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1 Algorithm for haplotype partioning

Algorithm 1 Fast haplotype partitioning
c=0 . Unique cluster identifier
d=0 . Depth of tree
Z = {1 . . . N} . Set containing haplotype indices
partition(Z, c, d)

function partition(Z, c, d)
B = kmeans({Hi : i ∈ Z}) . Partition haplotypes into two clusters
Z1 = {Zi : Bi = 1} . Indices of cluster 1/2 stored in respective Zs
Z2 = {Zi : Bi = 2}
if |Z1| < M then . Terminate if cluster is small enough, otherwise recurse

terminate(Z1, Z2, c)
else

partition(Z1, c, d)
end if
if |Z2| < M then

terminate(Z2, Z1, c+ 2d)
else

partition(Z2, c+ 2d, d)
end if
d+ +

end function

function terminate(Z1, Z2, c)
Calculate centroid H̄ where H̄l = 1

|Z1|
∑

z∈Z1 Hz,l

Q = M−|Z1|
|Z2| quantile of {euc(Hzi

, H̄) : zi ∈ Z2}
D[c] = Z1 ∪ {zi ∈ Z2 : euc(Hzi

, H̄) ≤ Q} . Adds secondary cluster to dictionary
for zi ∈ Z1 do

C[zi] = c . Assigns primary cluster
end for

end function
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2 A Hidden Markov Model for Sibling Pairs

Consider a pair of siblings with genotypes Ga
` and Gb

` ∈ {0, 1, 2} at genomic positions ` ∈ {1, . . . , L}
across a chromosome with L markers. The value of Ga

` indicates the number of minor alleles at the
`th site for sibling a. We denote a pair of maternal alleles at position ` by

(
m1

` ,m
2
`

)
and a pair of

paternal alleles by
(
f1

` , f
2
`

)
. The genotype, Ga

` , of each sibling arises from the combination of one
maternal allele and one paternal allele. If sibling a inherits m1

` and f2
` and sibling b inherits m1

`

and f1
` , we denote this combination as {

(
m1

` , f
2
`

)a
,
(
m1

` , f
1
`

)b}. For two siblings there are 16 such
combinations which we assume are equally probable.

The number of identical alleles shared by the siblings determines the IBD status at the `th site,
X` ∈ {0, 1, 2}. For example, the pair {

(
m1

` , f
2
`

)a
,
(
m1

` , f
1
`

)b} denotes the sharing of one identical
allele, m1

` at site `, so X` = 1. Typically, the IBD status is unobserved. However we can infer it
from the observed IBS status.

The IBS status at the `th site, Y` ∈ {0, 1, 2}, is determined by the number of pairs of alle-
les of the same type, major or minor (denoted by 0 and 1 respectively) shared by the two in-
dividuals. While Y` depends on X`, they are not the same. For example, the combination
{
(
m1

` = 0, f2
` = 1

)a
,
(
m1

` = 0, f1
` = 1

)b} has X` = 1, but Y` = 2 (a and b each have one minor
allele and one major allele), while {

(
m1

` = 0, f2
` = 0

)a
,
(
m2

` = 0, f1
` = 1

)b} has X` = 0, but Y` = 1.

Our HMM is specified by an emission distribution, P (Y`|X`), which captures the dependence of
IBS status on IBD status, a prior distribution, P (X`), over IBD status and a set of transition
probabilities, P (X`|X`−1).

To compute the emission probabilities, P (Y` = y|X` = x), we enumerate the mutually exclusive
combinations of alleles consistent with Y` = y conditioned on X` = x and sum their respective
probabilities. For example, if Y` = 0 given X` = 0 there are 8 possible combinations of alleles:

{(
m1

` = 0, f1
` = 0

)a
,
(
m2

` = 1, f2
` = 1

)b
}
,
{(
m1

` = 1, f1
` = 1

)a
,
(
m2

` = 0, f2
` = 0

)b
}

{(
m1

` = 0, f2
` = 0

)a
,
(
m2

` = 1, f1
` = 1

)b
}
,
{(
m1

` = 1, f2
` = 1

)a
,
(
m2

` = 0, f1
` = 0

)b
}

{(
m2

` = 0, f1
` = 0

)a
,
(
m1

` = 1, f2
` = 1

)b
}
,
{(
m2

` = 1, f1
` = 1

)a
,
(
m1

` = 0, f2
` = 0

)b
}

{(
m2

` = 0, f2
` = 0

)a
,
(
m1

` = 1, f1
` = 1

)b
}
,
{(
m2

` = 1, f2
` = 1

)a
,
(
m1

` = 0, f1
` = 0

)b
}

To compute the probability of one of these possible combinations, we assume a uniform distribution
over the four different combinations of transmitted alleles:

P
({(

m1
` , f

1
`

)a
,
(
m2

` , f
2
`

)b
}
|X` = 0

)
= P

({(
m2

` , f
1
`

)a
,
(
m1

` , f
2
`

)b
}
|X` = 0

)
= . . .

