimH Ef = dimHMf , and thus the dimension of the con-
tact map can be computed as the ratio of the dimensions of
the boundary and the interior. Furthermore, when Ef is com-
pact, dimB Ef = dimH Ef (see Proposition 17), enabling the
boundary dimension to be computed with a box-counting mea-
surement. We call this common value the exterior dimension
of f , denoted de. Analogously, denote the interior dimension
of f by di = dimH A = dimB A. Then Lemma 15 can be
restated as dimH Cf = de/di; we call this value the contact
dimension.

Classic constructions of self-similar curves begin from a lat-
tice path Γ1 that serves as a base motif and use the self-similar
rules to iteratively generate exponentially longer lattice paths
that converge to a smooth self-similar curve. A subsequent
path Γn is defined from Γn−1 by placing a copy of Γ1 at each
node of Γn−1, suitably oriented so that the end of one copy
of Γ1 can be connected to the beginning of the next copy of
Γ1 by an edge on the sub-lattice. The number of nodes in the
motif path specifies the number of self-similar copies – if Γ1

has N nodes then Γn has Nn nodes – and the edges specify the
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ordering and orientation of the copies. In this way, the base
motif Γ1 specifies an IFS, and the sequence of paths {Γn}∞n=1

converges to a continuous curve described by the IFS. For an
example of this process, see Section 4 or (S44).

In particular, the self-similar parts of a motif-based curve
tile a lattice with only finitely many choices of rotations and
reflections. Consequently, when f is a motif-based curve, Ef
can be mapped into Mf via a bounded number of steps; i.e.
there is some K such that

Ef = {p ∈ ∂U∩A : there exists ω ∈ ΩKN such that Φω(p) ∈Mf}.

It follows that Ef is compact and therefore dimB Ef =
dimH Ef = de.

With the same approach, we find that the contact dimen-
sion can also be measured using the box-counting dimen-
sion. If we examine the contact map away from the diagonal,
Cjf := {(s, t) ∈ Cf : s − t > 1/N j}, we find from Lemma 15
that

dimB Cjf =
dimB Ef
dimB A

=
de
di

for sufficiently large j.

In the next section, we show that contact probability is effec-
tively measuring dimB Cjf for large j and derive the contact

probability scaling as a function of de/di.

ii. Contact probability measures the contact map dimension
The contact probability of a curve measures the likelihood

two points are in contact as a function of the distance along
the curve between the points. Here we rigorously derive the
contact probability scaling from the contact dimension.

Let f be a self-similar curve based on the length-N motif
path Γ1, and let {Γn}n be the iterative set of paths converging
to f . For a = 0, · · ·Nn − 1, let Γn(a) denote the ath node of
Γn. We say that Γn(a) and Γn(b) are in contact when they are
adjacent on the lattice, and define the discrete contact map of
Γn by

In = {(a, b) : 0 ≤ a, b < Nn, Γn(a) and Γn(b) are in contact}.

The contact map of Γn is a finite approximation to the in-
finite contact map Cf whose dimension was characterized
above. Specifically, (a, b) ∈ In if and only if the square
[a/Nn, (a + 1)/Nn] × [b/Nn, (b + 1)/Nn] has non-empty in-
tersection with Cf . (See Proposition 18.)

Define the contact incidence In(k) to be the number of con-
tact pairs in Γn at distance between Nk−1 and Nk − 1, for
k = 1, ..., n. This is the numerator of the contact probability
measurement. The denominator is the “possible” number of
contacts at distance between Nk−1 and Nk − 1. Since the
curve has length Nn, the possible number of contacts at dis-
tance ` is simply Nn − ` − 1. Thus, contact probability, or
Pn(k), is given by the equation

Pn(k) =
In(k)∑Nk−1

`=Nk−1 Nn − `− 1
.

Contact incidence In(k) counts the number of points lying
inside a diagonal strip of the contact map of Γn. By dividing
this strip into self-similar parts, we show in Lemma 19 in the
Appendix that contact probability effectively makes a partic-
ular box-counting measurement of the contact map. Conse-
quently, we find,

In(k) ∼ (Nk)de/di−1 for large n.

Furthermore, it is clear that the denominator of P (k) clearly
scales as Nk. Therefore,

Pn(k) ∼ (Nk)de/di−2 for large n.

We have proved that the contact probability for any motif-
based curve obeys a power law with exponent equal to the
contact dimension minus 2. That is, a plot of {(k, logN P (k))}
approaches a straight line with slope dimB Ef/ dimB Af−2 =
de/di − 2 as n grows large.

This result is illustrated in Fig S3. We have constructed
high iterations of numerous classic motif-based space-filling
curves, and we find that our theory perfectly predicts the con-
tact probability scaling measured from these paths (Table S3).

iii. Appendix: Proofs
Lemma 15. Let f be a balanced fractal curve with image A,
contact portrait Cf ⊂ I2, and multiple points Mf ⊂ A. Define
the map g : Cf →Mf by g : (s, t) 7→ f(s) = f(t). Then

dimH g(X) = dimH A · dimH X,

dimB g(X) = dimB A · dimB X

for any Borel set X ⊂ Cf .
Proof. Let π denote the linear projection in R2 onto the x-
axis. Then g = f ◦ π. Since π is naturally α-Hölder with
α = 1, dimH π(X) ≤ dimH X and dimB π(X) ≤ dimB X
for all X ⊂ Cf . Theorem 6 then implies that dimH g(X) ≤
dimH A · dimH X and dimB g(X) ≤ dimB A · dimB X.

