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The indicated cancer cell lines (n = 28) and non-cancer human cells (primary human skeletal muscle (HSkM) and 
human fibroblasts (GM38)) were treated with 5 µM LCL161 and increasing VSVΔ51 for 48 hr. The dose required to 
yield 50% viable cells in the presence in SMC versus vehicle was determined using nonlinear regression and plotted 
as a log10 EC50 shift toward increasing sensitivity. Representative data from at least two independent experiments 
using biological replicates (n = 3).

Supplementary Figure 1 Responsiveness of a panel of cancer and normal cells to the combinato-
rial treatment of SMC and oncolytic virus.
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Supplementary Figure 2 SMC and oncolytic virus  co-treatment is highly synergistic in cancer 
cells. 
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Supplementary Figure 3 Monovalent and bivalent SMCs synergize with oncolytic viruses to cause 
cancer cell death. 
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and 500 PFU of the indicated viruses were dispensed in to the middle of the well. Cytotoxicity was assessed 96 hr 
post-treatment by crystal violet staining. Arrow denotes extension of the cell death zone from the origin of OV infec-
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Maraba-MG1 at 48 hr post-treatment. Error bars, mean ± s.d. Representative data from two independent experiments 
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Supplementary Figure 4 SMC-mediated cancer cell death is potentiated by oncolytic rhabdovi-
ruses. 



Vi
ab

le
 c

el
ls

 (%
)

0

20

40

60

80

100

cIAP2
cIAP1

XIAP

β-tubulin

SNB75

+ + + +
+ + + +

+ + + +
+ + ++

+ +NT siRNA:
cIAP1 siRNA:
cIAP2 siRNA:
XIAP siRNA:

a

b SNB75

Vehicle 
SMC 

+

–
–

–
–

–

–

–
–– –

–
–

–

–

+ + + +
+ + + +

+ + + +
+ + ++

+ +NT siRNA:
cIAP1 siRNA:
cIAP2 siRNA:
XIAP siRNA:

+

–
–

–
–

–

–

–
–– –

–
–

–

–

a, Alamar blue viability of cells transfected with nontargeting (NT) siRNA or siRNA targeting cIAP1, cIAP2 or XIAP, 
and subsequently treated with 5 µM LCL161 and 0.1 MOI VSVΔ51 for 48 hr. Error bars, mean ± s.d. Representative 
data from three independent experiments using biological replicates (n = 3). b, Representative siRNA efficacy West-
ern blots for the experiment depicted in (a) are displayed. 

Supplementary Figure 5 cIAP1, cIAP2 and XIAP cooperatively protect cancer cells from oncolytic 
virus induced cell death.
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Supplementary Figure 6 Images used for superimposed images depicted in Fig. 1g. 
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Supplementary Figure 7 SMC treatment does not affect oncolytic virus distribution or replication in 
vivo.
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Supplementary Figure 8 Verification of siRNA-mediated knockdown.
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a, Western blotting for caspase and PARP activation was conducted on cells pretreated with 5 µM LCL161 (2 hr) and subsequently treated with 1 MOI of VSVΔ
51. b, Micrographs of caspase activation were acquired with cells that were cotreated with 5 µM LCL161 and VSVΔ51 in the presence of the caspase-3/7 
substrate DEVD-488 for 24 hr. Scale bar, 100 µm. c, The proportion of DEVD-488-positive cells from (b) was plotted (n = 12). Error bars, mean ± s.d. d, Apop-
tosis was assessed by micrographs of translocated phosphatidyl serine (Annexin V-CF594, green) and loss of plasma membrane integrity (YOYO-1, blue) in 
cells treated with 5 µM LCL161 and VSVΔ51 for 24 hr. Scale bar, 100 µm. e, The proportion of Annexin V-CF594-positive and YOYO-1-negative apoptotic cells 
from (d) was plotted (n = 9). Error bars, mean ± s.d. f, Alamar blue viability of cells transfected for 48 hr with nontargeting (NT) siRNA or siRNA targeting 
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Supplementary Figure 9 SMCs synergizes with oncolytic viruses to induce caspase-8- and RIP-1-dependent apoptosis in cancer cells.
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a, Alamar blue viability assay of cells cotreated with 5 µM SMC and increasing MOIs of VSVΔ51-GFP or VSVΔ
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viable cells in the presence in SMC versus vehicle was determined using nonlinear regression and plotted as EC50 
shift. Representative data from three independent experiments using biological replicates (n = 3).

