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Materials and Methods

4sU metabolic labelling

We adapted the 4sU labelling method from (26). Briefly, cell cultures were grown to log phase in volumes sufficient

to yield about 300 ng of 4sU-labeled RNA. Cells were incubated with 4sU for the required length of time (0, 30, or

60 minutes), then washed, pelleted, and frozen. Total RNA was extracted, and 4sU-labeled RNA was separated from

total RNA using a bead-based biotin-streptavidin purification protocol.

Cell growth and 4sU-labeling. Cell lines were grown to log phase (6.5x106 - 8.5x106 viable cells/ml, with at least

70% cell viability) in RPMI 1640 (supplemented with 2 mM L-glutamine and 15% fetal bovine serum) using standard

procedures (as recommended by Coriell). Culture volumes were sufficient to yield at least 6.4x106 viable cells, or

enough to yield 300 ng of total RNA for the zero time point, and 300 ng of 4sU-labeled RNA for each of the 30’ and

60’ time points. At the designated “time 0,” cultures were divided into 10-ml aliquots, and 50 mM 4sU was added to

each aliquot to obtain a final 4sU concentration of 2x10−7 uMoles/cell. Aliquots corresponding to the 0’ time point

were immediately washed in 5 mL PBS, pelleted, and frozen in liquid nitrogen. Aliquots corresponding to subsequent

time points were returned to the incubator, and washed and frozen at the appropriate times.

RNA isolation. RNA was isolated using QIAshredder columns (Qiagen) and the RNeasy mini kit (Qiagen), using the

protocols provided. RNA concentration was measured using a NanoDrop spectrophotometer, and RNA quality was

checked using an Agilent Bioanalyzer.

Biotinylation of 4sU-labeled RNA from the 30’ and 60’ time points. RNA samples were first adjusted to a concentration

of 0.2 ug/ul in 100 ul. 100 ul Biotin labeling buffer (25 mM Tris-HCl 1M pH 7.4, 2.5 mM EDTA 500 mM) and 50

ul of EZ-Link HPDP-Biotin/DMF stock (Thermo Scientific) were added to each sample, and samples were incubated

for two hours at room temperature. To remove unbound biotin, 250 ul chloroform:isoamylalcohol (24:1) was added to

the biotinylation reaction, and RNA was isolated using Heavy Phase-lock-gel tubes.

RNA Precipitation. Biotinylated RNA was precipitated using ethanol precipitation, and resuspended in 100 ul water.

Isolation of 4sU-labeled RNA. Dynabeads MyOne Streptavidin T1 beads (Invitrogen) were washed according to the

manufacturer’s instructions. 100 ul of washed beads were added to 100 ul of biotinylated RNA. The mixture was

incubated at room temperature for 15 minutes, separated with a magnet for 3 minutes, and washed 2-3 times with
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1X Binding and Washing Buffer. 4sU-labeled RNA was eluted from the beads using 100 ul of 100mM dithiothreitol

(Pierce DTT No-Weigh Format (Thermo Scientific)), and eluted RNA was cleaned using the RNeasy MinElute kit

(QIAgen) according to the manufacturer’s instructions.

Molecular data mapping

The main molecular phenotypes analyzed in this study were assayed using H3K27ac ChIP-seq, DNase-seq, DNA

Methylation 450K arrays, 4sU-sequencing, RNA-sequencing, Ribosome Profiling, and Mass Spectrometry (Table S1).

For DNase-seq, Methylation 450K arrays and Mass Spectrometry data, we used previously quantified measurements

from (4, 18, 19) and used liftOver to convert the coordinates from hg18 to hg19 where appropriate.

To map the activity of the other molecular traits to their corresponding genes or genomic regions, we used

bowtie2 (27) with option --very-sensitive for H3K27ac ChIP-seq data, and STAR (28) with option

--outSAMstrandField intronMotif for 4sU-seq, RNA-seq (Pickrell (17) and YRI GEUVADIS) and ribo-

seq data. We next used the WASP framework (29) to re-map reads in order to avoid mapping biased by sequence

polymorphisms and remove duplicates for H3K27ac ChIP-seq (but not for gene-level phenotypes). We further used

WASP (4) to account for read depth heterogeneity and biases for GC-content across libraries. This resulted in normal-

ized read counts for each test window (see next section), which were subsequently used for QTL mapping.

To understand the relationship between our molecular trait measurements (Fig. 1C), we measured the correlation

of read counts mapping to different relevant regions of the genome. In particular, we used featureCounts (30) to

count the number of H3K27ac reads mapping to ±1kb of a gene transcription start site (TSS), the number of 4sU-seq,

RNA-seq, and ribo-seq reads mapping to the gene body (as defined by its representative exons, see next section). To

quantify protein expression, we used iBAC intensity measured at the whole protein level (19). We then used Spear-

man ρ to measure the correlation across genes and molecular phenotypes. We noticed that because of low average

H3K27ac read counts mapping to the TSS, the Spearman ρ was unable to detect strong correlation between H3K27ac

and gene-level phenotypes, possibly owing to its inability to resolve equal counts. We therefore used Pearson ρ to

measure the correlation between H3K27ac at the promoter and gene-level phenotypes.

To test whether the correlation between H3K27ac and 4sU-seq read counts was higher than the one between

H3K27ac and RNA-seq read counts, we generated 5,000 random samples of 6,722 genes by drawing with replacement

among the 6,722 genes for which we had all three molecular phenotypes measured in individual NA18502. We then
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computed their Pearson correlation (27ac-4sU µρ = 0.237 and 27ac-RNA µρ = 0.193) and obtained a mean difference

in correlation and standard deviation for this estimate: µ∆ρ2 = −0.0439 and σ = 0.0089. Assuming that our estimates

are normally distributed, Z = −4.9307 which corresponds to a p-value = 4.1 × 10−7. The results are very similar

using other individuals.

Peak calling and test windows for molecular traits

We used several strategies to determine appropriate test windows for our molecular traits. For DNaseI and DNA

methylation data, we used the same test windows as the original studies.

To determine test windows for H3K27ac, we ran macs14 with default parameters on each of the 59 H3K27ac

bam alignment files separately. Overlapping peaks across samples were then merged. MACS windows were then split

into segments of 1kb (if they were bigger). We next augmented these peaks with LCL chromHMM annotation win-

dows that were associated with transcription start sites (TssA, TssFlnk), transcription (Tx, TxWk), or enhancers (Enh,

EnhG). To do this, we combined all MACS peaks and relevant chromHMM annotations and removed all chromHMM

windows that overlapped with MACS peaks. This procedure resulted in 208,512 test windows genome-wide.

To determine test windows for gene-level phenotypes, we downloaded the gencode v19 gene annotations. We

then identified all overlapping exons from a gene and considered the longest exons from each overlap as test windows

for that gene. In all subsequent analyses, we focused on the top 14,000 most expressed protein-coding genes based

on the average RPKM in all 69 RNA-seq samples (Pickrell) (17), which corresponds to genes with at least 10.4 RPKM.

Regression between mRNA decay and 4sU-seq, RNA-seq reads counts

To verify that 4sU-seq read counts quantitatively measures gene transcription rates (Fig. 1B), we first computed the

average RNA-seq and 4sU-seq read counts (normalized by total sample read counts) over 54 individuals in 8,316

genes for which we had 4sU-seq, RNA-seq, RNA decay rate data (31). The ratio of RNA-seq reads to 4sU-seq reads

was then regressed against estimated RNA decay rate using the glm() function in R. The quasi-binomial family was

used to account for over-dispersion. The regression between mRNA decay and
4sU

RNA+ 4sU
yielded a p-value =

8.31× 10−167. When we performed the same regression between mRNA decay and
1

RNA
the p-value = 0.0053 (fig.