The proofs of the reverse inequalities closely follow the proof
of Theorem 6 with f replaced by g. In the proof of the Haus-
dorff dimension bound, the measure µ should be defined on
Mf by

µ(A) = Hs(g−1(A) ∩X0) ∀A ⊂Mf .

This is indeed a measure – clearly µ(∅) = 0 and µ(A) ≤ µ(B)
when A ⊂ B, and µ is countably additive since g−1(A) and
g−1(B) are disjoint whenever A and B are disjoint.

The remainder of the proof follows in essentially the same
manner as in Theorem 6. In the notation of this proof,
since g−1(A) = (f−1(A) × f−1(A)) ∩ Cf , it follows that

g−1 ◦ Φω(U) ⊂ σω(I)2. Hence, equation [9] and equation
[11] remain almost unchanged. Since σω(I)2 is still a set
with diameter at most ρd, equation [10] still holds. This
shows that dimH g(X) ≥ dimH A · dimH X and dimB g(X) ≥
dimB A · dimB X, as desired. �

Proposition 16. The set Ef is independent of the choice of open
set U .

Proof. Let U be any set for which F satisfies the open set con-
dition. Then A ⊂ U . If p satisfies the properties of an exterior
point, then there exist ω, ω′ ∈ ΩN , distinct and equal length,
such that p ∈ Φω(A) ∩ Φω′(A). Then Φω(U) and Φω′(U) are
disjoint, so necessarily p ∈ ∂U . �

Proposition 17. If Ef is compact, dimB Ef = dimH Ef =
dimHMf .

Proof. Suppose that f is described by the IFS F =
{(Φ0, ρ0), ..., (ΦN−1, ρN−1)}. Notice that Ef is sub-self-similar
(S50); that is, Ef is compact and satisfies

Ef ⊆
N⋃
i=0

Φi(Ef ).

Then Theorem 3.5 in (S50) implies that the Hausdorff and
Box-counting dimensions of Ef coincide. Since Mf is a count-
able union of images of Ef under the maps {Φi}, dimH Ef =
dimHMf . �
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Proposition 18. Let f be a fractal curve which is self-similar in
N equal parts. Construct Γn, the nth finite approximation to
the curve f , consisting of Nn points on a lattice. Let In be
the set of contact pairs in Γn; namely,

In = {(a, b) : 0 ≤ a, b < Nn, Γn(a) and Γn(b) are in contact}.

Then (a, b) ∈ In if and only if the square [a/Nn, (a+1)/Nn]×
[b/Nn, (b+ 1)/Nn] has non-empty intersection with Cf .

Proof. Suppose that f is described by the IFS {Φ0, ...,ΦN−1}
in the image. Given integers a and b between 0 and Nn − 1,
let the base-N representations of a and b be given by

a = α1...αn

b = β1...βn

Then (a, b) ∈ In is equivalent to Φ(α1,...,αn)(A) ∩
Φ(β1,...,βn)(A) 6= ∅, which is equivalent to the existence of
(s, t) ∈ Cf with a/Nn ≤ s ≤ (a + 1)/Nn and b/Nn ≤ t ≤
(b+ 1)/Nn, as claimed. �

Lemma 19. Let f be a motif-based self-similar curve. Construct
Γn, the nth finite aproximation to f , and measure the contact
incidence In(k). For large n, there are constants α, β such
that

αN (de/di−1)k ≤ In(k) ≤ βN (de/di−1)k

for large k.

Proof. Define Cjf = {(s, t) ∈ Cf : s − t > 1/N j}. Since f is

motif-based, for some sufficiently large j0, dimB Cj0f = de/di.

By replacing the N self-similarities describing f with N j0 it-
erated self-similarities {Φω : ω ∈ ΩN has length j0} which de-
scribe the same curve f , we may assume that dimB C1f = de/di.
(In other words, replace the sequence of paths {Γn}∞n=1 with
{Γj0∗n}∞n=1.)

Given some compact set X in the plane and k ∈ N, we
subdivide the plane into a grid of squares of side length N−k

with sides parallel to the x- and y-axes and the corner of one
square at the origin. Let Bk(X) equal the number of grid
squares with side length N−k which intersect X. Consider
In, the finite set of contacts of Γn. The number of points in
the set

In−kn := {(a, b) ∈ In : Nk ≤ |a− b| < Nk+1}

is exactly 2 · In(k).
Set K := Nn−k and define 2K − 1 disjoint sets in In−kn as

follows:
Pi := [(i− 1)Nk, iNk]2 ∩ In−kn ,

Qi := ([iNk, (i+ 1)Nk]× [(i− 1)Nk, iNk]) ∩ In−kn ,

where the Pi are defined for i = 1, ...,K and the Qi are defined
for i = 1, ...K − 1. Fig S4C shows an example of In−1

n , {Pi},
and Q1 when f is the Hilbert curve.

By self-similarity of the contact pairs, the sets P1, ..., PK
are identical and equal to a scaled down copy of I1k . Then
by Proposition 18, the number of points in each Pi is exactly
equal to Bk(C1f ). Since P1, ..., PK are disjoint and contained

in In−kn ,

2 · In(k) ≥
K∑
i=1

#Pi = Nn−k ·Bk(C1f ).

Because f is motif-based, two sub-parts of the curve can
only contact each other in finitely many different combina-
tions. Specifically, define the contact map between consecutive

sub-parts

Zf =

∞⋃
k=1

Nk−1⋃
j=1

{ φk,j((s, t)) ∈ Ckf :

j

Nk
≤ s ≤ j + 1

Nk
,
j − 1

Nk
≤ t ≤ j

Nk
},

where φk,j is chosen to map the sub-square [j/Nk, (j +
1)/Nk] × [(j − 1)/Nk, j/Nk] back to the unit square. (So
Zf ⊂ [0, 1]2.) Because consecutive sub-parts form contacts
combinatorially in finitely many ways, Zf can be written as
a finite union over a subset of the sets above. Thus, Zf itself
has dimension at most de/di.