Supplementary Figure 10 Expression of TNFα transgene from oncolytic viruses potentiates 
SMC-mediated cancer cell death further.
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Supplementary Figure 11 Oncolytic virus infection leads to enhanced TNFα expression upon 
SMC treatment. 
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Supplementary Figure 12 TNFα signalling is required for type I IFN induced synergy with SMC 
treatment.
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Supplementary Figure 13 SMC treatment causes minimal transient weight loss and leads to 
downregulation of cIAP1/2.
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Supplementary Figure 14 SMC treatment induces transient weight loss in a syngeneic mouse 
model of cancer.
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a, Cells were infected with VSVΔ51 for 24 hr and the cell culture supernatant was exposed to UV light for 1 hr. The 
UV-inactivated supernatant was applied to new HT-29 cells at the indicated dose in the presence of 5 µM LCL161 for 
48 hr. Viability was ascertained by Alamar blue. Error bars, mean ± s.d. Representative data from three independent 
experiments using biological replicates (n = 3). b, Alamar blue viability of cells cotreated with 5 µM LCL161 and a 
non-spreading virus VSVΔ51ΔG (0.1 MOI). Error bars, mean ± s.d. Representative data from three independent 
experiments using biological replicates (n = 3). c, CD-1 nude mice with established HT-29 tumours were treated with 
50 mg/kg LCL161 (per os) and 1x108 PFU VSVΔ51 (intratumoral). Vehicle, n = 5; vehicle + VSVΔ51, n = 6; SMC, n = 
6; SMC + VSVΔ51, n = 7. Left panel depicts tumour growth relative to day 0 post-treatment. Right panel represents 
the Kaplan-Meier curve depicting mouse survival. Error bars, mean ± s.e.m. Log-rank with Holm-Sidak multiple 
comparison: ***, p < 0.001 d, Measurement of mouse weights upon SMC and OV co-treatment in tumour-bearing 
animals from the experiment depicted in (c). Error bars, mean ± s.e.m. 

Supplementary Figure 15 VSVΔ51-induced cell death in HT-29 cells is potentiated by SMC treat-
ment in vitro and in vivo.



c-caspase-3

β-tubulin

caspase-8
c-caspase-8

c-caspase-8

48

35

17

63

48

EMT6

VSV∆51:
SMC:

+ + + + +– – –
– – + + ++ + +

+ + +
+ + +

α-IgG α-IFNAR1
–
–

63

EMT6 tumour bearing mice were treated with vehicle or 50 mg/kg of the LCL161 for 4 hr, and subsequently treated 
with neutralizing IFNAR1 or isotype antibodies for 20 hr. Subsequently, animals were treated with PBS or VSVΔ51 
(5x108 PFU) i.v. for 18 hr. Tumours were processed for Western blotting with the indicated antibodies.

Supplementary Figure 16 Type I IFN signalling is required for SMC and oncolytic virus synergy in 
vivo. 
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Supplementary Figure 17 Oncolytic virus infection of innate immune cells leads to cancer cell 
death in the presence of SMCs.
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Supplementary Table 1 List of interferon-stimulated genes affected by VSVΔ51 infection or IFNβ

treatment in cancer cells. SNB75 cells were infected with 1 MOI of VSVΔ51 or treated with 250

U/mL IFNβ for 24 hr, and the cells were processed for RT-qPCR with primers targeting indicated 

genes (Cytokine Libraries I and II from realtimeprimers.com).  

VSV IFNb Gene name Gene ID

25465.4 1017.8 CCL8 Chemokine (C-C motif) ligand 8

13388.9 44.9 IL29 Interleukin 29 (interferon, lambda 1)

5629.3 24.3 IFNB1 Interferon, beta 1, fibroblast

1526.8 16.2 TNFSF15 Tumor necrosis factor (ligand) superfamily, member 15

847.0 24.6 CCL5 Chemokine (C-C motif) ligand 5

747.7 17.2 CCL3 Chemokine (C-C motif) ligand 3

650.9 60.6 TNFSF10 Tumor necrosis factor (ligand) superfamily, member 10

421.3 296.1 IL12A Interleukin 12A

289.3 10.7 TNFSF18 Tumor necrosis factor (ligand) superfamily, member 18

255.3 18.8 CCL7 Chemokine (C-C motif) ligand 7

154.2 19.2 IL6 Interleukin 6 (interferon, beta 2)

