Science Advances

AAAS

advances.sciencemag.org/cgi/content/full/2/5/e1501632/DC1

Supplementary Materials for

Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent *Pseudomonas aeruginosa* biofilms

Perrin Baker, Preston J. Hill, Brendan D. Snarr, Noor Alnabelseya, Matthew J. Pestrak, Mark J. Lee, Laura K. Jennings, John Tam, Roman A. Melnyk, Matthew R. Parsek, Donald C. Sheppard, Daniel J. Wozniak, P. Lynne Howell

Published 20 May 2016, *Sci. Adv.* **2**, e1501632 (2016) DOI: 10.1126/sciadv.1501632

The PDF file includes:

- table S1. Strains and plasmids used in this study.
- fig. S1. Time course disruption of *P. aeruginosa* biofilms.
- fig. S2. *P. aeruginosa* biofilm disruption by glycoside hydrolases in the presence of serum.
- fig. S3. Biofilm prevention in standing culture pellicle assay.
- fig. S4. Protein stability of PelA_h and PslG_h in *P. aeruginosa* culture.
- fig. S5. The growth of *P. aeruginosa* in the presence of glycoside hydrolases.
- fig. S6. Protein stability of PelA_h and PslG_h in mammalian cell culture.
- References (76–78)

table S1. Strains and plasmids used in this study.

Strain	Description	Reference or
		Source
E. coli BL21-CodonPlus®	$F^- ompT hsdS(r_B^- m_B^-) dcm^+ Tet^r gal \lambda(DE3) endA [argU proL]$	Stratagene
(DE3)-RP	Cam ^r]	
P. aeruginosa PAO1	P. aeruginosa wild-type strain; serotype O5	(76)
PAO1 P _{BAD} psl	<i>psl-ara</i> C-P _{BAD} promoter replacement. Expression of <i>psl</i> operon	(49)
	upon induction with L-arabinose	
PAO1 P _{BAD} psl $\Delta pelF$	In-frame deletion of <i>pelF</i> in P _{BAD} <i>psl</i> background	(60)
PAO1 $\Delta wspF \Delta psl P_{BAD}pel$	<i>pel-ara</i> C-P _{BAD} promoter replacement. Expression of <i>pel</i> operon	(47)
	upon induction with L-arabinose	
PA14	P. aeruginosa wild-type strain; serotype O19	(77)
Pa 62	P. aeruginosa isolate (environmental, soil)	(78)
X13273	P. aeruginosa isolate (clinical, blood)	(78)
MSH3	P. aeruginosa isolate (environmental, water)	(78)
MSH10	P. aeruginosa isolate (environmental, water)	(78)
19660	P. aeruginosa isolate (clinical, blood)	(78)
CF127	P. aeruginosa isolate (clinical, from cystic fibrosis patient)	(78)
IMR-90	normal human female lung fibroblasts; diploid; stable	ATCC® CCL-
		186 tm

fig S1. Time course disruption of *P. aeruginosa* **biofilms.** Crystal violet staining of biofilms following the exogenous addition of glycoside hydrolases (A) PelA_h and (B) PslG_h on their respective exopolysaccharide. Each data point represents the mean from n = 3 crystal violet microtiter plate wells. Error bars indicate SEM.

fig. S2. *P. aeruginosa* biofilm disruption by glycoside hydrolases in the presence of serum. Dose-response curves to examine the dispersal of biofilm biomass by the exogenous treatment of each glycoside hydrolase and variant. Each data point represents the mean from three independent experiments of n = 3 crystal violet microtiter plate wells. EC₅₀ values were calculated using non-linear least-squares fitting to a dose-response model. Error bars indicate SEM.

fig. S3. **Biofilm prevention in standing culture pellicle assay**. Biofilm formation at the airliquid interface was examined in Pel-dependent culture following incubation with PelA_h and PslG_h. Arrows indicate the location of the air-liquid interface where biofilm formation occurs.

fig. S4. Protein stability of PelA_h and PslG_h in *P. aeruginosa* culture. Western blotting using α -PelA and α -PslG to detect the presence of exogenously applied PelA_h and PslG_h at various time points during incubating with P. aeruginosa Pel and Psl biofilm formation, respectively. Incubation of each glycoside hydrolase in the absence of *P. aeruginosa* culture (Cell -) was utilized for comparison.

fig. S5. The growth of *P. aeruginosa* in the presence of glycoside hydrolases.. Growth curve with *P. aeruginosa* PAO1 in the presence of PslG_h and PelA_h over 6 h at 37 °C.

fig. S6. Protein stability of $PelA_h$ and $PslG_h$ in mammalian cell culture. Western blotting of exogenously added $PelA_h$ and $PslG_h$ after 48 h incubation in IMR-90 cell culture in the presence and absence of 10% FBS in the media.