

Supplementary Figure 1 Epigenetic landscape of target genes in the studied cell lines (a) ENCODE data depicting the promoter and first exon of the three genes in question. Dark green bars represent the CpG island; light green (unmehtylated), yellow (partially methylated or red (hypermethylated) bars represent DNA methylation profiles; black represent the H3K4me3 peaks of HEK293 and A549; in orange the region targeted with gRNAs (b) DNA methylation levels determined by pyrosequencing of the promoter area. Bars represent the mean methylation of 7-10 CpGs (c) FLAG ChIP-qPCR enrichment at the promoter region of 4 genes compared to levels of DNA methylation in three different cell lines (d) DNA methylation levels determined by pyrosequencing of the promoter area of A2780 (all genes) and HeLA (EpCAM). Bars represent the mean methylation of 7-10 CpGs (e) Protein expression of ZF-fusions in A2780 cells. (n = 3 independent experiments; error bars \pm s.d.)

Supplementary Figure 2 Downregulation of key regulator of epigenetic memory through maintenance of DNA methylation after replication (a) Relative *EpCAM* mRNA expression, at each specific time point after Dox and downregulation of UHRF1 for 3 days (b) DNA methylation levels determined by pyrosequencing of the promoter area. Bars represent the mean methylation of 7-10 CpGs (c) Relative *UHRF1* expression after siRNA treatment in all the stable cell lines and treatments. (n = 3 independent experiments; error bars ± s.d.)

Supplementary Figure 3 Spreading of H3K4me3 750 bps upstream of targeting region (a) H3K4me3 ChIP-qPCR enrichment at the region 750 bps upstream of the PLOD2 promoter. (n = 3 independent experiments; error bars \pm s.d.)

Supplementary Figure 4 (a) Transfection efficiency and transition after subculturing for C33a cells measured as GFP using a CMV-GFP plasmid. (b) Relative expression of PRMD9 in Hela cells treated with 5aza and transfected with the dCas9-effector domains shows the loss of PRDM9 expression (c) Relative PLOD2 mRNA, after co-transfection in C33a cells of dCas9 –VP64 and a combination of gRNAs. (n = 3 independent experiments; error bars ± s.d.)

Supplementary Table 1. Primers for effector domain amplification.

Effector domain primers			
Target	Forward Primer (5'-3')	Reverse Primer (5'-3')	
PRDM9	CTGACGCGTATGGCCTTAAGAGTGGAACA	GGTTAATTAAAGAGGAGTGATTGCGTTCTA	
DOT1L	TTAACGCGTGGGGAGAAGCTGGAGCTG	CGTTAATTAATTGGTTCTTCTTGGGCTT	
UBE2A	TTAACGCGTATGTCCACCCCGGCTCGG	CGTTAATTAAACAATCACGCCAGCTTTG	
MutPRDM9	CTTTGGCCCTTATGAGGCCCGAATTACAGAAGACG	CGTCTTCTGTAATTCGGGCCTCATAAGGGCCAAAAG	
MutDOT1L	CACCTCAGGACCAAAGGCAAAATCAGCCACAAATATA	CCAACACGAGTGTTATATTTGTGGCTGATTTTGCCTTTGGTCCTGAGGTG	

Supplementary Table 2. gRNA information (in bold the regions shared between gRNA and zinc finger proteins).