150.8 12.9 IL1RN Interleukin 1 receptor antagonist

108.1 25.5 CCL20 Chemokine (C-C motif) ligand 20

78.6 6.2 CXCL1 Chemokine (C-X-C motif) ligand 1

64.7 14.8 CCL2 Chemokine (C-C motif) ligand 2

62.5 14.5 CCL4 Chemokine (C-C motif) ligand 4

55.6 1.2 CXCL3 Chemokine (C-X-C motif) ligand 3

55.2 4.3 TNF Tumor necrosis factor (TNF superfamily, member 2)

48.8 4.3 IGF1 Insulin-like growth factor 1 (somatomedin C)

48.4 2.8 CXCL2 Chemokine (C-X-C motif) ligand 2

38.5 3.8 CCL11 Chemokine (C-C motif) ligand 11

37.5 3.8 HGF Hepatocyte growth factor

36.5 75.1 NGFB Nerve growth factor, beta polypeptide

32.9 4.0 FGF14 Fibroblast growth factor 14

24.7 25.6 FGF20 Fibroblast growth factor 20

21.5 16.4 IL1B Interleukin 1, beta

20.0 36.3 CSF2 Colony stimulating factor 2 (granulocyte-macrophage)

18.3 2.6 GDF3 Growth differentiation factor 3

17.2 2.0 CCL28 Chemokine (C-C motif) ligand 28

12.0 2.1 CCL22 Chemokine (C-C motif) ligand 22

11.3 2.5 CCL17 Chemokine (C-C motif) ligand 17

10.5 2.0 CCL13 Chemokine (C-C motif) ligand 13

10.5 15.3 IL20 Interleukin 20

9.7 22.8 FGF16 Fibroblast growth factor 16

8.8 3.6 TNFSF14 Tumor necrosis factor (ligand) superfamily, member 14

8.2 2.7 FGF2 Fibroblast growth factor 2 (basic)

7.1 8.1 BDNF Brain-derived neurotrophic factor



7.1 9.7 IL1A Interleukin 1, alpha

7.1 10.9 ANGPT4 Angiopoietin 4

7.0 1.5 TGFB3 Transforming growth factor, beta 3

7.0 5.8 IL22 Interleukin 22

6.9 9.7 IL1F5 Interleukin 1 family, member 5 (delta)

6.7 2.4 IFNW1 Interferon, omega 1

6.6 12.6 IL11 Interleukin 11

6.6 25.1 IL1F8 Interleukin 1 family, member 8 (eta)

6.3 -1.3 EDA Ectodysplasin A

5.9 8.0 FGF5 Fibroblast growth factor 5

5.8 5.0 VEGFC Vascular endothelial growth factor C

5.2 4.9 LIF Leukemia inhibitory factor

5.0 1.3 CCL25 Chemokine (C-C motif) ligand 25

4.9 8.3 BMP3 Bone morphogenetic protein 3

4.9 1.6 IL17C Interleukin 17C

4.8 -2.3 TNFSF7 CD70 molecule

4.3 2.5 TNFSF8 Tumor necrosis factor (ligand) superfamily, member 8

4.3 2.5 FASLG Fas ligand (TNF superfamily, member 6)

4.2 2.7 BMP8B Bone morphogenetic protein 8b

4.2 6.0 IL7 Interleukin 7

4.1 5.2 CCL24 Chemokine (C-C motif) ligand 24

4.0 -2.2 INHBE Inhibin, beta E

4.0 5.8 IL23A Interleukin 23, alpha subunit p19

3.8 -1.1 IL17F Interleukin 17F

3.7 2.9 CCL21 Chemokine (C-C motif) ligand 21

3.5 8.5 CSF1 Colony stimulating factor 1 (macrophage)

3.5 3.0 IL15 Interleukin 15

3.4 5.7 NRG2 Neuregulin 2

3.3 N/A INHBB Inhibin, beta B

3.3 N/A LTB Lymphotoxin beta (TNF superfamily, member 3)

3.3 N/A BMP7 Bone morphogenetic protein 7

3.0 -3.8 IL1F9 Interleukin 1 family, member 9

2.9 6.1 IL12B Interleukin 12B

2.8 6.2 FLT3LG Fms-related tyrosine kinase 3 ligand

2.7 3.0 FGF1 Fibroblast growth factor 1 (acidic)