= P
({(

m2
` , f

2
`

)a
,
(
m1

` , f
1
`

)b
}
|X` = 0

)
= 1

4 .
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We also assume independence between the probabilities of each different allele being observed as
major or minor and estimate the probability, α`, of observing a minor allele at position ` from its
empirical frequency in the full N = 49, 458 cohort. For example, if we denote the first of the eight
combinations above by C1 we would compute P (C1|X`) as:

P (C1|X`) = P
({(

m1
` , f

1
`

)a
,
(
m2

` , f
2
`

)b
}
|X` = 0

)
P ({(0, 0) , (1, 1)} |X` = 0)

= 1
4 (1− α`)2

α2
` .

By symmetry one can see that the probability of observing each of these eight, mutually exclusive
combinations is the same. By summing, we obtain:

P (Y` = 0|X` = 0) = 2 (1− α`)2
α2

`

In cases where X` 6= 0 the observed alleles are no longer all independent. For example, one
combination consistent with the case Y` = 1 conditioned on X` = 1 would be:

C2 =
{(
m1

` = 0, f1
` = 0

)a
,
(
m1

` = 0, f2
` = 1

)b
}
.

There are eight different combinations of transmitted alleles consistent with X` = 1, but, as m1
` is

transmitted to both siblings, only three of the observed alleles are now independent. Hence, the
probability of the combination C2 would be given by:

P (C2|X`) = P
({(

m1
` , f

1
`

)a
,
(
m1

` , f
2
`

)b
}
|X` = 0

)
P ({(0, 0) , (0, 1)} |X` = 0)

= 1
8 (1− α`)2

α`.

So far we have assumed no genotyping error. However, such errors can have an adverse effect
on inference by introducing genotype configurations that are incompatible with the underlying
true IBD status. Therefore, as an additional refinement, we incorporate a simple error model.
We assume a small genotyping error rate ε = 0.005, which is multiplied by the probability of an
error introducing an incompatible genotype configuration. We further assume that such genotype
errors result in a uniformly distributed random pair of genotypes. Thus, for example, instead of
P (Y` = 0|X` = 1) = 0, we define P (Y` = 0|X` = 1) = 2

9ε.

The full set of emission distributions is summarised below:
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X` = 0


P (Y` = 0|X` = 0) = 2α2

` (1− α`)2
,

P (Y` = 1|X` = 0) = 4
(
α` (1− α`)3 + α3

` (1− α`)
)
,

P (Y` = 2|X` = 0) = α4 + 4α2
` (1− α`)2 + (1− α`)4

,

X` = 1


P (Y` = 0|X` = 1) = 2

9ε,

P (Y` = 1|X` = 1) = 2
(
α` (1− α`)2 + α2

` (1− α`)
) (

1− 2
9ε
)
,

P (Y` = 2|X` = 1) = α3 + α2
` (1− α`) + α` (1− α`)2 + (1− α`)3

,

X` = 2

 P (Y` = 0|X` = 2) = 2
9ε,

P (Y` = 1|X` = 2) = 4
9ε,

P (Y` = 2|X` = 2) =
(
1− 6

9ε
)
,

To complete the specification of the HMM we define a prior distribution over the IBD status, X`

and a matrix of transition probabilities, Pij = P (X`+1 = j|X` = i). The prior distribution is given
simply by the expected proportions of IBD status between sibs:

P (Xl = x) =

 0.25 x = 0
0.50 x = 1
0.25 x = 2

The transition matrix of the Markov chain depends on the probability, ρ`, of a crossover event
occurring in either parental meiosis between two consecutive sites, ` and `+ 1:

P =

 1− ρl ρl 0
ρl/2 1− ρl ρl/2

0 ρl 1− ρl


We set ρ` = 1 − exp(−2r`) where r` is the genetic distance in Morgans between site ` and ` + 1
taken from the sex-averaged HapMap genetic map (The International HapMap Consortium, 2005).
We assume the probability of more than one crossover event occurring between consecutive markers
is negligible.

