Supplementary Materials:

Materials and Methods Figures S1-S6 Tables S1-S6 Movies S1-S2 References (*35-40*) Supplementary Materials for:

The structure of the β -barrel assembly machinery complex

Jeremy Bakelar¹, Susan K. Buchanan², and Nicholas Noinaj^{1*}

¹Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907.

²National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892.

*Correspondence to: nnoinaj@purdue.edu

Supplementary Materials include:

Materials and Methods Figures S1-S6 Tables S1-S6 Movies S1-S2 References (*35-40*)

Materials and Methods:

Expression of recombinant BamABCDE complex

A single plasmid (pJH114) containing all five Bam proteins (BamA, B, C, D, and E) was obtained from Harris Bernstein and used for expression and purification (*11*). The plasmid was transformed into BL21(DE3) cells (NEB), plated onto LB-carbenicillin agar plates (Teknova) and incubated overnight at 37°C. A single colony was used to inoculate a 5-mL LB-ampicillin culture and incubated overnight at 37°C. The overnight culture was then used to inoculate a 50 mL starter culture of LB-ampicillin which was allowed to grow to saturation. The cells were then centrifuged, washed three times with 1x PBS and then re-suspended in 12 mL 1x PBS. The resuspended cells (1 mL) were then added to twelve 2 L baffled flasks containing 1 L of 2xYT medium supplemented with ampicillin (50 μ g/mL). These cultures were incubated at 37°C with shaking at 180 rpm, grown to an OD₆₀₀ between 0.8-1.0, and then induced with 0.5 mM IPTG. Cultures were grown an additional 4 hours at 37°C before harvesting. Cell were either used immediately or flash frozen and stored at -20°C.

Purification and crystallization

Cells were resuspended in lysis buffer (1x PBS supplemented with DNase I (10 μ g/ml) and PMSF (500 μ M)) and lysed with three passes through an Emusiflex C-3 high pressure homogenizer (Avestin) at 18,000 psi. The cell lysate was then centrifuged at 6000 x g for 10 min at 4°C to remove cell debris, and the resulting supernatant was centrifuged at 200,000 x g for 90 min at 4°C to isolate cell membranes. The membranes were then re-suspended in solubilization buffer (1x PBS, 1% DDM, and 37 mM imidazole) using a dounce homogenizer and stirred at medium speed overnight at 4°C. The solubilized sample was then centrifuged again at 200,000 x g for 60 min at 4°C and the supernatant collected.

Solubilized BamABCDE complex was purified by affinity chromatography using a 5 mL HiTrap Nickel column (Qiagen) and an ÄKTA Pure system (GE Healthcare). The column was equilibrated with Buffer A (1x PBS, 0.03% DDM, and 37 mM imidazole) and the sample automatically loaded using the sample pump with an in-line air sensor. Protein was eluted with a linear gradient of 37-500 mM imidazole using Buffer A and Buffer B (1x PBS, 0.03% DDM, and 1 M imidazole). Fractions containing BamABCDE were pooled, concentrated to ~2 mg/mL, and passed through a 16/60 Sephacryl S-300 HR column (GE Healthcare) at a flow rate of 0.5 mL/min using 25 mM Tris-HCl, pH 7.5, 150 mM NaCl, and 0.6% C₈E4. All five Bam proteins (BamA, B, C, D, and E) eluted from the gel filtration column as a single monodisperse peak as verified by SDS-PAGE analysis. Fractions containing BamABCDE were pooled and concentrated to ~12 mg/mL.

Broad crystallization screening was performed using hanging drop method on a Mosquito LCP crystallization robot (TTP Labtech) with commercially available crystallization screens. An initial hit was improved by additive screening using the AdditiveHT screen (Hampton Research) with final crystals grown at 22°C in 100 mM Tris-HCl, pH 8.5, 200 mM MgCl₂, 10 mM MnCl₂, and 8% PEG 4000.