Again by Proposition 18, a point in Qi corresponds to a
box of side-length N−k in the same location that intersects
Zf . Thus, the number of points in Qi is at most Bk(Zf ).

Now since In−kn is contained in the union of the Pi and the
Qi, counting points gives

2 · In(k) =

Nn−k∑
i=1

#Pi + 2 ·
Nn−k−1∑
j=1

#Qi

≤ Nn−k ·Bk(C1f ) + 2(Nn−k − 1) ·Bk(Zf ),

where #Pi and #Qi are the number of points in Pi and Qi
respectively. Combining the inequalities above shows

2 · In(k) ≥ Nn−k ·Bk(C1f )

2 · In(k) ≤ Nn−k ·Bk(C1f ) + 2(Nn−k − 1) ·Bk(Zf ).

Since C1f and Zf both have box-counting dimension equal to

de/di, logN Bk(C1f ) and logN Bk(Zf ) each scale linearly as a
function of k with slope de/di. Thus, logN In(k) scales with
slope de/di − 1 as a function of k. �

e. Novel curves

i. Construction of space-filling curves using tiling
The IFS-based construction of self-similar curves presented

in Section 2 may be interpreted nicely in terms of an itera-
tive geometric construction. In this section, we walk through
a general process for constructing self-similar space-filling
curves.

First, the region chosen to be filled by the curve is subdi-
vided into n parts each equal to the whole, giving a self-similar
tiling of the original shape, also known as a rep-tiling. Second,
a Hamiltonian path is chosen which passes through each tile;
this forms the base motif. Third, a rewrite rule is determined
using this base motif. Specifically, each of the n tiles is parti-
tioned in the same manner as the original shape, and the base
motif is drawn in each tile in a suitable orientation so that the
end of the base motif in the ith tile may be joined directly
to the beginning of the base motif in the (i+ 1)th tile, where
the ordering of the tiles is also determined by the base motif.
By iteratively applying the rewrite rule, arbitrarily long paths
through the region are constructed, and these paths converge
to a self-similar curve that fills the chosen region.

The rep-tiling, base-motif, and rewrite rule for the Hilbert
curve is shown in Fig S5A. The region is a square, and the
tiling consists of four squares of half the size. A path through
the four squares is chosen as the base motif. Finally, one copy
of this motif is placed in each square, suitably oriented, to
define the rewrite rule. This approach may be generalized to
higher dimensions, for example, to construct the 3D Hilbert
curve (Fig S3).
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Notice that it is possible to construct many different self-
similar curves that fill the same space; for example, the Hilbert
and Peano curves both fill the square. By subdividing the
square into more sub-squares and choosing different paths
through the sub-squares to form the base motif, a combinato-
rially unlimited number of such curves may be constructed.

Until now, all curves we have discussed have been unknot-
ted. By subdividing a cube into sufficiently many parts and
choosing a knotted base-motif, we can construct a space-filling
curve that has arbitrarily many knots as the path is repeat-
edly iterated. We illustrate this with a construction, dubbed
the Gordian knot, which subdivides the cube into 64 parts
and choosing a base-motif which forms two trefoil knots (if
the ends are joined) (Fig S5D). If the endpoints are joined
along the outside to form a loop, the nth iteration contains∑n−1
i=0 166̇4i trefoil knots. Notably, the contact probability is

unaffected by the knotted nature of this curve, as predicted
by our theory (Fig S3).

It is possible to construct self-similar space-filling curves us-
ing tiles that overlap. The Levy Dragon is such an example: it
has dimension equal to 2 and is self-crossing. Interestingly, al-
though our theoretical results only apply to curves that are not
self-crossing (as required by the open set condition), the Levy
Dragon contact probability exponent satisfies the predictions
of the theorem (Fig S3). Thus, there may be a generalization
of our results for self-crossing curves.

ii. Rough-boundaried space-filling curves
By choosing an irregular region, a space-filling curve with

a rough boundary may be constructed. However, the region
must be chosen appropriately so that it self-interlocks and tiles
space. In a general method, we generate a reciprocal tessela-
tion by taking a simple tiling, such as the square tiling of the
plane, and modifying the underlying tile by adding a bump
to one side and a corresponding cavity on the other side (Fig
S5B). This operation can be performed repeatedly, creating
tiles with rougher boundaries that look nothing like squares.

We illustrate this approach in two- and three-dimensions.
First, we create a very simple reciprocal tesselation by trans-
lating a single sub-square in a square tiling from the bottom
of the tile to the top, and doing the same for a sub-square
from left-to-right (Fig S5B). We then construct a Hamilto-
nian Path through this tile. However, we immediately face a
hurdle: it turns out that there is no way to iterate this Hamil-
tonian path recursively, since the 2D rotational symmetry of
the tile is destroyed by the change in tile shape. As a result,
it is not possible to connect our Jigsaw motif to construct
a motif-of-motifs. However, it is possible to compensate for
this symmetry-breaking by constructing a second motif (Fig
S5B). By using one or the other motif, it is possible to it-
erate this construction indefinitely as before. This yields a
Peano curve whose boundary has a fractal dimension equal to
log 12/ log 8 = 1.195, and which exhibits the expected shift in
scaling (Fig S3). The term “Jigsaw curve” is suggested by the
shape of the resulting curve.