S1), indicating that this effect is not driven by a correlation between RNA and decay.
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cis-QTL mapping

As described earlier (Molecular data mapping), we used WASP to adjust differences in sequencing depth and GC

content for each of our sample. We then used a normalization and standardization approach developed previously by

our group (4). Briefly, we first standardized all measurements by gene and then quantile-normalized them to fit a stan-

dard normal distribution by individual. We next used principal components analysis (PCA) to regress out unidentified

confounders. The numbers of PCs regressed out were chosen to maximize the number of detected QTLs in each data

type (we tested 0 to 15 PCs).

To map cis-QTLs for genes, we used all SNPs with MAF ≥ 0.05 and ±100kb of genes, and ±50kb of DNaseI

peaks (defined previously in (4)), DNA methylation probes and H3K27ac peaks/chromHMM windows. We used the

intersection of genotyped position between HapMap 2 and HapMap3 to determine the genotypes of each individual

because some of our individuals were genotyped in HapMap2 and some in HapMap3. We had previously imputed all

SNPs from the high coverage 1000 Genomes Phase1 data (5). Standard linear regression was then used to compute a

p-value for each SNP-gene/peak pair.

Effect sizes and correlation of cis-QTLs

To compute QTL effect sizes, we used the read depth and GC-corrected count data (H3K27ac ChIP-seq, 4sU-seq,

RNA-seq, and ribo-seq) as input to our linear regression and did not regress out any PCs as this can modify effect size

estimates. For protein QTL effect sizes, we used the raw (uncorrected) protein data from (19). We used the slope of

the linear regression as a measure of effect size. As a starting point to compare the correlation of effect sizes across

molecular phenotypes (Fig. 2A), we used the 501 gene-snp pairs identified in the GEUVADIS analysis of the YRI

samples. Of these, 130 genes were not tested in our study (109 mean expression levels too low, 21 non-coding or with

no corresponding IDs), 14 were indels, 33 had MAF < 0.05 and 67 were missing from our imputed SNPs, leaving us

with 256 gene-snp pairs. We asked whether the effect sizes of the SNP representing the best SNP-gene association

were correlated for H3K27ac read number at TSS, 4sU-seq read depth (at 30 and 60 minutes), RNA-seq read depth

(Pickrell (17), GEUVADIS), ribo-seq read depth and protein iBAQ intensity (Fig. 2A).

To compute effect sizes for sQTLs, we again used the slope of the linear regression. We used the percent-spliced

intron (PSI) of introns as dependent variables and the genotypes [coded as 0 (homozygous reference), 1 (heterozy-
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gous), and 2 (homozygous alternate)] as independent variables. As such, the ∆PSI defined as the expected change

between the intron splicing levels of the reference versus alternate allele is twice the slope. In fig. S8, we plot the

distribution of ∆PSI for our sQTLs. We find that 13.8% of our sQTLs had a ∆PSI ≥ 10% and 76.6% over 1%. We

should note that while splicing variation with small ∆PSI (e.g. ≤ 1%) are expected to have modest impact in general,

it is likely that some sQTLs have larger effects in different cell types and/or developmental stages, or that some vari-

ants produce aberrant transcripts resulting in toxic peptides.

We next wished to quantify general buffering of regulatory variants by studying average effect sizes of regulatory

SNPs across our molecular phenotypes (fig. S4). We decided to start from 565 promoter-H3K4me3 QTLs recently

identified in (8) at 5% FDR whose H3K4me3 peaks was at most 2.5kb away from the TSS of a gene. We reasoned that

by starting from promoter-H3K4me3 QTLs instead of GEUVADIS eQTLs, we can avoid ascertainment biases caused

by SNPs with post-transcriptional regulatory effects, thereby allowing us to establish an unbiased accounting of effect

size buffering across the regulatory cascade. We therefore computed the effect sizes of the SNP with the strongest

association to H3K4me3 levels at promoters on 4sU-seq read depth, RNA-seq (Pickrell (17)) read depth, ribo-seq read

depth and protein iBAQ intensity. We then polarized the effect size by the direction of effect observed on H3K4me3

levels. Finally, we summarized the effect sizes for each regulatory stage as a boxplot and only SNP effect sizes at the

protein level were significantly lower than other regulatory stages (mean ribosome and protein effect sizes were 0.224

and 0.062, respectively, Mann-Whitney U test p = 0.0016). We also repeated this same analysis starting from 1,347

eQTLs predicted in GEUVADIS CEU population and again observed that only SNP effect sizes at the protein level

were lower than the other regulatory stages (mean ribosome and protein effect sizes of 0.159 and 0.077 respectively,

Mann-Whitney U test p = 2.41× 10−7).

Estimation of QTL sharing between H3K27ac levels at enhancers, H3K27ac levels at promoters, and gene-level

phenotypes

To estimate the sharing between QTLs for a molecular trait A and another molecular trait B (Fig. 2B), we first identi-

fied the best SNP-gene pair for trait A. We then used Storey’s π1 method (qvalue()) to estimate the sharing between

A and B by considering the association (i.e. p-value) of the best SNP-gene pair from trait A in trait B. We used several

p-value cutoffs on the best SNP-gene association to measure the effect of ascertainment stringency on our estimate of

sharing (Table S3). We first found that our estimate of sharing generally increased as our stringency increased (fig. S2).

This effect can be caused by (1) a reduction in the power to measure associations when effect sizes are small and (2) a

higher false discovery rate (FDR) when the stringency is low. We reasoned however that because FDR is low (<10%)
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for associations with p-values < 10−4 and the differences in our sharing estimate is high (>30%), these observations

are likely due to (1) a reduction in the power to measure associations. Consistent with our speculation, we observed

a clear correspondence between SNP effect sizes and p-values of the SNP-gene association for gene expression levels

(fig. S2C).

We used a bootstrap approach to compute confidence intervals for our π1 estimates. Specifically, we resampled

p-values with replacement N times (where N is the initial number of samples) and re-computed the π1 estimate. We

also combined our sharing estimates for the 4sU and RNA-seq tests by averaging their estimates and taking the mini-

mum and maximum estimates to compute the lower and upper bound, respectively, of our confidence interval. Owing

to the large fluctuations in the π1 estimates depending on sampling, we report 80% confidence intervals.

To estimate the proportion of QTLs for H3K27ac levels at distal peaks that affect gene expression (Fig. 2B), we

took H3K27ac QTL peaks that overlapped a chromHMM-defined enhancer at most 100kb away from the TSS of a

gene. We then estimated the sharing between haQTL and QTLs for H3K27ac read counts at the TSS of the closest

gene and QTLs for 4sU-seq read count, RNA-seq read count, ribo-seq read counts and/or protein iBAQ intensity of

the nearest gene. Overall, we find a modest sharing (20-40%). We reasoned that H3K27ac levels at enhancer may not

necessarily affect the expression of the closest gene, but may often affect the expression level of a more distant gene.

We therefore next estimated the sharing between QTLs that affect H3K27ac levels and QTLs for expression levels

of any nearby genes (fig. S2A). We estimated conservatively that up to 50% of haQTLs do not appear to affect the

expression levels of any nearby gene (within 500kb). We were particularly conservative in our estimate because

our approach is hindered by our inability to link distal haQTLs to the gene they regulate (when they do regulate a

gene). Nevertheless, we used a strategy employed in a previous study (4), which estimated that 16% of dsQTLs affect

expression levels of a nearby gene. Specifically, for each haQTL we did the following:

i) Classify haQTLs according to their distance to the nearest expressed genes (according to TSS coordinates) into

bins [0, 1kb), [1, 25kb), [25, 100kb].

ii) For each haQTL, take the minimum p-value for association between the QTL and expression of all genes within

1kb, 25kb, and 100kb according to the haQTL’s bin.

ii*) We also performed step ii) by computing the association between haQTLs and expression of all genes within

500kb for every bin.
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ii) Repeat (ii) for 10,000 permutations of the genotypes.

iii) Estimate a corrected p-value for the most significant eQTL based on the permutations.

iv) Use Storey’s π1 method to estimate the amount of sharing.