Data collection, structure determination, and modeling

Crystals were harvested by quick transfer directly into a cryoprotectant solution containing 20% glycerol and flash-cooled in liquid nitrogen. Diffraction data were collected to 3.4 Å resolution at the SER-CAT beamline (ID22) at the Advanced Photon Source at Argonne National Laboratory and processed using HKL2000 (35). The structure was solved by molecular replacement using Phaser (36) within PHENIX (37) using previously reported crystal structures of the Bam components. Search order was key here for success, first starting with the BamCD complex (PDB ID 3TGO) followed by the barrel domain of BamA (PDB ID 4C4V), POTRA5 and then POTRA4 of BamA (PDB ID 3Q6B). BamE (PDB ID 2KM7) and POTRA1 (PDB ID 3EFC) were then placed based on density within a difference (Fo-Fc) map. After several rounds of building and refinement, POTRA2 and 3 (PDB ID 3EFC) were then manually placed in weak density followed by rigid body refinement for all components for final placement. The structure was refined to R/Rfree values of 0.22/0.27. All model building and refinement were performed using COOT (38) and PHENIX (37), respectively. Final placement of side chains was based on evaluation of 2Fo-Fc, Fo-Fc, and feature-enhanced (FEM) density maps (39). RMSD analysis was performed within PyMOL (Schrödinger) for C-α atoms using default settings. Surprisingly, BamB was not found within our crystal structure despite it being present in our purification. The absence of BamB was confirmed by analyzing crystals and our initial sample of the complex by SDS-PAGE analysis, which also were lacking BamB presumably due to proteolysis during storage/incubation.

To see how BamB interacts with the BamACDE complex, we modeled BamB into our complex using the previous reported BamAB crystal structure (PDB ID 4PK1) to produce the modeled structure of the fully assembled BamABCDE complex. Here, we were able to place BamB in our structure by performing a superposition of the two structures along POTRA3 of BamA. Analysis of interacting interfaces was performed using the PDBePISA (40). All figures were made with PyMOL (Schrödinger) and annotated and finalized with Adobe Illustrator.

Data Collection	BamACDE			
λ (Å)	1.0			
Space group	C2			
Mol/ASU	1			
a, b, c (Å)	234.85, 109.23, 103.99			
α, β, γ (°)	90, 95.04, 90			
Resolution (Å)	50 - 3.4 (3.52 - 3.4)			
Completeness $(\%)^*$	99.6 (99.9)			
Redundancy [*]	6.3 (6.4)			
Wilson B-factor (Å ²)	133			
Rsym [*]	0.12 (1.00)			
I / σ (I)*	21.3 (1.6)			
Refinement				
Resolution (Å)	30 - 3.4			
No. reflections	36,000			
R/Rfree	0.23/0.28			
r.m.s. deviations				
Bonds (Å)	0.004			
Angles (°)	1.082			
No. Protein atoms	9409			
B-factors (Å ²)				
Protein	158			
Ramachandran Analysis [¥]				
Favored (%)	84.6			
Allowed (%)	15.0			
Outliers (%)	0.4			
PDB code	-			

[¥] Performed using Molprobity. ^{*} Indicates statistics for last resolution shell shown in parenthesis.

Table S1. Data collection and refinement statistics.