This technique may also be applied successfully in three di-
mensions to create the 3D Jigsaw curve. It has concavities and
convexities on opposite faces, just like the jigsaw curve does
on opposite sides. The tiling pattern ensures the boundary
will be rough.

The base motif lattice is a 666 lattice with all six faces pos-
sessing either convexities or concavities (Fig S5C, second row).
The three convex faces meet at a single vertex (the central
vertex) and have their center four points replicated one unit
outward, and the opposite faces, which are concave, meet at

the opposite vertex (the anti-central vertex) and have their
center four points deleted.

As before, because this shape is not fully rotationally sym-
metric, we require multiple base motifs. Specifically, there are
twenty four base motif Hamiltonian paths, each of which be-
gin at one of the eight corners and end at of the corresponding
three adjacent corners. These may be specified by only three
archetypal base motifs:

• Type 1 (Fig S5C, top left): All six Hamiltonian paths which
either begin or end at the central vertex. They are sym-
metric via rotations and path reversals.

• Type 2 (Fig S5C, top middle): All six Hamiltonian paths
that begin or end at anti- central vertex. They are sym-
metric via rotations and path reversals.

• Type 3 (Fig S5C, top right): All twelve Hamiltonian paths
which are neither Type 1 nor Type 2.

Using these base motifs, a rewrite rule can be defined, as shown
in Fig S5C.

Mathematically, the dimension of the surface of the 3D Jig-
saw curve is log 44/ log 6 ≈ 2.1120. We computed the con-
tact probability for the third iteration of the 3D Jigsaw curve
possessing 10,077,696 monomers and confirmed the γ value
predicted by our theory (Fig S3). As expected, the contact
probability scaling is robust in the presence of fractal bound-
aries in three-dimensional space.

In the following section, reciprocal tesselations are applied
to construct a family of curves in two dimensions with arbi-
trarily rough surfaces. For these constructions, we are able
to use a single base-motif by choosing the tesselations to be
rotationally symmetric.

iii. Inside-Out Hilbert curves
The Hilbert Curve (S51) is the limit in the plane of a se-

quence of self-avoiding approximation paths Hn (Fig S6, Row
A) as n → ∞. For n > 0 each path Hn is the composi-
tion H1 ◦ Hn−1, where H1 = H is called the curve’s motif.
The motif specifies where to place suitably oriented and con-
nected copies of the previous approximation path to build the
next approximation. When the unit square S is subdivided
into a 2n × 2n array of subsquares, path Hn passes through
every subsquare (of side 1/2n) in S. In the limit, the self-
similar, space-filling Hilbert Curve Hn→∞ has infinite length,
is continuous, and reaches every point inside a two-dimensional
unit square. The curve is fractal, but its filled area’s square
boundary—with dimension D = 1 and length 4—is not.

Many space-filling curves in the plane have boundaries with
fractal dimension D > 1; for example the Dragon Curve has
a boundary dimension D = 1.5236+. Can we construct a pla-
nar space-filling curve whose boundary’s fractal dimension is
arbitrarily close to 2? The answer is yes.

To construct motifs Mn for a sequence Cn of self-similar
space-filling curves, each having a boundary with fractal di-
mension Dn > Dn−1 where Dn→∞ = 2, we can turn the
Hilbert Curve construction upon itself, as shown in Fig S6:

I. [Row A]. Choose an n ≥ 0 and consider the Hilbert Curve
approximation path Hn (e.g., for n = 2 consider the central
column of Fig S6, starting at the top, where H2 is circled).

II. [Row B]. Subdivide the unit square S into (8 · 2n)× (8 · 2n)
subsquares. Call the lower left subsquare the start and the
lower right subsquare the end (marked with dots). Along
each of the four sides of subdivided S, use two copies of suit-
ably scaled path Hn from Row A as a boundary “mold” by
which 4 × 4 groups of subsquares are rearranged so as to
extrude one half-side outward, and the other half-side in-
ward (circled along the top for n = 2). The resulting shape,

22 www.pnas.org/cgi/doi/10.1073/pnas.1518552112 Sanborn et al.
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called a prototile, has rotational (p4) wallpaper symmetry.
The subsquare count necessarily remains the same, so each
prototile, regardless of n, also has unit area.

III. [Rows C–F]. Construct a Hamiltonian path that visits all
64× 22n subsquares in the prototile from start to end, us-
ing the following algorithm:

• [Row C] Beginning at start, follow the left-hand rule
(shown in purple) along the inside of the prototile’s
boundary until the path hits the subsquare two sub-
squares above end.

• [Row D] Make a U-turn, then follow the right-hand rule
back through unvisited subsquares until the path returns
(as it must) to the subsquare directly to the right of
start. Just under 3/4 of all the prototile’s subsquares
have now been visited.

• [Row E] Treat 2× 2 groups of the remaining subsquares
as super-subsquares (in green). Beginning to the right of
start, construct a partial path P (in red) visiting these
super-subsquares by following the right-hand rule un-
til the path becomes adjacent to the central hub (four
super-subsquares) of the prototile. Then change to the
left-hand rule to include the hub, then change back to
the right-hand rule upon leaving the hub. Continue until
path P ends at the center of the super-subsquare whose
lower right subsquare is end.

• [Row F] Construct P ◦H. In other words, “Hilbertize”
partial path P by placing an H motif into each super-
subsquare, suitably oriented to permit the sequence of
Hs to be connected to form the final portion of the com-
plete path from start to end.