Using this procedure (with step ii), we observed a clear relationship between the estimated sharing and the dis-

tance between the haQTL peak and the closest TSS (fig. S2a). This observation also holds when using this procedure

with step ii* (fig. S2A), so it cannot be fully explained by differences in the number of tests (and the multiple testing

correction). When we restricted to the haQTLs with the strongest associations (p < 10−8) in each distance category

(256 in 1–25kb and 215 in 25–100kb), we estimated that 50.3% of haQTLs are also eQTLs (with step ii). We ob-

tained lower estimates of sharing (40.4%) when we computed the association between haQTLs and expression of all

genes within 500kb (using step ii*, fig. S2A). This is due to the larger number of tests and a stricter multiple testing

correction. Again, we must stress here that the larger number of tests cannot account for the differences between our

estimates of promoter (H3K27ac QTLs proximal to genes <1kb away) percolation versus enhancer (H3K27ac QTLs

distal to genes 1kb–100kb away) percolation. Indeed, we observed that even when testing against all genes within

500kb (Right panel of fig. S2A), we estimated a percolation rate of >75% for promoter haQTLs compared to ∼40%

for distal haQTLs. In conclusion, we estimate that up to half of these enhancer-like elements do not show evidence for

regulating a nearby gene.

We should note here that H3K27ac peaks, although associated with enhancers, are not all expected to be bona

fide enhancers. For example, it has been suggested that active transposable elements can create novel enhancer-like

elements which may subsequently be “wired” into gene regulatory networks (32).

As estimates of the numbers of QTLs that affect each regulatory stage, we used the numbers from Table S3

(p < 10−4, LR t-test). We should note that one challenge in interpreting these numbers is that they strongly depend

on our power to detect association and do not reflect the numbers (even relative) of genetic loci that affect a molecular

trait. Nevertheless, we estimated the number of shared QTLs according to Storey’s π1. These numbers are likely

to be conservative (see fig. S2B,E), which is why we do not provide an estimate for the number of stage-specific

QTLs for RNA-level molecular phenotypes. We did estimate the number of stage-specific QTLs for H3K27ac levels

at enhancers, because the ascertainment cutoff had a marginal effect on our estimates of percolation (fig. S2A).
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Characterization of the shared effects of eQTLs and sQTLs on chromatin

To estimate the number of eQTLs that may function through DNA-level phenotypes (e.g. transcription factor binding

and/or epigenetic modifications) (Fig. 2C), we estimated the number of eQTLs (called using 86 RNA-seq GEUVADIS

samples) that were also QTLs for H3K27ac, DNaseI, and/or DNA methylation levels. We also obtained H3K4me1,

H3K4me3 QTLs from (8) and tested whether our eQTLs were H3K4me1 or H3K4me3-level QTLs.

Specifically, we took the top 2,000 genes with association to gene-level phenotypes, which corresponds roughly

to a FDR of 10% (9.82% FDR to be exact). We then took the best SNP for each gene according to two models (Min

p-value or max posterior for the hierarchical model) and asked whether they were QTLs (at 10% FDR) for H3K27ac,

DNaseI, and/or DNA methylation levels, or were associated at a p-value (<0.01) for H3K4me1 or H3K4me3-level.

These cutoffs are arbitrary but were determined in relation to our control SNP set. Our control SNP set was de-

rived from SNPs matched for distance from TSS (250bp bins), gene expression (quintile) and minor allele frequency

(decile), but with the restriction that they must not have an association p-value < 0.1 with the expression level of any

gene. As such, because control SNPs are highly enriched near transcription start sites, we expect a proportion of them

to be true DNA-level trait QTLs. To define a similar control set of sQTLs, we sampled one random SNP that lie within

an intron cluster (the SNP must therefore be within a gene) with no sQTL association.

Overall, we found that 63.8% of the top 2,000 eQTL SNP-gene pairs were also QTLs for one or more DNA-level

traits (versus ∼20% for our control SNPs). These results suggest that the vast majority of eQTLs function through

DNA-level traits. We note here that it is also possible some genetic variants affect both aspects of chromatin regu-

lation and post-transcriptional regulation separately, or that some eQTLs function through co- or post-transcriptional

processes and only indirectly affects DNA-level phenotypes. We do not test these alternative models in the current

study, however a recent study (9) suggests that these are relatively uncommon (<20% of the time). We find only a

small excess of sQTLs that are chromatin-QTLs (17.5%) compared to sQTLs control SNPs (13.3%).

Of the 2,000 genes we considered, we expect 10% of the eQTLs to be false positives. We found that 63.8%

of eQTLs and ∼20% of our control SNPs were also chromatin-QTLs. We may therefore estimate that (63.8% −

20%)/0.90 = 48.7% of all eQTLs are chromatin-QTLs. However, we also expect some SNPs to be chromatin-QTLs

by chance. Therefore if we assumed that if ∼15±5% of random SNPs within promoter regions are chromatin-level

QTLs, the estimate that ∼65% of eQTLs are chromatin-trait QTLs is likely to be within 6% of the true estimate:
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63.8%−20%+[15%±5%]
0.90 = 65.3± 5.5%. Again, this 6% confidence level is based on the assumption that 15% (±5%) of

SNPs near promoters are chromatin-QTLs. While we found this number useful to obtain an intuition of how accurate

our 65% estimate is, we do not think of this as a confidence interval in a statistical sense.

We next wondered whether eQTLs without DNA-level association (unexplained eQTLs or ueQTLs) were enriched

in genomic regions informative of regulatory mechanisms (Fig. 2D). We therefore took the 709 ueQTLs and asked

whether they were enriched in any particular genomic annotation. Like eQTLs that are chromatin QTLs, we found

that ueQTLs were enriched within gene bodies. However, unlike eQTLs, we found no enrichment of ueQTLs near

the TSS. This observation is consistent with the notion that they do not function by altering transcription initiation

dynamics, which is often reflected in histone modifications.

To further identify genomic annotations enriched for ueQTLs, we used the posterior weights from the hierarchical

model (see section entitled “Bayesian hierarchical model to identify causal eQTLs”) to assign to each SNP-gene pair

a probability that it is the causal eQTL (or ueQTL). We then identified genomic annotations (Table S4) in which these

eQTLs (and ueQTLs) lie and summed their probabilities for each annotation independently (note that annotations are

not disjoint). For all annotations, we then computed the log2 differences between the associated ueQTLs and eQTLs

probabilities. We computed bootstraps for these estimates by resampling 1,000 times with replacement from the orig-

inal dataset and computing the 95% confidence interval (fig. S6).

To compute a p-value measuring the difference in contribution of SNPs that lie in regions associated with tran-

scription elongation, gene exons (regions annotated as exonic, and 3’UTR, but not 5’ UTR), and gene introns, we first

summed the posteriors of SNPs that fell in chromHMM regions associated with transcription elongation (33), gene

exons and introns, respectively, for each gene as follows:

GeQTL = {
∑
i

P gsnpi
· 1snpi∈Txn elongation : g has an eQTL} (1)

GueQTL = {
∑
i

P gsnpi
· 1snpi∈Txn elongation : g has an ueQTL} (2)

where P gsnpi is the posterior that snpi is the causal eQTL (or ueQTL) for a gene g. We then compared the distribution

GeQTL to GueQTL using a two-tailed Mann-Whitney U test yielding a p-value = 3.02× 10−22 for transcription elonga-

tion, p = 5.42× 10−8 for exons and p = 0.006 for introns.
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RNA decay and alternative polyadenylation site QTLs

RNA decay. To identify genetic variants associated with RNA decay, we used quantitative measurements previously

established in (31) and performed linear regression using our panel of imputed individuals. In total, we obtained only

9 RNA decay QTL at 10% FDR. We then asked how many of the regulatory QTLs we identified (at p < 10−4) for

H3K27ac levels at TSS, transcription, steady-state mRNA, ribosome occupancy, and protein expression levels were

RNA decay QTLs using Storey’s π0 method (Table S5).