Bame	Group	Locati	ion	P-	mD	Gro		Locat	ion	Dicto	nco	۲Å٦
Danic	Group	Locati				dio	up	LUCA	.1011	Dista	lice	[~]
Hydrog					סמ חיב דד ח			11-11		-	. 70	
	0	Unstruct	tured		K //		1	Hell	x 3	2	2.78	
SER 36	N	Unstruct	tured	IY	R 80	OF	-	Heli	x 3	4	2.87	
SER 36	OG	Unstruct	tured	LY	S 81	N	2	Heli	x 3		3.36	
TYR 41	OH	Unstruct	tured	AS	P 162	OD	02	Heli	x 7	2	2.86	
TYR 41	OH	Unstruct	tured	AR	G 166	NH	12	Heli	x 7	2	2.83	
ALA 48	N	Unstruct	tured	AS	P 207	0)	Loo	o 8		3.4	
ALA 48	0	Unstruct	tured	AR	G 212	NH	1	Heli	x 9	3	3.61	
GLU 49	0	Unstruct	tured	AR	G 212	NH	11	Heli	x 9	3	3.52	
HIS 51	N	Unstruct	tured	ASI	V 241	OD	01	C-te	m.	2	2.77	
HIS 51	0	Unstruct	tured	ASI	V 241	ND)2	C-te	m.	3	3.63	
THR 61	0	Unstruct	tured	AS	P 204	N		Heli	x 8		3.8	
SER 62	OG	Unstruct	tured	AR	G 203	0)	Heli	x 8	3	3.06	
TYR 65	OH	Unstruct	tured	AR	G 141	NH	11	Heli	x 6	3	3.51	
ALA 66	0	Unstruct	Unstructured		G 152	NH	NH1 H		x 6	3	3.57	
THR 70	OG1	Unstruct	tured	TH	R 164	00	61 He		х 7	2	2.96	
GLY 74	0	Unstruct	tured	TH	R 161	00	61 Hel		х 7	3	3.71	
GLY 77	N	Unstruct	tured	AS	P 162	OD	02 Hel		x 7	2	2.91	
ILE 82	0	Unstruct	tured	TYF	R 107	Oł	H	Heli	x 5	2	2.99	
PRO 85	0	Unstruct	tured	GL	N 70	NE	NE2		х З	3	3.23	
LEU 151	N	N-dom	N-domain		N 44	OE	1	Heli	x 1	3	3.37	
ALA 192	N	N-dom	nain	GLN	V 158	OE	1	Loo	o 6	3	3.39	
Additior	hal interfa	ce residues	s (Bam	C)	A	dditior	nal ir	nterfac	e re	sidues	s (Bar	nD)
TYR 31	GLN 34	VAL 35	GLY	37	G	LN 40	GL	N 41	LE	U 43	AS	P 45
ASP 38	ALA 40	LEU 42	ALA	44	G	LY 46	AS	N 47	TR	P 48	GL	N 69
ALA 45	PRO 46	LEU 47	LEU	50		U 73	AS	P 74	AS	N 104	TYF	₹110
ALA 52	PRO 53	ALA 54	MET 56		M	T 111	LEI	J 114	ME	T 117	ALA	118
ILE 57	LEU 58	PRO 59	VAL	60	AS	P 121	GL	Y 126	PH	E 144	SEF	₹148
GLY 63	ASP 64	ILE 67	PRO 68		VA	L 151	PR	O 155	TY	R 159	THE	₹ 160
GLY 72	SER 73	ALA 75	VAL	76	LY	S 165	LEU	J 167	VA	L 168	PH	E 169
LEU 80	ASP 81	ARG 83	PRO	84	LY	S 171	AS	P 172	LEU	J 174	GLU	J 199
ALA 86	GLN 87	ARG 150	ASP	152	LE	U 202	TY	R 205	PR	O 206	THE	208

Table S2. Summary of interactions between BamC and BamD. This is a summary of all interactionsbetween BamC and BamD as analyzed by PDBePISA.

GLN 209

LYS 236

THR 211

ILE 237

LEU 215

ALA 240

LYS 233

ASN 244

GLU 200

GLN 195

ALA 191

ASP 190

BamD	Group	Location	BamE	Group	Location	Distance [Å]				
	Hydrogen bonds									
TRP 191	Ν	Helix 8	GLN 34	OE1	β1	3.21				
VAL 192	Ν	Helix 8	GLN 34	OE1	β1	2.75				
ALA 193	Ν	Helix 8	GLN 34	OE1	β1	3.64				
ASN 196	ND2	Helix 8	LEU 63	0	Loop 3	3.09				
GLN 224	0	Helix 9	ARG 78	NH1	β2	3.64				
GLN 224	0	Helix 9	ARG 78	NH2	β2	3.76				
MET 225	0	Helix 9	GLN 88	NE2	β3	2.37				
GLN 226	0	Helix 9	LYS 107	NZ	β4	2.48				
GLN 226	OE1	Helix 9	SER 111	Ν	C-term.	3.64				
GLN 230	NE2	Helix 10	ASP 66	OD1	Loop 3	2.67				
GLN 230	NE2	Helix 10	PRO 67	0	Loop 3	3.22				
			Salt bridg	ges						
LYS 233	NZ	Helix 10	ASP 66	OD1	Loop 3	3.59				

Additio	nal interfac	e residues	(BamD)	Additional interface residues (BamE)			
ARG 188	GLY 189	ALA 190	VAL 195	ARG 29	PRO 30	ILE 32	GLY 35
GLU 199	LEU 202	MET 218	TYR 222	MET 64	SER 65	PHE 68	THR 70
TYR 222	MET 227	ALA 229	VAL 234	THR 72	PHE 74	TYR 75	VAL 76
ILE 237				GLN 80	THR 90	LEU 110	

Table S3. Summary of interactions between BamD and BamE. This is a summary of all interactionsbetween BamD and BamE as analyzed by PDBePISA.

interface residues (BamC)							
GLY 55	MET 56	ILE 57	LEU 58				
PRO 59							

interface residues (BamE)							
PRO 67	PHE 68	GLY 69					

 Table S4. Summary of interactions between BamC and BamE. This is a summary of all interactions between BamC and BamE as analyzed by PDBePISA.