2.5 -2.0 CXCL13 Chemokine (C-X-C motif) ligand 13

2.4 2.2 IL17B Interleukin 17B

2.3 7.8 GDNF Glial cell derived neurotrophic factor

2.3 -1.7 GDF7 Growth differentiation factor 7

2.3 -2.4 LTA Lymphotoxin alpha (TNF superfamily, member 1)

2.2 1.7 LEFTY2 Left-right determination factor 2

2.1 5.0 FGF19 Fibroblast growth factor 19

2.1 9.8 FGF23 Fibroblast growth factor 23

2.1 4.8 CLC Cardiotrophin-like cytokine factor 1



2.1 3.0 ANGPT1 Angiopoietin 1

2.0 10.6 TPO Thyroid peroxidase

2.0 2.1 EFNA5 Ephrin-A5

1.9 6.4 IL1F10 Interleukin 1 family, member 10 (theta)

1.9 7.6 LEP Leptin (obesity homolog, mouse)

1.8 3.0 IL5 Interleukin 5 (colony-stimulating factor, eosinophil)

1.8 5.7 IFNE1 Interferon epsilon 1

1.8 2.7 EGF Epidermal growth factor (beta-urogastrone)

1.7 3.4 CTF1 Cardiotrophin 1

1.7 -1.9 BMP2 Bone morphogenetic protein 2

1.7 3.0 EFNB2 Ephrin-B2

1.6 1.0 FGF8 Fibroblast growth factor 8 (androgen-induced)

1.6 -2.0 TGFB2 Transforming growth factor, beta 2

1.5 -1.6 BMP8A Bone morphogenetic protein 8a

1.5 3.3 NTF5 Neurotrophin 5 (neurotrophin 4/5)

1.5 1.0 GDF10 Growth differentiation factor 10

1.5 1.5 TNFSF13BTumor necrosis factor (ligand) superfamily, member 13b

1.5 2.5 IFNA1 Interferon, alpha 1

1.4 -1.3 INHBC Inhibin, beta C

1.4 2.8 FGF7 Galactokinase 2

1.4 3.3 IL24 Interleukin 24

1.4 -1.1 CCL27 Chemokine (C-C motif) ligand 27

1.3 1.9 FGF13 Fibroblast growth factor 13

1.3 1.4 IFNK Interferon, kappa

1.3 2.0 ANGPT2 Angiopoietin 2

1.3 7.6 IL18 Interleukin 18 (interferon-gamma-inducing factor)

1.3 7.0 NRG1 Neuregulin 1

1.3 4.9 NTF3 Neurotrophin 3

1.2 15.0 FGF10 Fibroblast growth factor 10

1.2 1.9 KITLG KIT ligand

1.2 -1.3 IL17D Interleukin 17D

1.2 1.1 TNFSF4 Tumor necrosis factor (ligand) superfamily, member 4 

1.2 1.3 VEGFA Vascular endothelial growth factor

1.1 2.4 FGF11 Fibroblast growth factor 11

1.1 -1.4 IL17E Interleukin 17E

1.1 -2.1 TGFB1 Transforming growth factor, beta 1

1.0 3.1 GH1 Growth hormone 1

-1.0 6.1 IL9 Interleukin 9

-1.0 -2.5 EFNB3 Ephrin-B3

-1.0 1.8 VEGFB Vascular endothelial growth factor B

-1.0 -1.2 IL1F7 Interleukin 1 family, member 7 (zeta)

-1.0 -2.1 GDF11 Growth differentiation factor 11

-1.1 1.3 ZFP91 Zinc finger protein 91 homolog (mouse)