Interestingly, we estimated that 17.4% and 17.3% of haQTLs at gene promoters and transcription rate QTLs, re-

spectively, were also classified as decay QTLs, versus∼20% of QTLs for steady-state mRNA and ribosome occupancy

levels (although note that our confidence intervals are very large for these estimates). These observations support the

notions that (1) a significant fraction of decay QTLs are the result of complex regulatory circuits and/or transcription-

coupled decay (31) and that (2) genetic variation that directly affect mRNA decay rates do not play a major role in

steady-state mRNA level variation.

Alternative polyadenylation sites. To identify alternative polyadenylation site QTLs (apaQTLs), we predicted and

quantified alternatively poly-adenylated (APA) sites using a customized version (we lowered the hard-coded coverage

threshold from 20 to 3) of DaPars (34) and found 11,157 putative APA sites. Using the ratio of distal to proximal

polyA site usage as quantitative trait, we identified 585 apaQTLs at 10% FDR.

We then asked how many of the regulatory QTLs we identified for H3K27ac levels at TSS, transcription, steady-

state mRNA, ribosome occupancy, and protein expression levels were APA QTLs using Storey’s π0 method, like we

did for RNA decay QTLs. Unlike for RNA decay QTLs, we estimated that none of the QTLs for H3k27ac levels

at gene TSS were apaQTLs and 7% of transcription (4sU) QTLs were apaQTLs. However, 19%, 42%, and 36% of

the genes with a QTL for steady-state, ribosome occupancy, and protein expression levels that also had a predicted

APA site were estimated to have a apaQTL (Table S5). Although our estimates have large confidence intervals, these

estimates suggest a decoupling between transcription and alternative polyadenylation site usage, as expected. We fur-

ther found that the top SNP for nearly a quarter of apaQTLs (142 of 585 or 24.2%) were located less than 2kb away

from the variable polyadenylation sites (fig. S11). This observation suggests an important contribution of alternative

polyadenylation site usage to post-transcriptional gene regulation, as previously proposed (35).
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Joint model and estimation of QTL sharing

Previous work has estimated the number of shared QTLs across, for example, different tissues (24). Rather than

hypothesis testing over the 2P possible hypotheses for P phenotypes, we directly model effect sizes. We assume a

prior for the true underlying effect sizes for SNP-gene pair a as follows,

βa|za ∼ zaN(0,Σ) + (1− za)δ0, (3)

za ∼ Bernoulli(π), (4)

where

• βa is a vector of effect sizes across P phenotypes

• Σ is the P × P covariance matrix of coefficients for non-null pairs a

• za is a mixture indicator: za = 1 denotes that SNP-gene pair a is regulatory, za = 0 that it is not.

• δ0 is a delta-spike at zero in P -dimensional space

• π is the prior probability of a given SNP-gene pair a having non-zero coefficients

We take as the likelihood for the model the fitted estimates from standard linear modeling with associated standard

errors, i.e.

βap|β̂ap, σ̂2
ap ∼ N(β̂ap, σ̂

2
ap) (5)

where p indexes the phenotypes. We use Expectation-Maximization to integrate over βa and za while optimizing with

respect to Σ and π.

E-step. Calculate q(β, z) ∝ p(D, β, z|Σ, π)

q(za = 1) ∝ P (D, za = 1|Σ, π) (6)

q(βa|za = 1) = N(B−1
a ba, B

−1
a ) (7)

12



where

Ba = Σ−1
a + diag(1/σ̂2

a) (8)

bap = β̂ap/σ̂ap (9)

The probability required in Equation 6 can be calculated as

logP (D, za = 1|Σ, π) = logP (za = 1|π) + log

∫
P (D|β)N(β|0,Σ)dβ (10)

= log π + log
N(0, 0,Σ)

∏
pN(β̂ap|0, σ̂2

ap)

N(0|B−1
a ba, B

−1
a )

(11)

logP (D, za = 0|Σ, π) = logP (za = 0|π) + logP (D|β = 0) (12)

= log(1− π) + log
∏
p

N(β̂ap|0, σ̂2
ap) (13)

P (za = 1|D,Σ, π) = σ (logP (D, za = 0|Σ, π)− logP (D, za = 0|Σ, π)) (14)

= σ

(
log

π

1− π
+ log

N(β|0,Σ)

N(0|B−1
a ba, B

−1
a

)
(15)

where D are the data (β̂, σ̂) and σ(x) = 1/(1 + e−x).

M-step. This involves calculating arg maxπ,Σ Eq log p(D, β, c|Σ, π), which is achieved as

Σ :=
∑
a

q(za = 1)Eq(βa:|za=1)[β:dβ
T
:a]/

∑
a

q(za = 1) (16)

π :=
∑
a

q(za = 1)/A (17)

Note 1: We do not explicitly account for linkage disequilibrium (LD), which will result in SNPs in LD with the

causal SNP appearing to have significant effects. However, this will not bias estimates of the correlation of effect sizes

since this correlation will be maintained at these linked SNPs.

Note 2: We additionally tried two alternative models. The first includes an additional diagonal mixture component

which modesl SNP-gene pairs where the sharing across phenotypes does not match the global pattern,

βa: ∼ π2MVN(0,Σ) + π1MVN(0, diag(τ)) + π0δ0. (18)
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We found the diagonal component was given extremely low weight, so the estimated level of global sharing was highly

consistent with the original model.

The second allows an arbitrary number of general covariance multivariate Gaussian mixture components (we

experimented with 3 and 10):

βa: ∼ π0δ0 +

C∑
c=1

πcMVN(0,Σc) (19)

The mixture components were used by the model to fit a heavier tailed distribution, but the estimates of the expected

correlation of the effect sizes was again highly consistent with the original model.

Bayesian hierarchical model to identify causal eQTLs

To identify causal eQTLs, we adapted the hierarchical generative model for genetic association with gene expres-

sion (36) to the setting where only summary statistics of genetic associations with gene expression are available.

Under this model, each gene has a latent indicator variable Qg ∈ {0, 1} that specifies whether the gene has 0 or 1

causal SNP associated with variation in its expression. This causal SNP is hereafter referred to as an expression quan-

titative trait nucleotide or eQTN. The prior probability for a gene to have an eQTN, Pr(Qg = 1) = π, is assumed to

be same for all genes.

For each SNP s tested against a gene g, a latent indicator variable Csg ∈ {0, 1} specifies whether the SNP s is the

eQTN for that gene. Conditional on the gene having an eQTN, the prior probability that a particular SNP s is the eQTN

depends on whether it falls within a particular genomic annotation (e.g. chromatin mark peaks) and/or sequence-level

annotations

Pr(Csg = 1|Qg = 1) = γsg (20)

where γsg ∝ exp(
∑
k αkAsk). The value of the kth annotation for the sth SNP is encoded as Ask; for our purposes,

Ask is a binary-valued variable (for example, is a SNP in an open chromatin region? Is a SNP nonsynonymous or

synonymous?). The weight αk denotes the importance of the kth annotation in specifying the prior probability that a

SNP is an eQTN. We impose the constraint
∑
s γsg = 1 to ensure that a gene can have at most one eQTN.

The true effect of an eQTN is modeled by a normal distribution centered at zero with variance σ2 while the true
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effect of a SNP that is not an eQTN is fixed exactly to zero:

Pr(βsg|Csg) = (1− Csg) · 0 + Csg · N (0, σ). (21)

Given the true effects, the estimated effects are then modeled as Pr(β̂sg|βsg, σ̂sg) = N (βsg, σ̂sg), where σ̂sg is the

standard error of the estimated effect. Integrating out the true effects, we get

Pr(β̂sg|Csg) = (1− Csg) · N (0, σ̂sg) + Csg · N
(

0,
2

√
σ2 + σ̂sg

2

)
. (22)

Using the summary statistics (β̂sg, σ̂sg) from testing each gene with each SNP in a 100kb window around that gene

and the annotation values for these SNPs Ask, we estimate the parameters αk that maximize the overall likelihood

of the summary statistics by sharing information across all tested genes. The summary statistics for each gene-SNP

pair contribute to the likelihood via a Bayes factor that measures the relative support for the alternative hypothesis (the

SNP is an eQTN) compared against the null (the SNP is not associated with gene expression). This model also allows

us to compute the posterior probability that a SNP is the eQTN for a particular gene. The software implementing this

model can be found at https://github.com/rajanil/qtlBHM.