The final constructed path is a self-avoiding motif M1
n for a

space-filling curve whose approximation paths are also self-
avoiding. M2

n is recursively composed of 64 · 22n copies of M1
n

scaled by 1/(8 · 2n), suitably oriented and connected accord-
ing to the sequence of subsquares that M1

n specifies. Hence
the limiting curve Cn (= M∞n ) has a boundary with fractal
dimension parameterized by n, as determined by the usual
(edge substitution) Hausdorff formula

Dn =
logLn

log (1/rn)
,

where Ln is the extended-inward-and-outward edge-length of
one side of S, measured in subsquare widths, and rn is the
similarity ratio (scaling factor) used to determine subsquare
size. So we have

Dn =
log (8 · 22n)

log (8 · 2n)
=

3 + 2n

3 + n
→ 2 , as n→∞ .

The increasing boundary dimensions of the first few of these
meta-Hilbert curves are:

D0 =
3

3
= 1

D1 =
5

4
= 1.25

D2 =
7

5
= 1.4

D3 =
9

6
= 1.5

D4 =
11

7
= 1.5714

D5 =
13

8
= 1.625

. . .

Notice that boundary dimension D4 slightly exceeds that of
the Dragon Curve.

The area An of each space-filling curve Cn plainly (by sym-
metry) equals 1. But as n increases, this area, while remaining
connected, becomes increasingly rarified as it is distributed in
fractal tendrils throughout either side of a set of infinitely
“fractalized” Hilbert approximation paths. In the limit, as
n → ∞, all tendril widths—and gaps between them—go to
0 so that the interior of C∞ in some sense vanishes just as
its boundary becomes space-filling, creating a new rotation-
ally symmetric tiling region whose area is now not 1, but 2.
The fractal fuzz that makes up the high-dimensional boundary
collapses, leaving just a collection of standard Hilbert Curves,
piecewise connected end-to-end, all with their usual linear
boundaries. The first six cover the upper 3/4 of the limit
set C∞. The second six travel backwards, covering the exact
same areas as the first six, but in opposite order and direction.
(Like all space-filling curves, each Hilbert Curve is surjective,
so here we have a sort of doubly surjective covering.) The final
two Hilbert Curves cover the remaining 1/4 of the area along
the bottom (Row E of Fig S6). A moving point that maps
the unit interval to C∞ covers these last two Hilbert Curves
at half the instantaneous velocity it would cover the previous
twelve Hilbert Curves. Hence C∞ unexpectedly comprises just
fourteen half-size Hilbert Curves.

The meta-motif construction technique described here works
with any square-filling, generalized Hilbert Curve whose mo-
tif is a so-called Greek key tour (see Sloane’s integer sequence
A000532).

Because each Cn is a planar tiling region exhibiting p4 sym-
metry, and because each can be piecewise-connected in exactly
the same places in a square array that self-similar sub-Hilbert
Curves in a Hilbert Curve would be connected, one can cre-
ate generally square, space-filled tiling regions having fractal
boundaries whose dimension can be tuned—in theory, if not
in practice—arbitrarily close to 2. (The number of prototile
subsquares just a motif path must visit for D297 = 1.99 is
enormous: 64× 22·297 = 2600.)

When generalized to three dimensions, a composite approx-
imation path of this type might model a densely packed poly-
mer bundle that exhibits a fuzzy external boundary at the
same time as its interior evinces multiple self-similar regimes at
different scales. However, no explicit three-dimensional analog
currently exists.
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Fig. S1. Additional flexibility measurements
(A) Above: cyclization probability measured from a native Hi-C library in which no cross-linking was performed
(8) was also consistent with cyclization measurements shown in Fig 1B. Below : distribution of restriction fragment
lengths when the human genome is cut with DpnII (restriction site: GATC), MboI (GATC), NcoI (CCATGG),
or HindIII (AAGCTT). (B) Flexibility measurements are consistent across the five nuclear compartments A1/A2,
corresponding to active chromatin, and B1/B2/B3 corresponding to repressed chromatin (8). Relative cyclization
probability within each compartment was plotted for Hi-C experiments using HindIII (top) and MboI (bottom)
restriction enzymes.
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Fig. S2. Contact probability of in situ Hi-C maps.
(A) Contact probability of the primary Hi-C map (GM12878). Contact probability aggregated over intra-domain
contacts (blue) exhibits a power law with γ = 0.76 between 10kb and 1Mb. Contact probability is aggregated over
all contacts genome wide (red) has a scaling with γ = 1.27 between 300kb and 3Mb. (B) Power law exponents
between 300kb and 3Mb for contact probability measured at 567 5Mb regions tiling the genome. Regions containing
many domains exhibit steeper contact probability decay. (C) Histogram of domain contact probability scalings
in GM12878 sorted by nuclear subcompartment. (D) Histogram of γ values observed inside 1057 high-confidence
domains larger than 200kb throughout the genome. Average value is −0.75, standard deviation is 0.05. The value of
γ does not depend on domain size. (E) Contact probability of a 50kb window through the center of three different
domains. A power law with γ ∼ 0.75 extends to the domain boundary, independent of domain size. Contacts often
drop sharply at the domain boundary. (F) Measurements of Flippase recombination rates also exhibit a scaling
around -0.75. Data is from (18), Figure 7C. Note that (S42) comments in passing about the presence of a power law
scaling in this data, but does not provide further details. (G) Local contact probability scalings, measured on 50kb
windows in three distance ranges (10-100kb, 10-350kb, 10-1000kb), are strongly correlated between replicates. (H)
Left-ward and right-ward contact probability scalings in adjacent, non-overlapping windows at the center of domains
are uncorrelated.
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Fig. S3. Contact probability for seventeen self-similar curves, comparing measured γ to values predicted by
our theory.
Contact probability plots. Each curve was iterated highly, often containing millions of segments. Left to right, top
to bottom: 2D Peano curve, 2D Hilbert curve, 2D Jigsaw curve; 3D Peano curve, 3D Hilbert curve, 3D Jigsaw curve;
Dragon curve, Gosper curve, Quartet curve; Inside-Out Hilbert #2, Inside-Out Hilbert #3, Inside-Out Hilbert #4;
Koch curve, Sierpinski Arrowhead curve, Sierpinski triangle curve; 3D Gordian Knot, Levy Dragon.