Sp-dCas9			
Target Location	Protospacer Sequence (5'- 3')	Genomic Location (GRCh38/hg19 Assembly)	
EPCAM A+	CAGC GCCGGGGGCTGGGGGAG	Chr2: 47,369,152-47,369,172	
EPCAM A-	CCAGCCCCGGC GCTGCAGTT	Chr2: 47,369,147-47,369,167	
EPCAM B+	CTACTCACTCCCCCAACTCC	Chr2: 47,369,179-47,369,198	
EPCAM B-	CG GGAGTTGGGGGGAGTGAGT	Chr2: 47,369,181-47,369,200	
ICAM C+	CGGAGCTGAAGCGGCC AGCG	Chr19: 10,270,941-10,270,961	
ICAM C-	CTCGCT GGCCGCTTCAGCTC	Chr19: 10,270,944-10,270,963	
RASSF1a X+	TGTGA GGAGGGGACGAAGGA	Chr3: 50,341,033-50,341,052	
RASSF1a X-	TCCT CACACCCCACCCCGGA	Chr3: 50,341,045-50,341,064	
RASSF1a Z+	TGGGGGA GGCGCTGAAGTCG	Chr3: 50,340,881-50,340,900	
RASSF1a Z-	CCGACTTCAGCGCC TCCCCC	Chr3: 50,340,880-50,340,899	
RASSF1a Y+	AAGGAAGGGCAAGGCGGGGG	Chr3: 50,341,010-50,341,029	
PLOD2 g2	GCTGTGGAAGCTACCGGGGC	Chr3: 146,161,525-146,161,544	
PLOD2 g1	CCACTCCCAAAGCTAAGTGC	Chr3: 146,161,426-146,161,445	
PLOD2 g3	GAGCCTCCACACGTAGCCGC	Chr3: 146,161,374-146,161,393	
PLOD2 g3	TGAGCAAACAGTCCAGACGT	Chr3: 146,161,327-146,161,346	

Supplementary Table 3. Zinc finger information.

ZFP			
Target Location	Target site (5'- 3')	Genomic Location (GRCh38/hg19 Assembly)	
EPCAM A	GCCGGGGCTGGGGGAGGG	Chr2: 47,369,157-47,369,174	
EPCAM B	ACTCACTCCCCCAACTCC	Chr2: 47,369,181-47,369,198	
ICAM CD54	TCCGGAGCTGAAGCGGCC	Chr19: 10,270,940-10,270,957	
RASSF1a X	GGAGGGGACGAAGGA GGG	Chr3: 50,341,030-50,341,047	
RASSF1a Z	GGCGCTGAAGTCG GGGCC	Chr3: 50,340,876-50,340,893	
PLOD2 ZF2	GAGGCT GCTGTGGAAGCT	Chr3: 146,161,533-146,161,550	
PLOD2 ZF8	GGGGCCGTGGGCGCCTGA	Chr3: 146,161,016-146,161,033	

Supplementary Table 4. Quantitative reverse transcription PCR

qRT-PCR primers			
Target	Forward Primer (5'-3')	Reverse Primer (5'-3')	Probe
GAPDH	CCACATCGCTCAGACACCAT	GCGCCCAATACGACCAAAT	CGTTGACTCCGACCTTCACCTTCCC
RASSF1a	AAGTTCACCTGCCACTACCG	AAGGTCAGGTGTCTCCCACT	
PLOD2	GGGAGTTCATTGCACCAGTT	GAGGACGAAGAAACGC	

Supplementary Table 5. ChIP-qPCR primers

ChIP primers			
Target	Forward Primer (5'-3')	Reverse Primer (5'-3')	Probe
EPCAM ChIP	CCCAACTCCCGGGCGGTGACT	TGTCCTCCCGACGCGGACCC	
RASSF1a ChIP	TGGGGTGTGAGGAGGGGACGA	AGAGCCGCGCAATGGA	
PLOD2 ChIP region 2	GAGGCTGCTGTGGAAGCTA	GGTTTGGGAGAGGAGGAG	AGACGGGAACACCGCCCTCC
PLOD2 ChIP region 8	CACCGACGACCTCACTCA	TCGCGAGAACGCAGAGAC	CTGCGTTACGCGCCGCTC
PLOD2 ChIP region -750	ACAAAACGTGATCATAATGGAA	ATTTAGGCAGGAGATTCCAGAA	