-1.2 -1.1 BMP6 Bone morphogenetic protein 6



-1.2 -1.2 AMH Anti-Mullerian hormone

-1.3 -1.0 LEFTY1 Left-right determination factor 1

-1.3 2.4 EFNA3 Ephrin-A3

-1.3 -1.3 LASS1 LAG1 longevity assurance homolog 1

-1.5 1.0 EFNA4 Ephrin-A4

-1.8 1.3 PDGFD DNA-damage inducible protein 1

-1.8 1.8 IL10 Interleukin 10

-1.9 1.6 GDF5 Growth differentiation factor 5

-1.9 1.3 EFNA2 Ephrin-A2

-1.9 -1.5 EFNB1 Ephrin-B1

-1.9 -1.4 GDF8 Growth differentiation factor 8

-1.9 1.6 PDGFC Platelet derived growth factor C

-2.2 2.4 TSLP Thymic stromal lymphopoietin

-2.3 -1.5 BMP10 Bone morphogenetic protein 10

-2.4 -4.6 CXCL12 Chemokine (C-X-C motif) ligand 12

-2.5 4.0 IFNG Interferon, gamma

-2.6 1.2 EPO Erythropoietin

-2.7 -2.1 GAS6 Growth arrest-specific 6

-2.9 2.9 PRL Prolactin

-2.9 -2.1 BMP4 Bone morphogenetic protein 4

-2.9 -5.7 INHA Inhibin, alpha

-3.0 -1.3 GDF9 Growth differentiation factor 9

-3.1 -1.5 FGF18 Fibroblast growth factor 18

-3.2 N/A IL17 Interleukin 17

-3.2 -1.1 IL26 Interleukin 26

-3.4 1.2 EFNA1 Ephrin-A1

-3.8 -1.1 FGF12 Fibroblast growth factor 12

-4.0 -2.3 FGF9 Fibroblast growth factor 9 (glia-activating factor)

-4.5 1.4 CCL26 Chemokine (C-C motif) ligand 26

-8.0 9.7 CCL19 Chemokine (C-C motif) ligand 19

N/A N/A BMP15 Bone morphogenetic protein 15

N/A N/A CCL15 Chemokine (C-C motif) ligand 14

N/A N/A CCL16 Chemokine (C-C motif) ligand 16

N/A N/A CCL18 Chemokine (C-C motif) ligand 18

N/A N/A CCL23 Chemokine (C-C motif) ligand 23

N/A N/A CD40LG CD40 ligand (TNF superfamily) 

N/A N/A CSF3 Colony stimulating factor 3 (granulocyte)

N/A N/A CXCL5 Chemokine (C-X-C motif) ligand 5

N/A N/A FGF4 Fibroblast growth factor 4 

N/A N/A FGF6 Fibroblast growth factor 6

N/A N/A GH2 Growth hormone 2

N/A N/A IL2 Interleukin 2

N/A N/A IL21 Interleukin 21

N/A N/A IL28A Interleukin 28A (interferon, lambda 2)



N/A N/A INHBA Inhibin, beta A

N/A N/A NRG3 Neuregulin 3

N/A N/A TNFSF11 Tumor necrosis factor (ligand) superfamily, member 11

N/A N/A TNFSF13 Tumor necrosis factor (ligand) superfamily, member 13

N/A 6.5 NRG4 Neuregulin 4

N/A 6.1 IL3 Interleukin 3 (colony-stimulating factor, multiple)

N/A 1.8 TNFSF9 Tumor necrosis factor (ligand) superfamily, member 9

Total cytokines and chemokines from the cytokine library = 176

Number of genes with > 3-fold upgregulation compared to control

VSVΔ51: 69

IFNβ: 70

Overlap: 44



Supplementary Table 2 Catalogue numbers of primers used for RT-qPCR. Primers were obtained from

realtimeprimers.com.

Catalogue Species Gene 

MHK-1 Mouse Mouse Housekeeping Gene Primer Set

VMPS-3027 Mouse IFNb

VMPS-3154 Mouse IRF1

VMPS-3157 Mouse IRF3

CMPS-1 (Mm.3233) Mouse IRF7

 VMPS-4035 Mouse MX1

VMPS-4036 Mouse MX2

VMPS-3019 Mouse IFIT1

CMPS-1 (Mm.233471) Mouse OAS1

CMPS-1 (Mm.228363) Mouse OASL

HHK-1 Human Human Housekeeping Gene Primer Set

VHPS-4476 Human IFNb

VHPS-4626 Human IRF1

VHPS-4629 Human IRF3

CHPS-1 (Hs.166120) Human IRF7

VHPS-5959 Human MX1

VHPS-5960 Human MX2

VHPS-4465 Human IFIT1

VHPS-6421 Human OAS1

VHPS-6424 Human OASL

VHPS-9415 Human TNFa

VHPS-9439 Human TRAIL

VHPS-4531 Human 1L1b
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