SI GUIDE

Title of file for HTML: Supplementary Information Description: Supplementary Figures.

Supplementary Data

Title of file for HTML: Supplementary Data 1 Description: Sample counts by SLE status

Title of file for HTML: Supplementary Data 2 Description: Complete list of associations by ancestry and tier (nonHLA).

Title of file for HTML: Supplementary Data 3 Description: Posterior probabilities for HLA imputation

Title of file for HTML: Supplementary Data 4 Description: Classical HLA associations.

Title of file for HTML: Supplementary Data 5 Description: HLA stepwise model results

Title of file for HTML: Supplementary Data 6 Description: SNP associations, post-adjustment for HLA alleles.

Title of file for HTML: Supplementary Data 7 Description: SLE risk for DRB1 homozygotes and heterozygotes

Title of file for HTML: Supplementary Data 8 Description: Secondary top meta-analysis and transancestral-mapping Regions.

Title of file for HTML: Supplementary Data 9 Description: Meta-analysis regions with p-valueFDR <0.001. Title of file for HTML: Supplementary Data 10 Description: Deviations in average risk-allele admixture.

Title of file for HTML: Supplementary Data 11 Description: Binomial test of CEU vs YRI admixture deviations.

Title of file for HTML: Supplementary Data 12 Description: cisEQTLs for regions in Tier 1 and Tier 2

Title of file for HTML: Supplementary Data 13 Description: Most likely functional SNPs based on RegulomeDB scores

Title of file for HTML: Supplementary Data 14 Description: Prioritized SLE risk genes.

Title of file for HTML: Peer Review File Description:

Supplementary Figure 1. Admixture by ancestry.

a. European Ancestry Factor analysis of Admixture Proportions: Factor 1 vs. 2

b. African American Factor analysis of Admixture Proportions: Factor 1 vs. 2

c. Hispanic Ancestry

Factor analysis of Admixture Proportions: Factor 1 vs. 2

Supplementary Figure 2. PP-plot by ancestry.

Supplementary Figure 3. Power by ancestry (α =5x10⁻⁸).

b. African American

c. Hispanic Ancestry

Supplementary Figure 4. Meta-analysis of chromosome X region of association (female only).

Supplementary Figure 5. Posterior probability distributions for best guess HLA imputed alleles.

a. European Ancestry

b. African American

case

4 0

0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Posterior Probabilities

6

c. Hispanic Ancestry

Posterior Probabilities

7

Supplementary Figure 6. Plots of SNP associations meeting genome-wide significance, postadjustment for Classical HLA alleles.

a. European Ancestry

b. Meta Analysis

Position on chr6 (Mb)

Position on chr6 (Mb)

Supplementary Figure 7. Clustering of HLA alleles by amino acid sequence similarity. For each HLA gene, the odds ratios for each cohort are overlain if the SLE association p-value was less than 0.01. Alleles that were present in the multi-locus model from the stepwise procedure are also denoted. This process aims to identify clusters with shared SLE risk or not-risk odds ratios across the three cohorts. Such clusters help identify potential amino acid sequences contributing to SLE risk.

Supplementary Figure 8. Amino acids within DRB1*15 SLE risk cluster. (a) Multiple sequence alignment performed by CLUSTAL-omega of HLA-DRB1 alleles with a Percent Identity score of at least 95 with HLA-DRB1*15:01 or 15:03, two alleles associated with SLE risk in at least three populations (Figure 3). Numbering begins after signal peptide. Amino acids unique to the two risk alleles (positions -1, 47, and 71) are highlighted in purple. Positions in which the two risk alleles share an amino acid with less than half of the non-risk peptides in this cluster are highlighted in green. (b) Three dimensional ribbon model of HLA-DR protein. This structure is based on Protein Data Bank entry 3pdo. Amino acid positions noted in (a) are highlighted in red. (c) An enlarged view of the HLA-DRβ subunit, rotated for another view of noted amino acids in binding pocket.