Supplementary Table 6. Pyrosequencing primers

Pyrosequencing primers			
Target	Forward Primer (5'-3')	Reverse Primer (5'-3')	Pyrosequencing
ICAM1	GGGGAAGTTGGTAGTATTTAAAAGT	[Btn] CCTTCCCCTCCCAAACAAATACTACAATTA	GTTAGATTGTTTTAGT
EPCAM	TGGGGGAGGGGAGTTTATT	[Btn] ACCCAACTCCACAACTCT	AGGGGAGTTTATTTATTTTTTA
RASSF1a	AAGGAGGGAAGGAAGGGTAAG	gggacaccgctgatcgtttaCCCCCAACTCAATAAACTCAAACTCCCC	GAAGGAAGGGTAAGG
PLOD2	AAGTAGTGGGGGTTAAGG	[Btn] CCAAAAAAACCTTAAACTCTTTCCAATAAT	GGGTTAAGGTTTAGAGA
Universal	[Btn] gggacaccgctgatcgttta		

Supplementary Note 1. CCDS Sequences of amplified epigenetic enzymes (in-between green is amplified region, in red the nucleotides changed for site directed mutagenesis)

PRDM9

ATGAGCCCTGAAAAGTCCCAAGAGGAGAGCCCAGAAGAAGACACAGAGAGAACAGAGCGGAAGCCCATGGT CAAAGATGCCTTCAAAGACATTTCCATATACTTCACCAAGGAAGAATGGGCAGAGATGGGAGAACTGGGAGAA AACTCGCTATAGGAATGTGAAAAGGAACTATAATGCACTGATTACTATAGGTCTCAGAGCCACTCGACCAGCC TTCATGTGTCACCGAAGGCAGGCCATCAAACTCCAGGTGGATGACACAGAAGATTCTGATGAAGAATGGACC CCTAGGCAGCAAGTCAAACCTCCTTGG AGTOGAACAGCGTAAACACCAGAAGGGAATGCC CAAGGCGTCATTCAGTAATGAATCTAGTTTGAAAGAATTGTCAAGAACAGCAAATTTACTGAATGCAAGTGGC TCAGAGCAGGCTCAGAAACCAGTGTCCCCTTCTGGAGAAGCAAGTACCTCTGGACAGCACTCAAGACTAAAA GAGGTCAGCGAGCCGCAGGATGATGATTACCTCTATTGTGAGATGTGTCAGAACTTCTTCATTGACAGCTGT GCTGCCCATGGGCCCCCTACATTTGTAAAGGACAGTGCAGTGGACAAGGGGCACCCCAACCGTTCAGCCCT CAGTCTGCCCCCAGGGCTGAGAATTGGGCCATCAGGCATCCCTCAGGCTGGGCTTGGAGTATGGAATGAGG