Sanborn et al. PNAS Oct 2015 27



i
i

“”PhysHIC2015 supplemental v10-0”” — 2015/10/19 — 22:17 — page 28 — #28 i
i

i
i

i
i

A
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Fig. S4. Construction of the Hilbert curve using an iterated function system.
(A) Subdivide the unit interval I = [0, 1] into four equal parts. The interval σi(I) is mapped to the square Φi(A)
under the Hilbert curve. In general, by choosing different {σi} and {Φi}, many different self-similar curves can be
defined. (B) The homeomorphism fα,β maps the Cantor set with ratio α to the Cantor set with ratio β, though the
two sets have different dimension. For this reason, the condition that a self-similar curve is balanced is necessary for
the uniform dimension scaling result to hold. (C) Contact map of the Hilbert curve. In the notation of the proof of
Lemma 3.5: Jn−1

n is highlighted in yellow, the sets P1, ..., P4 are outlined by the dotted red squares, and the set Q1

is highlighted in green.
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Fig. S5. Motif-based constructions of space-filling curves through rep-tiling.
(A) Construction of the Hilbert curve. Top: The square is divided into four sub-tiles equal to the whole, and a
Hamiltonian path is chosen through them. Bottom: one suitably-oriented copy of the base motif is drawn in each
sub-tile and the end of one motif is connected to the beginning of the next. This defines a rewrite rule which can be
iteratively applied to construct arbitrarily long paths. (B) Top: A simple reciprocal tessellation in which subsquares
are moved from one side to the other, creating interlocking tiles. Middle: motifs for the 2D Jigsaw curve. Two motifs
are required to compensate for the lost symmetry in the tile; by combining the two motifs, it is possible to iterate
indefinitely. Bottom: second iteration; two different curves result depending on which motif is chosen initially. The
start of each path is indicated by a green dot and the end by a red dot. (C) A 3D space-filling curve with three
indentations, the 3D Jigsaw curve. This is the first example of a 3D space-filling curve with rough boundary – the
surface dimension is 2.112. Top: three archetypal base-motifs. Middle: the first and second iterations drawn in
a sphere-filling representation. Bottom: the second iteration, illustrating the rewrite rule. (D) A 3D space-filling
curve, dubbed the “Gordian Knot”, whose base-motif (shown above in three representations) contains a knot when
the endpoints are joined. Higher iterations of the curve (second iteration shown below) contain arbitrarily many
trefoil knots.
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n = 0 1 2 3 4