Identification of splicing events and splicing QTLs

We developed a method that clusters introns defined by RNA-seq reads to identify differential splicing events that are

variable within and across individuals. In particular, we leveraged the large fraction of RNA-seq reads (86 YRI GEU-

VADIS samples) across samples which span exon-exon junctions. This allows the identification of splicing events

without relying on pre-existing annotations which are typically incomplete, especially in the setting of large genes or

individual/population-specific isoforms.

More precisely, we defined “clusters” of introns that represent alternative splicing choices. To do this, we first

grouped together overlapping introns (defined by spliced reads). For each of these groups we constructed a graph

where nodes are introns and edges represent overlapping introns. The connected components of this graph define

our clusters. Singleton nodes (introns) are discarded. For each intron cluster, we next iteratively (1) removed in-

trons that were supported with fewer than 100 reads or fewer than 5% of the total number of intronic read counts

for the entire cluster, and (2) re-clustered introns according to the procedure above. As a further filtering step, we
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used gene annotations and removed all clusters with intron from 2 or more genes. Of 14,791 clusters, this step

removed 231 and the rest were used for subsequent analyses. An implementation of this approach is available at

https://github.com/davidaknowles/leafcutter and described in (20).

To identify genetic variation that affects splicing (sQTLs), we used as quantitative trait the proportion of intron-

defining reads to the total number of reads from the intron cluster it belongs to (fig. S7A). As such, this intron ratio

describes how often an intron is used relative to other introns in the same cluster. Finally, we tested the association

between intron ratio usage and SNPs (with MAF > 0.05) that were within 100kb of the intron cluster.

Estimation of gene-wide and cluster-wide eQTL and sQTL p-values and false discovery rates

To estimate the FDR for eQTLs and sQTLs identified from 86 YRI LCL RNA-seq samples from GEUVADIS, we ran

Matrix eQTL (37) 10,000 times, each time with permuted genotype sample label. We then computed the empirical

gene-level p-value for the most significant QTL for each gene as the fraction of permutation p-values at least as signif-

icant as the best p-value from non-permutated genotypes, i.e. p =

∑104

i=1 1piperm≤preal

104 , where piperm is the p-value obtained

from the ith permutation. Using this procedure, we estimated that at 10% and 5% FDR, we identified 2,015 and 1,593

eQTLs, respectively and 2,893 and 1,602 sQTLs, respectively.

Comparisons between eQTLs and sQTLs

Location of eQTLs and sQTLs relative to genes (Fig. 3A–B): For both eQTLs and sQTLs at 5% FDR, we identified

their relative location to the gene by dividing each gene into 10 bins of equal sizes and assigned each QTL into its

corresponding distance bin if they lie within the gene. When a QTL lies outside the gene, we identify the bin (again

of equal size) in which the QTL falls away from the transcription start site or transcription end site.

Distance between the best eQTL and sQTL of a gene (Fig. 3C): For genes whose expression and intron splicing were

controlled by an eQTL and sQTL at 10% FDR respectively, we computed the distance between the best eQTL and

the best sQTL (according to p-values). We required that the best eQTL (sQTL) must be at least twice (2 times) more

significant than the second best eQTL (sQTL). As such, 275 genes satisfied this criterion. We also applied this same

approach to compare our eQTL identified from RNA-seq (GEUVADIS) with eQTLs identified from RNA-seq (Pick-

rell (17)) (fig. S12).
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Hierarchical model to identify annotations most relevant to gene expression and splicing regulation (Fig. 3D): We ob-

tained LCL-specific chromHMM annotations and gene-level annotations (e.g. intronic variant, splice region variants,

UTR variants, etc...) from snpEff (38) v4.1. Splice region variants include:

• A sequence variant in which a change has occurred within the region of the splice site, either within 1-3 bases

of the exon or 3-8 bases of the intron.

• A variant affecting putative (Lariat) branch point, located in the intron.

• A variant affecting putative (Lariat) branch point from U12 splicing machinery, located in the intron.

We next annotated all tested SNPs according to their overlapping annotations and ran our hierarchical model to

identify the annotations that were most likely to harbor a sQTLs and eQTLs. We note that the number of SNPs in each

chromHMM annotation were substantially smaller than the number of SNPs in gene-base annotations, which explains

the differences in 95% confidence intervals.

Chromatin QTLs that are more likely to be sQTLs (Fig. 3E): Variation in CTCF binding and H3K27ac levels have been

shown to correlate with differences in splicing across tissues or experimental conditions (21, 39), and splicing QTLs

are enriched in regulatory regions including CTCF binding sites (22). To identify direct links between chromatin and

splicing, we compared the distribution of sQTL p-values of SNPs that were classified as chromatin QTLs (H3K27ac

QTLs, CTCF QTLs (40), DNA methylation QTLs, and DNaseI QTLs) to those that merely fall within LCLs H3K27ac

peaks (± 1kb), CTCF peaks (±1kb), and ±1kb surrounding a DNA methylation probe (450K Illumina Methylation

array), and DNaseI peaks, respectively. We find that only H3K27ac and CTCF QTLs were more likely to be sQTLs

than SNPs that fall within 1kb of their respective peaks.

To do this, we first identified SNPs that fell into H3K27ac/CTCF peaks (± 1kb) and SNPs that were classified as

H3K27ac/CTCF QTLs at 10% FDR. To avoid underestimating enrichment p-values due to linkage disequilibrium, we

binned each set of SNPs into genomic blocks of 10kb, and then took for each bin a SNP at random. We next asked how

many bins had a SNP with an association to splicing below a p-value threshold p = 8.41× 10−4, which corresponds to

a 10% FDR for the entire set of SNPs tested. We find that ∼619 of 11,577 (∼5.3%) haQTLs had an association with

splicing, while ∼1,105 of 38,642 SNPs (2.9%) SNPs within 1kb of a H3K27ac peak had an association with splicing

(χ2 p=1.1×10−34). For CTCF-QTLs, 30 of 488 were splicing QTLs and 468 of 17,373 CTCF SNPs were sQTLs (χ2

p=2.2× 10−5). These enrichments were robust to different choices of FDR and window sizes.
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To identify sQTLs that are associated with chromatin-level phenotypes, we searched for associations between

sQTLs and chromatin-level phenotypes that were measured at most 50kb away from each SNP. A p-value was re-

ported if the SNP was a chromatin QTL at 10% FDR. Note here that no Bonferroni correction was applied because

QTLs tend to be associated with multiple nearby peaks that show similar variation in terms of genotype. The list of

171 chrom-sQTLs (Table S7) is therefore expected to contain false positives and we advise only to take sQTLs with

strong association to chromatin-level phenotypes for follow-up (e.g. p < 10−5).

COMT CTCF-QTL (Fig. 3F): We downloaded CTCF-QTL data described from (40) and found that a SNP in the

COMT loci was a CTCF-QTL and affected splicing. Upon further investigation, we found that this SNP was a QTL

for DNaseI sensitivity and DNA methylation.

Estimating the relative contribution of haQTLs, eQTLs and sQTLs on complex traits

Genome-wide association studies. We obtained the summary statistics for 6 GWAS: rheumatoid arthritis (41), multiple

sclerosis (42), Alzheimer’s disease (43), schizophrenia (44), height (45), and body mass index (46). Specifically, we

obtained and compiled for each genotyped and imputed SNP, an effect size, standard error and minor allele frequency

which were used as input to fgwas and polyTest.