CATCTGATCTGCCGCTGGGTCTGCACTTTGGCCCCTTATGAGGGCCGAATTACAGAAGACGAAGAGGCAGCC TGGGCCAACTGGATGAGGTATGTGAACTGTGCCCGGGATGATGAAGAGCAGAACCTGGTGGCCTTCCAGTA CCACAGGCAGATCTTCTATAGAACCTGCCGAGTCATTAGGCCAGGCTGTGAACTGCTGGTCTGGTATGGGG ATGAATACGGCCAGGAACTGGGCATCAAGTGGGGCAGCAAGTGGAAGAAGAGCTCATGGCAGGGAGAGA ACCAAAGCCAGAGATCCATCCATGTCCCTCATGCTGTCTGGCCTTTTCAAGTCAGAAATTTCTCAGTCAACAT G CAGAACTTCCCAGGACCATCTGCAAGAAAACTCCTCCAACCAGAGAATCCC TGCCCAGGGGATCAGAATCAGGAGCAGCAATATCCAGATCCACACAGCCGTAATGACAAAACCAAAGGTCAA GAGATCAAAGAAAGGTCCAAACTCTTGAATAAAAGGACATGGCAGAGGGAGATTTCAAGGGCCTTTTCTAGC CCACCCAAAGGACAAATGGGGAGCTGTAGAGTGGGAAAAAGAATAATGGAAGAAGAGTCCAGAACAGGCCA GAAAGTGAATCCAGGGAACACAGGCAAATTATTTGTGGGGGGTAGGAATCTCAAGAATTGCAAAAGTCAAGTA TGGAGAGTGTGGACAAGGTTTCAGTGTTAAATCAGATGTTATTACACACCAAAGGACACATACAGGGGAGAA GCTCTACGTCTGCAGGGAGTGTGGGGCGGGGGCTTTAGCTGGAAGTCACACCTCCTCATTCACCAGAGGATAC CACCAGAGGACACACAGGGGAGAAGCCCTATGTCTGCAGGGAGTGTGGGCGGGGCTTTAGCCGGCAGT CAGTCCTCCTCACTCACCAGAGGAGACACACAGGGGAGAGCCCTATGTCTGCAGGGAGTGTGGGCGGGG CTTTAGCCGGCAGTCAGTCCTCCTCACCAGAGGAGACACACAGGGGAGAAGCCCTATGTCTGCAGGG CAGAGGACACACAGGGGGAGAAGCCCTATGTCTGCAGGGAGTGTGGGCGGGGCTTTCGCGATAAGTCAC ACCTCCTCAGACACCAGAGGACACACAGGGGGGGAGAAGCCCTATGTCTGCAGGGAGTGTGGGGCGGGGCTT GTGGGCGGGGCTTTAGCAATAAGTCACACCTCCTCAGACACCAGAGGACACACAGGGGAGAAGCCCTAT GTCTGCAGGGAGTGTGGGGGGGGCTTTCGCAATAAGTCACACCTCCTCAGACACCAGAGGACACACAGG GGAGAAGCCCTACGTCTGCAGGGAGTGTGGGCCGGGGCTTTAGCGATAGGTCAAGCCTCTGCTATCACCAGA GGACACACACGGGGAGAAGCCCTACGTCTGCAGGGAGGATGAGTAA