A
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Fig. S6. Construction of the Inside-Out Hilbert Curve.
Each space-filling curve constructed this way has unit area, but the dimension of the resulting tile’s border can be
made arbitrarily close to 2.0, depending on which approximation path to the Hilbert Curve is used to build the
prototile. (Row A) Pick a value of n and take the nth Hilbert Curve path. (Row B) Subdivide a unit square and
mark the lower left and lower right subsquares as start and end points respectively. Along each side of the square,
use two copies of the chosen Hilbert path to mold the square so that one half-side extrudes outwards and the other
half-side is carved inwards. The resulting shape, called a prototile, has rotational wallpaper symmetry and unit
area. (Rows C - F) Construct a Hamiltonian path that visits all subsquares in the prototile in four steps. The
Inside-Out Hilbert Curve of order n can then be constructed iteratively using this path as the base motif. (Row
C) Beginning at the start square, follow the left-hand rule along the inside of the prototile?s boundary until the
path hits the subsquare two above the end square. (Row D) Make a U-turn, then follow the right-hand rule back
through unvisited subsquares until the path returns to the subsquare directly to the right of the start square. (Row
E) Treat 2×2 groups of the remaining subsquares as super-subsquares and draw a partial path through them. (Row
F) Place a Hilbert base motif into each super-subsquare, suitably oriented, to complete the path. Path starts and
ends at the red arrows.
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Fig. S7. The Inside-Out Hilbert Curve, second order, second iteration.
The self-avoiding, space-filling path containing 1,048,575 segments that outlines the second-order Inside-Out Hilbert
Curve. Second iteration of the motif for n = 2 in Figure SS6. Path starts and ends at the red arrows. Zoom in to
see additional detail.
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Fig. S8.
Properties of the tension glob-
ule. (A) Histogram of contact
probability exponents of 450 indi-
vidual tension globules of length
10Mb (shown in Fig 4C) measured
between distances of 15kb and 1Mb.
(B) Contact map for the tension
globule, aggregated over 450 sim-
ulations. (C) Average radius of
gyration as a function of polymer
length scales with exponent around
1/3, indicating a dense spherical
structure. Error bars show stan-
dard deviation. (D) Tension glob-
ules have a linear axis at large
scales. For tension globules (R =
2000) and the fractal globules (R =
0.0002) of length 10Mb, angles be-
tween the centroids of three con-
secutive regions of contour length
L are plotted as a function of L,
for L < N/3. At large distances,
obtuse angles predominate in the
tension globule. Angle measure-
ments are averaged over each of the
N/L−2 positions in the globule and
over 100 simulation replicates. (E)
A simulated 10Mb tension glob-
ule is shown, and 1Mb sub-regions
are highlighted in lateral and axial
views. Sub-regions tend to form flat
slices, stacked along the linear axis.
(F) The distribution of the deter-
minant of the Alexander polyno-
mial, a knot invariant which char-
acterizes the degree of complexity
of the knot, computed for 100 ten-
sion globules (blue) and 100 equi-
librium globules (green). Globules
have 4000 monomers each and end-
points are joined to create closed
contours. Small values indicate
lower complexity. (G) Root mean
square end-to-end distance for the
tension globule, as a function of
genomic distance, exhibits scalings
with exponent ≈ 0.56 between 2kb
and 20kb and 0.13 between 100kb
and 1Mb.
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Fig. S9. Tension globule contact probability is robust to changes in simulation parameters.
Contact probability plots for tension globules simulated with Lennard-Jones forces and varying parameter values.
Dotted line in all plots shows a reference slope of −0.7. (A) Changes in damping strength, measured in time units, do
not affect contact probability. (B) Increasing temperature decreases mid-range contacts but does not substantially
affect the scaling. (C) Changes in the extendedness of the initial self-avoiding walk position do not affect contact
probability. (D) Contact probability scalings are consistent for a range of polymer lengths. (E) Increasing the
distance threshold for contacts increases the raw number of contacts counted but does not substantially affect the
scaling. (F) Early in collapse, a scaling of γ ≈ 0.7 emerges at short distances. After full collapse, the scaling extends
to larger distances and does not change significantly with increased simulation time.
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Fig. S10. Comparison of the fractal globule and tension globules with Lennard-Jones and Yukawa potentials.
(A) Collapse process and contact probability scaling for the tension globule and the fractal globule. Left: tension
globule formed with inter-monomeric attractive forces modeled by the Yukawa potential. Middle: tension globule
formed with inter-monomeric attractive forces modeled by the Lennard-Jones potential. Right: fractal globule
formed with a global crowding forces, modeled by a weak spring potential drawing all monomers towards a central
position. (B) Contact probability of the fractal-tension transition simulated using Yukawa forces. Strength of the
external force is held constant while strength of the Yukawa internal force is varied. When internal forces are weak,
collapse is fractal (red, γ ≈ 1.0); when internal forces are strong, collapse is tension-driven (blue, γ ≈ 0.6). (C)
Contact probability of tension globules with Yukawa forces. Scaling is consistent across a wide range of screening
strengths.
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Fig. S11. Loops introduced during tension globule collapse cause domains to form between the loop anchors.
(A) Two examples of tension globule loop simulations with length 3Mb and endpoints tethered 100 distance units
apart. Loops are formed as shown in Fig 4D. In each structure, the region between select pairs of loop anchors
is highlighted in color; between replicates, sub-globules form in different locations but are frequently anchored by
loops. (B) Contact probability in a 100kb window through the center of simulated 500kb (left) and 1Mb (right)
tension globule loop domains exhibit scalings of γ ≈ 0.75 extending to the domain boundary, recapitulating Hi-C
measurements. (C) Contact map for a 3Mb tension globule with tethered endpoints but no loops. Because sub-
globules form at different locations, no domains emerge (compare to Fig S8B). (D) Contact map for non-tethered
simulations with the same loops as Fig 4D. (E) Contact map for simulations in which loops were chosen with
probabilities based on CTCF ChIP-seq data as described in Section III.b.ii.
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Fig. S12. The extrusion model robustly recapitulates Hi-C contact maps.
(A) Extrusion simulations performed with lower viscosity (tdamp = 30), with lower temperature (T = 1.0), starting
from an extended polymer, or using a global potential instead of inter-monomeric forces (T = 0) are nearly identical
to the original simulation shown in Fig 5D (T = 2.0, tdamp = 10). All simulations recapitulate Hi-C data well. (B)
Contact probability in a 100kb slice through the center of 18 domains of size 980kb simulated using the extrusion
model and global crowding forces. Although global forces produce a scaling around γ ≈ 1 in the absence of other
effects, loop extrusion yields a scaling with γ ≈ 0.7. (C) A representative schematic of the loop extrusion dynamics
of simulations shown in Fig 5D, showing the association, extrusion, binding, and dissociation of extrusion complexes
over time. At time T , if an extrusion complex has bound to points A and B on the polymer, the line from (T,A)
to (T,B) is shaded gray. (D) Contact maps of three additional regions on chromosomes 3, 5, and 7 were robustly
recapitulated by the extrusion model, simulated directly from CTCF ChIP-seq signals. A ChIP-seq normalization
constant was the only free parameter. (E) Contact maps of wild-type and three genome engineering experiments
from Fig 7A. The simulations of wild-type and each engineered condition were produced before any CRISPR
experimental data was available and were based only on the wild-type contact map. These are de novo predictions
in the strictest sense. (F) Above: Loop extrusion produces unentangled domains and loops at convergently-oriented
CTCF motifs. Below: In the classic loop diffusion model, loops form when freely diffusing loop anchors encounter
each other in 3D. This behavior would cause the intervening DNA to be highly entangled and would not show any
orientation preference at the loop anchor CTCF motifs.
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Fig. S13. Intra-domain distances measured by 3D-
FISH match simulation results for both ten-
sion globules and the extrusion model.
(A) Sample 3D-FISH measurement. Genomic loci
are marked in red, blue, and green; DAPI stain
is in gray, highlighting the nucleus. Scale bar is
15m. (B, C) Distributions of 3D distances be-
tween pairs of loci obtained experimentally using
3D-FISH (black, gray) and in simulated tension
globules (B) or simulated extruded domains (C)
for four different genomic distances from 320kb to
1090kb. Agreement of simulation to experiment
(Kolmogorov-Smirnov statistic with tension glob-
ule: 0.15; K-S statistic with extrusion model: 0.16)
is as good as agreement between two experimental
measurements (K-S statistic: 0.18).
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Fig. S14. Analysis and Validation of Hi-C2.
(A,B,C) The in situ Hi-C contact map of all regions probed in this study (region 1: chr 8:133.8-134.55Mb, (A);
region 2: chr1:180.3-181.3Mb, (B); region 3: chr5:31.3-32.3Mb, (C)) in wild-type HAP1 cells (left) closely resembles
a Hi-C2 contact map for the same region (right). (D,E,F) Hi-C2 data shown for region 1 (D), region 2 (E), and
region 3 (F) using different flavors of normalization. Raw unnormalized data is shown in the top left corner and
labeled as “Raw”. All different normalization methods are detailed in section I.e.iv. The method “Raw Gap-filled,
rescaled, thresholded” was used for all Hi-C2 data shown in the main figures.
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Fig. S15. Additional CRISPR mutants.
(A) Two additional CRISPR mutants for Region 2 (chr1:180.3-181.3 Mb). First row: The contact map for the wild-
type locus, calculated using in silico simulations (left), closely matches the map observed using Hi-C2 experiments
(right). Second row: Replacement of the E/forward motif with the E/reverse motif eliminates the E-F loop. Third
row: Inversion of the E/forward motif eliminates the E-F loop. (B) An additional CRISPR mutant for Region
3 (chr5:31.3-32.3 Mb). First row: The contact map for the wild-type locus, calculated using in silico simulations
(left), closely matches the map observed using Hi-C2 experiments (right). Second row: Deletion of the H/forward
motif eliminates the H-I loop.
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Fig. S16.
Hi-C and Virtual 4C experi-
mental data reflect accuracy of
predictions based on the con-
vergent rule, including both
movement of individual loop
anchors and disruption of en-
tire loops.
(A) GM12878 ChIP-Seq data is
shown as a reference for region
1. (B) Virtual 4C plots of the
A/forward deletion CRISPR mu-
tant Hi-C2 data. For panels (B-
G), the left column is always an-
chored at chr8:133,885,000 (locus
A, 5kb resolution data shown) and
the right column is always anchored
at chr8:134,460,000 (locus C, 10kb
resolution data shown). When
A/forward is deleted, the A-B and
A-C loops disappear, but the B-
C loop is unaffected. (C) Dele-
tion of B/Reverse eliminates the A-
B loop. (D) Deletion of B/Forward
eliminates the B-C loop. (E) In-
version of B/Forward eliminates
the B-C loop. (F) Simultane-
ous deletion of B/Reverse and in-
version of B/Forward eliminates
the B-C loop. (G) Inversion of
both B/Forward and B/Reverse
does not eliminate loops. (H)
Virtual 4C and heatmap blowouts
of wild-type Hap1 Hi-C2 data an-
chored at the A locus (blue) and
at the C locus (green). The
shift in the peak intensity of the
A-B and B-C loop signals at B
mirrors the 6kb distance between
the B/reverse and B/forward mo-
tifs (ChIP-Seq). (I) Virtual 4C
and heatmap blowouts of wild-
type Hap1 Hi-C2 data (blue) and
B/forward deletion Hi-C2 data,
both anchored at the A locus. Both
of the A-B loops shown are an-
chored at the B/reverse location
and no shift in intensity of signal is
seen. (J) Virtual 4C and heatmap
blowouts of wild-type Hap1 Hi-C2