Annotations. To annotate SNPs, we used snpEff (38) to annotate SNPs that lie in genic annotations (5’ UTRs, 3’ UTRs,

introns, synonymous sites, non-synonymous sites, etc...), in conserved regions (phastCons scores > 0.4), chromatin

peaks (ENCODE LCL ChIP-seq peaks), and chromHMM annotations. We then encoded whether a SNPs is a QTL

for a regulatory phenotype or not as a binary using a p-value cutoff of 10−4, but our observations are consistent with

different choices of cutoffs (fig. S16). To further distinguish the effects of genetic variants on complex traits through

gene expression level regulation versus splicing regulation (Fig. 4C), we removed any sQTL that had an eQTL asso-

ciation that was more than four order of magnitudes less significant than sQTL association (our observations are also

robust to this parameter). We further obtained eQTLs identified from purified Monocytes and T-cells (47) and from

B-cells (48) (fig. S17).

fgwas. (Fig. 4A) We ran fgwas with default parameters on each annotation separately. Jointly inputing multiple

annotations yielded similar results (not shown). We used polyTest (see section entitled “Overview of polyTest”) to

estimate the relative contribution when accounting for multiple annotations jointly (Fig. 4B) (fig. S16). To verify
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that our choice of QTL cutoffs (i.e. what we consider a QTL for a particular regulatory phenotype) does not affect

our interpretations, we ran fgwas with different QTL association p-value cutoffs (p-values < 10−3, < 10−4, < 10−5,

< 10−6,< 10−8) (fig. S16) representing a wide number of effect sizes and gene numbers with a QTL (e.g. the number

of eQTLs ranged from∼500 to over 4, 000). We observed that our estimated effect sizes did not vary significantly and

our interpretation remains the same with different choices of cutoffs (fig. S18).

Comparison to the results from Xiong et al. 2015

Xiong et al. (15) compared the regulatory scores (predicted using their deep learning method) of 457 SNPs implicated

in GWAS to the regulatory scores of a matched set of non-GWAS SNPs; they found no difference in regulatory score

distribution between the two sets. Our analyses suggest instead that genetic variation that affects splicing do indeed

contribute to complex traits.

There are several differences between their analysis and ours. For example, Xiong et al. use predicted effects of

SNPs on splicing to search for GWAS signal while we use direct evidence that a SNP is associated with splicing vari-

ation. As such, Xiong et al.’s approach focused on SNPs that are predicted to disrupt splicing with |∆PSI| ≥ 5%. Our

approach is able to detect variation in splicing that have much smaller effects. Therefore we believe that our approach

is more sensitive to detecting association between genetic variants and complex diseases because genetic variants with

small effects (even at the molecular level) may contribute substantially to complex traits.

The most critical difference between our two studies is the use of SNPs pooled from hundreds of heterogeneous

GWAS to form Xiong et al’s set of GWAS SNPs. This is problematic because complex traits can have different etiolo-

gies and affect different tissues/cell-types. We considered all SNPs of every GWAS independently and tested statistical

enrichment of sQTLs among SNPs with large effect sizes using two polygenic models (fgwas and polyTest). This has

several advantages. Firstly, we were able to determine whether sQTLs in a precise cell-type were likely to modulate

the risk of a relevant disease. For example, we find that LCL sQTLs were enriched in GWAS signal among immune-

related diseases. Secondly, our polygenic model allows us to use the thousands of putative trait-affecting SNPs (some

of which have small effects) to support our inference. In contrast only the top 457 SNPs were used in Xiong et al’s

analysis.
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Overview of polyTest

PolyTest is a novel method for joint analysis of entire GWAS and functional annotations. We assume that the effect

of the ith SNP, denoted βi, is drawn from a normal distribution with mean 0, whose variance is determined by the

functional annotations associated with the SNP:

β̂i|βi ∼ N
(
0, σ2(~xi)

)
,

where ~xi is the vector of annotations associated with SNP i, and σ2(.) is some function mapping the vector of anno-

tations to a positive value. Following the common practice in generalized linear models (49), we use σ2(~xi) = e ~xi•~γ ,

where ~γ is a vector of coefficients, and • denotes the dot product. In other words, γj = 0 implies that the jth annotation

has no effect of the typical effect size, while a non-zero value, implies that the variance is affected by the jth annotation.

Under the assumption of linkage equilibrium, the estimated effect of each SNP is an unbiased estimate of the true

effect size, with a standard error that is denoted σ̂i and depends on many factors (such as sample size, allele frequency,

imputation quality, etc...) In other words:

β̂i | βi ∼ N(βi, σ̂
2
i ). (23)

Integrating out the true effects, we get:

β̂i ∼ N
(
0, σ̂2

i + σ2(~xi)
)

= N
(
0, σ̂2

i + e~xi•~γ
)
. (24)

To incorporate linkage disquilibrium (LD), we follow (50) who note that E[Zβ ] = RZβ where Zβ is the vector of

(expected) Z-scores and R is the matrix of SNP by SNP correlations. We can then undo the effect of LD by multiply-

ing both sizes by R−1 resulting in unbiased Z-scores, and transforming those to unbiased estimates of effect size (the

unbiased estimate, however, typically have a much larger standard error). We use publicly available data to estimate

R, and apply the shrinkage method of (51) to account for the fact that R is estimated rather than known.

Once the mean and marginal variance of each effect estimate is specified as a function of ~γ, we maximize the

composite log-likelihood function (the product of all the marginal log-likelihoods) using Newton’s second-order

method. Since classical inference is invalid for maximum composite likelihood estimates, we re-run the estimation for

each chromosome separately, resulting in 22 independent samples from each estimate’s distribution, which are then

weighted by chromosome size to provide an estimate of the standard error of the estimate and compute a p-value.
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Comparison to fgwas

Another popular method used in this study is fgwas (23). Several major differences exist between fgwas and polyTest:

First, fgwas explicitly assumes a sparse genetic architecture of disease, where each segment (500Kb to 1Mb long)

harbors at most a single causal SNP, while polyTest assumes a highly polygenic model of disease. Second, the sparsity

assumption of fgwas is used as a justification for not modelling the tagging due to LD. However, if two annotations

are often close together (e.g. exons and introns, 5’UTR and promoters etc.), both might appear to be significant even

if only one of them is indeed significant when LD is not accounted for. Lastly, polyTest adds log(f(1 − f)) as an

addtional annotation, thus allowing any dependence of the form V ar(β) ∝ [f(1− f)]α between the variance of effect

sizes and allele frequency f (as is often observed), while fgwas assumes a constant variance of effect sizes.

Raw and processed data availability

The newly generated 4sU-seq (30m and 60m) data are available on GEO (accession ID GSE75220). Other data used

can be found in Table S8, at http://mitra.stanford.edu/kundaje/portal/chromovar3d/qtls.

html (Histone QTLs) and http://www.ebi.ac.uk/birney-srv/CTCF-QTL/ (CTCF-QTLs).
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Supplementary Figures

Figure S1: Weak correlation between mRNA expression level and RNA decay.
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Figure S2: Sharing of QTLs across the regulatory cascade. A) Left panel: estimates of sharing between H3K27ac

QTLs and eQTLs (total gene expression) for genes whose TSS are less than 1kb, 25kb, and 100kb away from peaks.