DOT1L

 AAGGTGGCAGAATCGTGTCCTCGAAACCCTTTGCACCTCTGAACTTCAGAATAAACAGTAGAAACTTGAGTGA CATCGGCACCATCATGCGCGTGGTGGAGGCTCTCGCCCCTGAAGGGCTCGGTGTCGTGGACGGGGAAGCCA GTCTCCTACTACCTGCACACTATCGACCGCACCATACTTGAAAACTATTTTTCTAGTCTGAAAAACCCAAAACT CAGGGAGGAACAGGAGGCAGCCCGGCGCCGCCAGCAGCGCGAGAGCAAGAGCAACGCGGCCACGCCAC TAAGGGCCCAGAGGGCAAGGTGGCCGGCCCCGCCGACGCCCCCATGGACTCTGGTGCTGAGGAAGAAGAA GGCGGGAGCAGCCACCGTGAAGAAGCCGTCTCCCTCCAAAGCCCGCAAGAAGAAGCTAAACAAGAAGAGGG AGGAAGATGGCTGGCCGCCAAGGGCGCCCCCAAGAAGATGAACACTGCGAACCCCGAGGGG

ACTGCACTGGATGCCCTGCACGCTCAGACCGTGTCTCAGACGGCGGCCTCCTCACCCCAG GATGCCTACAGATCCCCTCACAGCCCGTTCTACCAGCTACCTCCGAGCGTGCAGCGGCACTCCCCCAACCC GCTGCTGGTGGCGCCCCACCCCGCCCGCGCGCGCAGAAGCTTCTAGAGTCCTTCAAGATCCAGTACCTGCAGT TCCTGGCATACACAAAGACCCCCCAGTACAAGGCCAGCCTGCAGGAGCTGCTGGGCCAGGAGAAGGAGAA GAACGCCCAGCTCCTGGGTGCGGCTCAGCAGCTCCTCAGCCACTGCCAGGCCCAGAAGGAGGAGATCAGG AGGCTGTTTCAGCAAAAATTGGATGAGCTGGGTGTGAAGGCGCTGACCTACAACGACCTGATTCAAGCGCA GAAGGAGATCTCCGCCCATAACCAGCAGCTGCGGGAGCAGTCGGAGCAGCTGGAGCAGGACAACCGCGCG CTCCGCGGCCAGAGCTTGCAGCTGCTCAAGGCTCGCTGCGAGGAGCTGCAGCTGGACTGGGCCACGCTGT CGCTGGAGAAGCTGTTGAAGGAGAAGCAGGCCCTGAAGAGCCAGATCTCGGAGAAGCAGAGGCACTGCCT **GGAGCTGCAG**ATCAGCATTGTGGAGCTAGAGAAGAGCCAGCGGCAGCAGGAGCTCCTGCAGCTCAAGTCCT GTGTGCCGCCTGACGACGCCCTGTCCCTGCACCTGCGTGGGAAGGGCGCCCTGGGCCGCGAGCTGGAGC CTGACGCCAGCCGGCTGCACCTGGAGCTGGACTGCACCAAGTTCTCGCTGCCTCACTTGAGCAGCATGAGC CCGGAGCTCTCCATGAACGGCCAGGCTGCGGCTATGAGCTCTGCGGTGTGCTGAGCCGGCCTTCGTCGAA GCAGAACACGCCCCAGTACCTGGCCTCACCCCTGGACCAGGAGGTGGTGCCCTGTACCCCTAGCCACGTC GGCCGGCCGCGCCTGGAGAAGCTGTCTGGCCTAGCCGCACCCGACTACACTAGGCTGTCCCCGGCCAAGA TTGTGCTGAGGCGGCACCTGAGCCAGGACCACACGGTGCCCGGCAGGCCGGCTGCCAGTGAGCTGCATTC GAGAGCTGAGCACCACGAGGAGAACGGCCTTCCCTACCAGAGCCCCAGCGTGCCTGGCAGCATGAAGCTG GCCTGAGAGAGCGCGCCTACGGCAGCAGCGGGGGGGGCTCATCACCAGCCTGCCCATCAGCATCCCGCTCAG CACCGTGCAGCCCAACAAGCTCCCGGTCAGCATTCCCCTGGCCAGCGTGGTGCTGCCCAGCCGCGCGAG AGGGCGAGGAGCACCCCCAGTCCCGTGCTGCAGCCCCGTGACCCCTCGTCCACACTTGAAAAGCAGATTG GTGCTAATGCCCACGGTGCTGGGAGCAGAAGCCTTGCCCTGGCCCCGCAGGCTTCTCCTACGCTGGCTC GGTGGCCATCAGCGGGGCCTTGGCGGGCAGCCCGGCCTCTCTCACACCTGGAGCCGAGCCGGCCACCTTG