data (blue) and B/reverse deletion
+ B/forward inversion Hi-C2 data,
both anchored at the A locus. In
this case, the A-B loop in the mu-
tant case forms between A and the
inverted B/forward motif, and the
shift in loop intensity to the new
location is visible. (K) Virtual
4C and heatmap blowouts of wild-
type Hap1 Hi-C2 data (blue) and
B/reverse and B/forward double in-
version, both anchored at the A lo-
cus. In this case, the A-B loop in
the mutant case forms between A
and the inverted B/forward motif,
and the shift in loop intensity to the
new location is visible.
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Fig. S17. Contact domains can form between consecutive loop anchors that do not loop to one another.
When three consecutive loci, A, B and C, form two loops such that A loops to B and C but B and C do not loop
to each other, the extrusion model predicts that a domain will still form between B and C. This is because an
extrusion complex that lands between B and C will be excluded from the A-B region by the A-B loop; instead, it
tends to bring points within the B-C interval together, forming an “exclusion domain.” When we examined the
wild-type GM12878 Hi-C map for such loci, we found that exclusion domains were prevalent: the B-C region in
158 cases coincided with an annotated contact domain, a 6.3-fold enrichment (loci near compartment flips were
excluded). Four example exclusion domains are shown here, with the A-B and A-C loops circled and the exclusion
domain outlined.
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Fig. S18. Interactions of RAD21 and SMC3 at loop anchors are shifted ≈ 20bp towards the loop interior.
ChIP-seq signal for RAD21 (two replicates), SMC3, and CTCF interactions aggregated over all unique CTCF motifs
at upstream loop anchors, at downstream loop anchors, at both loop anchors, or all CTCF motifs. Interactions of
RAD21 and SMC3 are shifted roughly 20bp towards the loop interior.
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