Science Advances

MAAAS

advances.sciencemag.org/cgi/content/full/2/11/e1601574/DC1

Supplementary Materials for

Ultra-smooth glassy graphene thin films for flexible transparent circuits

Xiao Dai, Jiang Wu, Zhicheng Qian, Haiyan Wang, Jie Jian, Yingjie Cao, Mark H. Rummeli, Qinghua Yi, Huiyun Liu, Guifu Zou

> Published 30 November 2016, *Sci. Adv.* **2**, e1601574 (2016) DOI: 10.1126/sciadv.1601574

This PDF file includes:

- fig. S1. HRTEM images of glassy graphene.
- fig. S2. Resistance and conductivity of glassy graphene thin films after transfer.
- fig. S3. Structure and property of the glassy graphene field-effect transistor.
- fig. S4. Time gravity analysis of the glucose-PEI mixture compared to that of PEI and glucose.
- fig. S5. PEI-assisted film growth.

Supplementary Materials

fig. S1. HRTEM images of glassy graphene.

fig. S2. Resistance and conductivity of glassy graphene thin films after transfer.

fig. S3. Structure and property of the glassy graphene field-effect transistor. (a) Structure of the field-effect transistor (FET). (b) Photo of the as produced FET. (c) Drain current as a function of the gate voltage for the FET.

fig. S4. Time gravity analysis of the glucose-PEI mixture compared to that of PEI and glucose.

fig. S5. PEI-assisted film growth. (**a**) Deposition of glassy carbon film without PEI assistant. (**b**) Deposition of glassy carbon film with PEI assistant.