GATGAGTCCTCCAGCTCTGGGAGCCTTTTTGCCACCGTGGGGTCCCGCAGCTCCACGCCACAGCACCCCCT GCTGCTGGCACAGCCCCGGAACTCGCTTCCTGCCTCCCGCCCACCAGCTCTCCCAGTCCCCGGCTTG GTGGGGCCGCCCAGGGCCCGTTGCCCGAGGCCAGCAAGGGAGACCTGCCCTCCGATTCCGGCTTCTCAGA TCCTGAGAGTGAAGCCAAGAGGAGGATTGTGTTCACCATCACCACTGGTGCGGGCAGTGCCAAGCAGTCGC CCTCCAGCAAGCACAGCCCCTGACCGCCAGCGCCCGTGGGGACTGTGTGCCGAGCCACGGGCAGGACA GTCGCAGGCGGCGGCGGCAGCGAGCATCTGCGGGGACGCCCAGCTTGAGCGCAGGCGTGTCCCCCA AGCGCCGAGCCCTGCCGTCCGTCGCTGGCCTTTTCACACAGCCTTCGGGGGTCTCCCCTCAACCTCAACTCC ATGGTCAGTAACATCAACCAGCCCCTGGAGATTACAGCCATCTCGTCCCCGGAGACCTCCCTGAAGAGCTCC CCTGTGCCCTACCAGGACCACGACCAGCCCCCGTGCTCAAGAAGGAGCGGCCTCTGAGCCAGACCAATG GGGCACACTACTCCCCACTCACCTCAGACGAGGAGCCAGGCTCTGAGGACGAGCCCAGCAGTGCTCGAATT GAGAGAAAAATTGCAACAATCTCCTTAGAAAGCAAATCTCCCCCGAAAACCTTGGAAAATGGTGGTGGCTTG GCGGGAAGGAAGCCCGCCGCCGCCGGCGAGCCAGTCAATAGCAGCAAGTGGAAGTCCACCTTCTCGCCCA TCTCCGACATCGGCCTGGCCAAGTCGGCGGACAGCCCGCTGCAGGCCAGCTCCGCCCTCAGCCAGAACTC CCTGTTCACGTTCCGGCCCGCCCTGGAGGAGCCCTCTGCCGATGCCAAGCTGGCCGCTCACCCCAGGAAA GGCTTTCCCGGCTCCCTGTCGGGGGCTGACGGACTCAGCCCGGGCACCAACCCTGCCAACGGCTGCACCT TCGGCGGGGGCCTGGCCGCGGACCTGAGTTTACACAGCTTCAGTGATGGTGCTTCTCTTCCCCACAAGGGC CCCGAGGCGGCCGGCCTGAGCTCCCCGCTGAGCTTCCCCTCGCAGCGCGCAAGGAGGGCTCGGACGCC GAGGCAGGGGGGGGGCCTACCGCTGTGCGGGCCCACGGACAAGACCCCACTGCTGAGCGGCAAGGCC GCCAAGGCCCGGGACCGCGAGGTCGACCTCAAGAATGGCCACAACCTCTTCATCTCTGCGGCGGCCGTGC CCGCCCAGACGCACCGGTCCTTCCTGGGCCCCTTCCCGCCGGGACCGCAGTTCGCGCTCGGCCCCATGTC CCTGCAGGCCAACCTCGGCTCCGTGGCCGGCTCCTCCGTGCTGCAGTCGCTGTTCAGCTCTGTGCCGGCC GCCGCAGGCCTGGTGCACGTGTCGTCCGCTGCCACCAGACTGACCAACTCGCACGCCATGGGCAGCTTTTC CGGGGTGGCAGGCGGCACAGTTGGAGGTAACTAG

UBE2A

ATGTCCACCCGGCTCGGCGCGCCTCATGCGGGACTTCAAGAGGTTGCAGGAGGATCCTCCAGCCGGAG TCAGCGGGGCTCCGTCCGAGAACAACATAATGGTGTGGAACGCGGTCATTTTCGGGCCTGAAGGGACCCCG TTTGAGGATGGAACATTTAAACTTACAATAGAATTCACTGAAGAATATCCAAATAAACCACCTACAGTTAGATT TGTCTCTAAGATGTTCCATCCAAATGTCTATGCAGATGGTAGTATATGTCTGGACATACTTCAGAACCGTTGG AGTCCAACCTATGATGTGTCTTCCATTCTAACATCCATACAGTCTCTGTTGGATGAACCCAATCCCAATAGTC CAGCAAACAGCCAGGCTGCTCAGCTGTACCAGGAGAACAAACGGGAATATGAAAAGCGTGTTTCTGCAATAG TAGAA