For each of these categories (1kb, 25kb, 100kb), only genes within 1kb, 25kb, and 100kb away, respectively were

considered (restricted comparison). Right panel: the same estimates for the percolation of effects when considering

all genes that are 500kb for every peak (fair comparison). B) eQTLs with strong associations have larger effect sizes

(linear regression slopes) on average than eQTLs with weaker associations. C) Compounded reduction of QTL sharing

across the regulatory cascade suggest a small amount of buffering between transcription, translation, and protein. D)

Estimates of QTL numbers (see Table S3) and sharing across gene phenotypes. The number of stage-specific QTLs

were estimated according to the section entitled “Estimation of QTL sharing between H3K27ac levels at enhancers,

H3K27ac levels at promoters, and gene-level phenotypes” of the Supplementary Materials. E) Estimates of QTL

sharing for all regulatory stage pairs, using ascertainment from one to the other stage. Bars represent 80% confidence

intervals.
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Figure S3: Estimates of sharing across regulatory QTLs using a joint modeling approach (see section entitled “Joint

model and estimation of QTL sharing” for full model.
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Figure S4: Effect sizes are similar from transcription to translation rates but appear to be partially buffered at the

protein expression level. Ascertainment was made from 565 H3K4me3 QTLs recently identified in (8) at 5% FDR.

Protein QTL effect sizes are on average smaller than those of transcription rates, RNA, and ribosome QTLs (Mann-

Whitney U, p = 0.002)
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Figure S5: Estimates of eQTLs that are also chromatin-level QTLs using QTL data from (8) alone. The estimated

proportion of eQTLs that also affect chromatin-level traits using chrom-QTLs from (8) is lower than the one estimated

using our chromatin QTLs (for both p < 0.01 and p < 0.05), and the proportion of control eQTLs that are chromatin

QTLs is higher (for p < 0.05). This suggests that additional chromatin marks representing gene body (H3K4me3) and

enhancers (H3K4me1) do not account for eQTLs that were found to be unexplained in our study.
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Figure S6: A) eQTLs that are not chromatin-level QTLs are enriched within the gene body, but not near TSS. B) En-

richment of eQTLs that are not chromatin-level QTLs in regions associated to transcription elongation, weak transcrip-

tion and H3K36me3 compared to eQTLs that also appear to affect chromatin-traits. Bars represent 95% confidence

intervals obtained from bootstraps.
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Figure S7: Identifying splicing quantitative trait loci. A) To identify genetic variants that affect splicing (sQTLs), we

quantified the ratio of intron usage within intron clusters. Each intron is thus assigned a ratio between 0 and 1, which

is independent from total gene expression levels. B) sQTLs are highly enriched for transcript ratio QTLs (trQTLs)

previously identified in (6), which indicates that our approaches, although very different, can detect the same splicing

signals. C) Of the 100 most significant associations, we find that 28 lie in close proximity (at most 10bp away) to the

splice sites of the exons they affect and 60 within 500bp. This suggests that genetic variants often affect transcript

abundance independently from transcription rate. D) Example of a synonymous variant located 1 bp away from the 5’

splice site of an intron in CAST which disrupts splicing of an internal intron. This example was previously identified

and experimentally validated (52).
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Figure S8: A) Distribution of |∆PSI| for the top 2,000 sQTLs detected in this study. ∆PSI was computed as twice the

coefficient (2β) of the linear fit (Y = βX + ε) between genotypes (coded as X = 0, 1, and 2) and raw intron excision

levels (Y , no transformation or covariates). B) Example of a sQTL with a small (0.00112) ∆PSI. A genetic variant

(rs191246806) controls the excision level of an intronic stretch that contains an otherwise constitutively expressed

exon.
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Figure S9: A) Left panel: each point represents a SNP with the most significant association to the expression levels of

a gene. A large minority of genes have eQTLs that affect splicing and may be driven by variants that affect splicing

(red points). Right panel: each point represents a SNP with the most significant association to the splicing ratio of an

intron ration. A large majority of genes have sQTLs that do not appear to affect gene expression. Some variants may

affect splicing by altering transcription initiation (blue points). B) Histogram of the strength of association between

sQTLs and total gene expression: the top sQTL for >74% intron clusters do not appear to affect the expression levels

of corresponding gene (p > 0.01).
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Figure S10: Effects of sQTLs on mRNA isoforms. A) Nearly 90% of sQTLs affect an intron that flanks a coding gene.

B) Using gene annotation, we were able to classify about 60% of events as the skipping of one exon (cassette/simple) or

more (cassette/complex),∼20% alternative acceptor or donor sites, and∼10% alternative 5’ or 3’ exon. The rest were

events that are more complex. C) Examples of how reads spanning intron-exon boundaries can be used to determine

alternative splicing type.
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Figure S11: Position distribution of 585 APA QTLs identified at 10% FDR.

Figure S12: Left: Genes with top eQTL and sQTL with p-values at least 2 times smaller compared to the next best

associations to total expression and intron ratios, respectively. Right: Genes with top eQTL ascertained in GEUVADIS

RNA-seq data and eQTL ascertained in Pickrell RNA-seq data also with p-values at least 2 times smaller compared to

the next best associations.
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Figure S13: QTLs for DNaseI and DNA methylation levels are not more likely to be sQTLs than SNPs that fall in

DNaseI peaks or ±1kb away from DNA methylation probes, respectively.
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Figure S14: Q-Q plot for rheumatoid arthritis (RA), height, schizophrenia (SCZ), Alzheimer’s disease (AD), and

body mass index (BMI). All hits in the extended MHC region (26Mb–34Mb on hg19 chromosome 16) and hits with

association p-value < 10−30 were removed.
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Figure S15: A sQTL in SP140 is associated with an exon skipping event linked to multiple sclerosis (53). Our intron-

based analysis of splicing revealed an association between genotype and a complex splicing event. The splicing of

two different mRNA isoforms are affected. These two isoforms differ by 9bp at the 3’ of the first depicted exon. The

alternate allele, A, promotes skipping of exon 7 in both isoforms.
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Figure S16: Robustness of QTL cutoffs in fgwas analysis. Various cutoffs on the minimum p-value of the association

between genotype to molecular trait yield similar estimates. The 95% confidence interval overlap 0 for grayed out

annotations.
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Figure S17: Comparison of fgwas estimated effect sizes between QTLs in LCLs and eQTLs from purified immune

cells (T-cells and monocytes eQTLs were obtained from (47) and B-cells eQTLs from (48)).
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Figure S18: Joint analysis of all annotations including the QTL annotations using polyTest. All QTL estimates are

shown (sQTL for AD not significant), other annotations are shown only when significant.

38



Supplementary Tables

data type measurement sample size source QTL mapping pipeline

H3K27ac chromatin modification 59 del Rosario et al., 2015 WASP+LM

DNaseI open chromatin 70 Degner et al., 2012 Degner+liftOver+LM

Methylation methylation levels 64 Banovich et al., 2014 Banovich+liftOver+LM

4su (30min) transcription rate 65 This study (GSE75220) WASP+LM

4su (60min) transcription rate 64 This study (GSE75220) WASP+LM

RNA-seq (P) steady-state mRNA levels 69 Pickrell et al., 2010 WASP+LM

RNA-seq (G) steady-state mRNA levels 86 Lappalainen et al., 2013 WASP+LM

RNA decay RNA decay rates 68 Pai et al., 2012 Pai+LM

riboprofiling ribosome occupancy 70 Battle et al., 2015 WASP+LM

protein level steady-state protein levels 64 Battle et al., 2015 Battle+LM

Table S1: Table of all datasets processed in this study. WASP (4) was used to account for read depth heterogeneity

and GC-content biases across libraries. LM: linear model.