Using genotypes from chromosome 20 for each pair of putative siblings, we applied the Viterbi
algorithm (Rabiner, 1989) to estimate the most likely sequence of IBD states across the chromosome.
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3 Supplementary Tables

Method Sample Elapsed time Memory Switch error
size (hours) (GB) %

SHAPEIT2 1000 2.296 0.328 4.418
SHAPEIT3 1000 1.946 0.489 4.477
SHAPEIT3 (4 threads) 1000 0.517 0.493 4.474
HAPI-UR 1X 1000 0.376 1.827 19.215
HAPI-UR 3X 1000 1.129 1.827 14.391
SHAPEIT2 2000 4.735 0.640 3.584
SHAPEIT3 2000 4.086 0.970 3.725
SHAPEIT3 (4 threads) 2000 1.080 0.975 3.716
HAPI-UR 1X 2000 0.689 2.003 13.481
HAPI-UR 3X 2000 2.067 2.003 9.304
SHAPEIT2 5000 13.624 1.589 2.704
SHAPEIT3 5000 10.926 2.430 3.019
SHAPEIT3 (4 threads) 5000 2.935 2.438 3.019
HAPI-UR 1X 5000 1.948 3.075 6.330
HAPI-UR 3X 5000 5.844 3.075 4.800
SHAPEIT2 10000 36.768 3.169 2.114
SHAPEIT3 10000 22.691 4.851 2.544
SHAPEIT3 (4 threads) 10000 6.129 4.861 2.569
HAPI-UR 1X 10000 6.287 5.559 4.159
HAPI-UR 3X 10000 18.860 5.559 3.532
SHAPEIT2 20000 135.724 6.326 1.645
SHAPEIT3 20000 48.218 9.691 2.108
SHAPEIT3 (4 threads) 20000 12.912 9.705 2.161
HAPI-UR 1X 20000 18.272 10.034 3.156
HAPI-UR 3X 20000 54.817 10.034 2.767
SHAPEIT3 49074 121.162 23.725 1.604
SHAPEIT3 (4 threads) 49074 31.887 23.755 1.609
HAPI-UR 1X 49074 83.254 22.028 2.241
HAPI-UR 3X 49074 249.763 22.028 2.059

Supplementary Table 1: Elapsed time, memory usage and switch-error rate for the UK-BiLEVE
data. These results were for chromosome 20 (15,860 SNPs) with switch error calculated on the
384 individuals who had a sibling available for IBD phasing. Each analysis was performed on
independent Amazon EC2 m2.2xlarge instances. Time and memory usage were measured using
the GNU time command, time is the elapsed real (wall clock) time and memory is the maximum
resident set size of the process during its lifetime.

6



2Mb 5Mb 10Mb
1,072 58.4% 29.7% 16.6%
10,072 80.2% 53.1% 31.8%
152,112 95.3% 85.8% 68.5%

Supplementary Table 2: The amount of sequence contained in a correctly inferred segments.
The table summarizes results of SHAPEIT3 of 3 different runs on the UK Biobank data of different
sizes. The estimated haplotypes of the trio children were compared to the trio-based estimates. For
each run (row) the percentage of sequence contained in correctly inferred segments of a minimum
size (columns) is shown.

N Indian Caribbean
1,072 10.9% 22.3%
10,072 10.6% 13.8%
152,112 7.3% 6.5%

Supplementary Table 3: Switch error rates (percentages) in Indian and Caribbean samples.
Only one sample of each ancestry was available for switch error estimation, so interpretation of
these results should take this in account. Each row represents a dataset of a different size N .
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Threads Walltime (seconds) × speedup Efficiency %
1 3926.25 1.00 100.00
2 2042.86 1.92 96.10
4 1095.92 3.58 89.57
8 609.96 6.44 80.46

16 345.67 11.36 70.99

Supplementary Table 4: SHAPEIT3 timing results for phasing 1,000 samples on chromosome
20 with increasing numbers of threads. Computation was performed on 2×8 Intel Xeon E5-2690
processor with 256 Gb of RAM. Speedup is the ratio of the time over the time for a single-threaded
SHAPEIT3 run. Efficiency is the speedup divided by the number of threads (100% efficiency
occurring when the speedup is equal to the number of threads used).

UK-BiLEVE UK-BioBank
0.00<MAF<0.01 93240 119772
0.01≤MAF<0.05 243207 265440
0.05≤MAF<0.1 94228 98458
0.10≤MAF<0.5 264061 277122
Total 694736 760792

Supplementary Table 5: Number of SNPs present in the two analysed cohorts.
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