Ban	nA	Grou	р	Locati	on	Bam	D	Group	Locatio	n Distanc	e [Å]
					H	lydroge	en	bonds			
lle 3	352	0		POTR	A 5	ARG 1	.97	NH2	Helix 8	3.3	2
GLY	356	Ν		POTR	A 5	ASP 1	36	OD2	Loop 5	2.8	3
ASP	357	0		POTR	۹5	ASP 1	36	N	Loop 5	2.9	3
ASP	358	0		POTR	۹5	ARG 1	.32	NH1	Loop 5	2.9	4
THR	359	0		POTR	۹5	GLN 1	25	NE2	Loop 5	3.1	L
THR	359	0		POTR	A 5	ARG 1	.35	NH1	Loop 5	2.3	1
ASP	362	OD2	2	POTR	۹5	TYR 1	77	OH	Helix 7	2.8	4
ARG	366	NH1	L	POTR	A 5	TYR 1	85	OH	Helix 7	3.3	5
GLU	373	Ν		POTR	A 5	TYR 1	85	OH	Helix 7	3.6	8
						Salt b	ric	lges			
ASP	358	OD:	L	POTR	A 5	HIS 1	39	NE2	Loop 5	3.4	7
ASP	358	OD2	2	POTR	A 5	HIS 1	39	NE2	Loop 5	3.5	5
GLU	373	OE1	L	POTR	A 5	ARG 1	.97	NE	Helix 8	3 2.9	7
GLU	373	OE1	L	POTR	A 5	ARG 1	.97	NH2	Helix 8	3.8	3
GLU	373	OE2	2	POTR	۹5	ARG 1	.97	NE	Helix 8	3.2	8
GLU	373	OE2	2	POTR	۹5	5 ARG 1		NH2	Helix 8	2.5	5
ASP	481	OD1	L	P. Loo	p 2	ARG 18		8 NH2	Helix 7	2.9	1
Additio	nal i	nterfac	e re	sidues	(Ba	mA)		Additior	al interfa	ce residue	s (Bam
ALA 95	S	ER 96	AF	G 120	VA	L 121		PRO 63	PHE 64	ARG 94	ARG
GLY 122	GL	.U 123	AF	RG 160	AR	ARG 350		LEU 98	THR 101	LEU 119	ASP
YS 351	AF	G 353	P۲	IE 354	GL	LU 355		SER 122	LEU 124	PHE 128	VAL
ER 360	LY	′S 361	AL	A 363	AR	G 367		ASP 131	ASP 134	PRO 137	GLN
/IET 369	AF	G 370	GL	N 371	M	T 372		ARG 141	GLU 178	SER 180	VAL
GLY 374	GL	N 446	TR	P 449	LE	U 450		TYR 184	GLU 187	ALA 190	VAL
GLY 451	TH	IR 452	TY	′R 477	VA	L 480		ALA 193	ASN 196	GLY 200	ARG

Table S5. Summary of interactions between BamA and BamD. This is a summary of all interactionsbetween BamA and BamD as analyzed by PDBePISA.

BamA	Group	Location	BamE	Group	Location	Distanc	e [Å]
		F	lydrogen	bonds			
TYR 348	OH	POTRA 5	TYR 37	Ν	Loop 1	3.44	4
TYR 348	OH	POTRA 5	TYR 37	0	Loop 1	3.66	5
TYR 348	OH	POTRA 5	LEU 59	0	α2	3.82	2
GLU 373	0	POTRA 5	GLN 34	NE2	β1	2.9	
GLY 374	0	POTRA 5	GLY 35	Ν	β1	3.26	5
SER 408	OG	POTRA 5	THR 61	OG1	Loop 3	3.34	4
ASP 410	OD2	POTRA 5	THR 61	N	Loop 3	2.44	4
ASP 410	OD2	POTRA 5	THR 61	OG1	Loop 3	2.97	7
GLN 411	NE2	POTRA 5	THR 61	OG1	Loop 3	3.22	2
PRO 518	0	P. Loop 3	TYR 28	N	N-term.	3.46	5
GLU 521	OE2	P. Loop 3	TYR 28	OH	N-term.	3.48	8
dditional i	nterface re	sidues (Ba	mA)	Additiona	l interface	residues	(Bam
N 345 AR	G 346 V A	AL 349 AR	G 350 🛛	VAL 27	ARG 29	PRO 30	ASP