Data type No. of PCs regressed

H3K27ac 6

4sU (30m) 13

4sU (60m) 11

RNA-seq (Pickrell (17)) 14

RNA-seq (GEUVADIS) 15

ribo-seq 9

Intronic splicing ratios (GEUVADIS) 3

Table S2: Number of PCs that maximizes the number of QTLs for each data type.
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Data type T = 2 4 6 8

H3K27ac (enhancer) 2,149 661 291 133

H3K27ac (TSS) 1,249 473 131 47

4sU (30m) 3,632 1,142 299 110

4sU (60m) 3,512 1,116 277 119

RNA-seq (Pickrell (17)) 4,496 1,324 394 180

RNA-seq (GEUVADIS) 6,954 2,316 983 508

ribo-seq 2,117 787 208 91

protein 586 217 68 21

Table S3: Number of QTLs with association − log10p-values > T that were used to estimate sharing. H3K27ac

enhancer and TSS refer to H3K27ac level QTLs tested at enhancers (chromHMM-defined (33) enhancer < 100kb

away from the nearest gene) and transcription start sites of a gene (±1kb away from gene TSS), respectively.
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Annotation log2 sum posterior differences Bootstrap 95% CI

Strong Enhancer -1.18 (-1.47,-0.86)

H2A -0.60 (-0.71,-0.46)

H3K4me1 -0.52 (-0.63,-0.38)

H3K27ac -0.50 (-0.60,-0.38)

Weak Enhancer -0.49 (-0.77,-0.18)

H3K4me3 -0.47 (-0.58,-0.36)

H3K4me2 -0.46 (-0.56,-0.34)

H3K9ac -0.46 (-0.56,-0.35)

Active Promoter -0.31 (-0.52,-0.13)

Weak Promoter -0.30 (-0.63,0.03)

TSS gencode -0.29 (-0.42,-0.15)

H3K79me2 -0.22 (-0.32,-0.12)

upstream gene variant -0.21 (-0.34,-0.08)

H3K9me3 -0.06 (-0.32,0.20)

H4K20me1 -0.03 (-0.21,0.14)

intron variant 0.14 (0.06,0.21)

Heterochrom 0.14 (-0.12,0.37)

downstream gene variant 0.19 (0.04,0.35)

Weak Txn 0.40 (0.22,0.59)

H3K36me3 0.45 (0.35,0.55)

gene exons 0.48 (0.22,0.71)

Txn Elongation 0.88 (0.70,1.08)

Table S4: Genomic annotation differences between chrom-eQTLs and unexplained eQTLs. Significant annotations

are in bold font.
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Phenotype No. of genes tested Decay π1 80% CI

H3K27acShyam @ TSS 301 0.174 (0.030, 0.327)

Transcription (4sU) 759 0.173 (0.078, 0.277)

RNA-seq (Geuvadis) 1545 0.200 (0.130, 0.269)

Ribosome 562 0.207 (0.094, 0.324)

Protein 182 0.0 (0.0, 0.154)

Table S5: Proportion of regulatory QTLs that are decay QTLs estimated using Storey’s π1. 80%-confidence interval

estimated using 500 bootstraps.

Phenotype No. of genes tested APA π1 80% CI

H3K27acShyam @ TSS 198 0.0 (0.0, 0.063)

Transcription (4sU) 449 0.070 (0.0, 0.196)

RNA-seq (Geuvadis) 1040 0.188 (0.102, 0.269)

Ribosome 328 0.423 (0.307, 0.548)

Protein 104 0.362 (0.140, 0.585)

Table S6: Proportion of regulatory QTLs that are apaQTLs estimated using Storey’s π1. 80%-confidence interval

estimated using 500 bootstraps.

cluster sQTL p-value intron coord snp id eQTL p-value ctcfQTL p-value haQTL p-value dsQTL p-value meQTL p-value

clu5430 2.21 × 10−4 chr19:1011611:1011740 rs10405583 2.19 × 10−3 ns ns 2.49 × 10−3 3.21 × 10−3

clu1743 6.99 × 10−8 chr11:68665480:68668003 rs544370 2.98 × 10−21 ns 2.06 × 10−7 ns 1.36 × 10−6

clu4984 3.83 × 10−5 chr14:24572464:24573051 rs144856253 7.36 × 10−1 ns 1.23 × 10−3 4.13 × 10−3 ns
clu677 4.29 × 10−5 chr12:57867959:57868235 rs4760273 4.96 × 10−1 ns ns 2.13 × 10−3 1.43 × 10−3

clu11546 3.45 × 10−7 chr2:113955211:113955327 rs148543122 1.98 × 10−1 ns 1.95 × 10−3 ns 2.35 × 10−3

clu2617 5.28 × 10−7 chr10:127473829:127483449 rs10901449 1.54 × 10−2 ns 6.02 × 10−4 ns 8.11 × 10−4

clu9550 2.04 × 10−4 chr5:169188629:169191038 rs7721990 3.62 × 10−3 ns 3.83 × 10−4 2.16 × 10−3 ns
clu5714 2.17 × 10−5 chr19:10675710:10676582 rs3745244 1.26 × 10−1 ns 7.21 × 10−4 4.20 × 10−3 ns
clu7346 4.36 × 10−4 chr20:44424082:44429713 rs6032531 1.35 × 10−1 2.18 × 10−12 6.47 × 10−4 ns ns
clu14580 4.84 × 10−4 chr8:145065075:145065368 rs7462703 7.96 × 10−1 ns ns 2.71 × 10−3 4.10 × 10−3

clu13108 4.84 × 10−4 chr1:155238150:155238499 rs1057941 4.59 × 10−1 ns 2.42 × 10−6 3.02 × 10−3 ns
clu3566 3.29 × 10−24 chr17:74553939:74557370 rs4647885 1.60 × 10−3 ns 2.31 × 10−3 ns 4.91 × 10−3

clu4373 8.10 × 10−20 chr16:89165171:89167070 rs8060043 1.64 × 10−7 ns 1.64 × 10−4 ns 1.99 × 10−4

clu7010 4.03 × 10−15 chr22:50316091:50316260 rs6520064 3.17 × 10−1 1.77 × 10−5 1.00 × 10−3 ns ns
clu7713 2.74 × 10−6 chr7:6049129:6057445 rs34097030 2.26 × 10−2 ns ns 6.80 × 10−4 6.49 × 10−4

clu5946 9.91 × 10−6 chr19:19743075:19744612 rs873870 8.67 × 10−1 ns ns 1.81 × 10−3 3.97 × 10−3

clu6361 1.66 × 10−16 chr19:54704756:54705028 rs3852889 5.76 × 10−1 ns 8.71 × 10−4 ns 2.61 × 10−3

clu5321 1.29 × 10−16 chr14:92583986:92587540 rs2896197 8.47 × 10−3 ns 1.26 × 10−4 ns 4.90 × 10−3

clu7661 3.24 × 10−5 chr7:643253:647502 rs111526379 1.75 × 10−2 ns 1.75 × 10−7 ns 1.58 × 10−3

clu2223 5.34 × 10−4 chr10:51592619:51606988 rs2012677 4.39 × 10−1 ns 3.14 × 10−6 3.43 × 10−3 ns

Table S7: List of 20 random (of 171) sQTLs that are associated with two of CTCF, H3K27ac, methylation, or DNase
levels at a nearby locus. Full table available in Data Table S1. The association p-values were computed as the
minimum p-value of the SNP associations (linear regression t-test) with nearby tested windows for each chromatin-
level phenotypes separately (ns: not significant or applicable).
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Data Accession

H3K27ac GSE58852 (GEO)

DNA methylation GSE57483 (GEO)

DNase-seq GSE31388 (GEO)

4sU-seq GSE75220 (GEO)

RNA-seq (Pickrell) GSE19480 (GEO)

RNA-seq (GEUVADIS) E-GEUV-3 (ArrayExpress)

RNA decay GSE37451 (GEO)

ribo-seq GSE61742 (GEO)

protein PXD001406 (ProteomeXchange)

Table S8: Location of datasets used to call QTLs in this study.
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Supplementary Data Set

Supplementary Data Table S1. List of 171 sQTLs that are associated with chromatin-level variation.

cluster: Cluster identification number

sQTL p-value: p-value (t-test) of the association with intron excision level

intron coord: coordinates of the intron

snp id: Identification of the SNP

eQTL p-value: association with total gene expression level

ctcfQTL p-value: minimum p-value (t-test) of the association with a nearby CTCF peak

haQTL p-value: minimum p-value (t-test) of the association with a nearby H3K27ac peak

dsQTL p-value: minimum p-value (t-test) of the association with a nearby DNase peak

meQTL p-value: minimum p-value (t-test) of the association with a nearby methylation probe
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