ASN 345	ARG 346	VAL 349	ARG 350
ARG 370	MET 372	ALA 375	TRP 376
PRO 409	ASP 481	VAL 483	PHE 517
ILE 519	ASN 520		

Additional interface residues (BamE)									
VAL 27	ARG 29	PRO 30	ASP 31						
ILE 32	ASN 33	ASN 36	THR 39						
ASP 42	ALA 56	TYR 57	GLY 60						
PRO 62	LEU 63	PHE 77	ARG 78						
GLN 79	HIS 83								

Table S6. Summary of interactions between BamA and BamE. This is a summary of all interactionsbetween BamA and BamE as analyzed by PDBePISA.

Figure S1. Purification of the BAM complex. A. Gel filtration profile of the BAM complex using a 16/60 Sephacryl S-300 HR column (GE Healthcare). **B.** SDS-PAGE analysis of peak fractions obtained from gel filtration in panel A. Fractions were pooled and concentrated for crystallization. **C.** SDS-PAGE analysis of pooled fractions from gel filtration after incubation at 4° C for ~10 days. BamB is no longer observed and presumed to be degraded.

Figure S2. Representative electron density for each Bam component. A. Density (gray mesh) for BamA (green) along strands β4-β7 of the β-barrel domain. B. Density along residues 49-60 of BamC (blue). C. Density along residues 211-244 of BamD (gold). D. Density along residues 29-35 and 77-89 of BamE (purple). In all panels, a feature-enhanced map (FEM) is shown at 1.0 σ.

Figure S3. Interaction of periplasmic loop 1 of BamA with TPR3 loop in BamD. Zoomed view of the interaction between the TPR3 loop of BamD (gold) with periplasmic loop 1 of BamA (green). This interaction is largely a hydrophobic interaction mediated by L124, F128, and V130 of BamD and W449 and L450 of BamA.

Figure S4. Comparison of all BamA structures and POTRA domain conformations. Shown here is a structural comparison of all known BamA structures containing the membrane domain from a membrane view (top row) and view from the periplasm (bottom row). Three structures are from *E. coli* with barrel only (gold, PDB ID 4N75), barrel with POTRA5 only (cyan, PDB ID 4C4V), and full length reported here (green). Two other structures of BamA have been previously reported from *H. ducreyi* containing barrel with POTRA4 and 5 only (pink, PDB ID 4K3C) and a full length structure from *N. gonorrhoeae* (blue, PDB ID 4K3B). Compared to *N. gonorrhoeae*, the POTRA domains of *E. coli* BamA undergo ~90 clockwise twist (bottom of Merge panel).

Figure S5. Periplasmic loops of BamA. A. Seven periplasmic loops shown here are thought to play a role in the function of BamA. They were fully resolved in our crystal structure with many of them making contacts either with POTRA 5 or with other Bam components (Figure S3). B. Highlighted here is the interaction of periplasmic loop 4 with POTRA5 where two interactions are key. The first is a salt bridge between residues E396 and R583 and the second pi stacking between R421 and Y585.

Figure S6. Conformation of loop 6 and the VRGF motif in BamA. A. Shown here is the entire loop 6 (residues 641-709) from an alignment of our structure (green) with PDB ID 4C4V (cyan) and PDB ID 4N75 (gold). The conformation of the full length of the loop is unchanged with the except that in our structure, the top of the loop is fully resolved, including the disulfide bond formed between C690/C700 (gold sphere), similar to that which as observed in PDB ID 4N75. **B**. Zoomed view showing that the conserved VRGF motif remains unchanged despite significant conformational changes to the barrel domain upon binding BamCDE.

Movies S1. Overview of the BAM complex structure. In this study, we report the structure of the fully assembled BAM complex, formed from our crystal structure of BamACDE and the previously reported crystal structure of BamAB. In this movie, we show the overall conformation of the BAM complex and highlight interactions between the Bam components.

Movie S2. Morph of the β -barrel domain of BamA. In our structure of the BamACDE complex, we observe an unprecedented shift of the β -barrel domain of BamA. In this movie, we depict the morph between these observed conformational changes compared to previously reported crystal structures.