а	DRB1*01:03 DRB1*01:01 DRB1*01:02 DRB1*16:02 DRB1*15:01 (risk) DRB1*15:03 (risk)	11 13 26 28 31 MVCLKLPGGSCMTALTVTLMVLSSPLALAGDTRPRFLWQLKFECHFFNGTERVRLLERCI MVCLKLPGSSCMTALTVTLMVLSSPLALAGDTRPRFLWQLKFECHFFNGTERVRLLERCI MVCLKLPGSSCMTALTVTLMVLSSPLALAGDTRPRFLWQLKFECHFFNGTERVRFLERCI MVCLKLPGSSCMTALTVTLMVLSSPLALAGDTRPRFLWQPKRECHFFNGTERVRFLDRYF MVCLKLPGGSCMTALTVTLMVLSSPLALSGDTRPRFLWQPKRECHFFNGTERVRFLDRYF MVCLKLPGGSCMTALTVTLMVLSSPLALSGDTRPRFLWQPKRECHFFNGTERVRFLDRYF MVCLKLPGGSCMTALTVTLMVLSSPLALSGDTRPRFLWQPKRECHFFNGTERVRFLDRYF
	DRB1*01:03 DRB1*01:01 DRB1*01:02 DRB1*16:02 DRB1*15:01 (risk) DRB1*15:03 (risk)	47 YNQEESVRFDSDVGEYRAVTELGRPDAEYWNSQKDILEDERAAVDTYCRHNYGVGESFTV YNQEESVRFDSDVGEYRAVTELGRPDAEYWNSQKDILEORRAAVDTYCRHNYGVGESFTV YNQEESVRFDSDVGEYRAVTELGRPDAEYWNSQKDILEORRAAVDTYCRHNYGVGESFTV YNQEESVRFDSDVGEYRAVTELGRPDAEYWNSQKDILEORRAAVDTYCRHNYGVESFTV YNQESVRFDSDVGEFRAVTELGRPDAEYWNSQKDILEOARAAVDTYCRHNYGVESFTV YNQESVRFDSDVGEFRAVTELGRPDAEYWNSQKDILEOARAAVDTYCRHNYGVESFTV
	DRB1*01:03 DRB1*01:01 DRB1*01:02 DRB1*16:02 DRB1*15:01 (risk) DRB1*15:03 (risk)	96 133 142 151 QRRVEPKVTVYPSKTQPLQHHNLLVCSVSGFYPGSIEVRWFRNGQEEKAGVVSTGLIQNG QRRVEPKVTVYPSKTQPLQHHNLLVCSVSGFYPGSIEVRWFRNGQEEKAGVVSTGLIQNG QRRVPKVTVYPSKTQPLQHHNLLVCSVSGFYPGSIEVRWFLNGQEEKAGMVSTGLIQNG QRRVOPKVTVYPSKTQPLQHHNLLVCSVSGFYPGSIEVRWFLNGQEEKAGMVSTGLIQNG QRRVOPKVTVYPSKTQPLQHHNLLVCSVSGFYPGSIEVRWFLNGQEEKAGMVSTGLIQNG XFX:
	DRB1*01:03 DRB1*01:01 DRB1*01:02 DRB1*16:02 DRB1*15:01 (risk) DRB1*15:03 (risk)	211 DWTFQTLVMLETVPRSGEVYTCQVEHPSVTSPLTVEWRARSESAQSKMLSGVGGFVLGLL DWTFQTLVMLETVPRSGEVYTCQVEHPSVTSPLTVEWRARSESAQSKMLSGVGGFVLGLL DWTFQTLVMLETVPRSGEVYTCQVEHPSVTSPLTVEWRARSESAQSKMLSGVGGFVLGLL DWTFQTLVMLETVPRSGEVYTCQVEHPSVTSPLTVEWRARSESAQSKMLSGVGGFVLGLL DWTFQTLVMLETVPRSGEVYTCQVEHPSVTSPLTVEWRARSESAQSKMLSGVGGFVLGLL 20000000000000000000000000000000000
	DRB1*01:03 DRB1*01:01 DRB1*01:02 DRB1*16:02 DRB1*15:01 DRB1*15:03	248 FLGAGLFIYFRNQKGHSGLQPTGFLS FLGAGLFIYFRNQKGHSGLQPTGFLS FLGAGLFIYFRNQKGHSGLQPTGFLS FLGAGLFIYFRNQKGHSGLQPTGFLS FLGAGLFIYFRNQKGHSGLQPTGFLS
b	HLA-DRβ	C 67 26
		HLA-DRα

Supplementary Figure 9. Three dimensional ribbon model of classical HLA alleles. Three dimensional ribbon model of classical HLA alleles representative of binding-pocket amino acids that distinguish among risk and non-risk alleles in the DRB1*01; 16; 15 cluster (Figure 3a, Supplementary figure 10.) Non-polar, hydrophobic Phe47 Ala71 (Pocket 7) residues are unique to the two risk alleles (DRB1*15:01 and 15:03) within this cluster. Contrastingly, the non-risk alleles (DRB1*01:03, 01:01, 01:02, 16:02) exhibit a polar Tyr47 and either a polar Arg71 or polar Glu71. Focusing on amino acids sequences with at least 95% identity, allows for the ability to isolate potential regions of biochemical influence on SLE risk. In this case, SLE risk alleles DRB1*15:01 and 15:03 are unique from non-risk alleles via a hydrophobic space in DRB1 pocket 7. Proteins were modeled with SWISS-MODEL using Protein Data Bank Entry 3pdo.1.B as the template. 3-D visualizations were created via Chimera.

DRB1*01:03

DRB1*15:01 DRB1*15:03

DRB1*16:02

Supplementary Figure 10. DRB1*03 cluster sequence alignment. (a) Multiple sequence alignment performed by CLUSTAL-omega of HLA-DRB1 alleles with a Percent Identity score of at least 95 with SLE risk allele, HLA-DRB1*03:01. Numbering begins after signal peptide. DRB1*03:01 uniquely holds a polar Tyr26, compared to the non-polar Phe26 of the non-risk alleles within this cluster. Positions in which the risk allele shared an amino acid with 50% or less of the non-risk peptides in this cluster are highlighted in green. Most of these amino acids spanned the designated 'Shared Epitope Region'. (b) Three-dimensional representation of the DR and DRB1 protein. Amino acids of interest from the sequence alignment are highlighted in the models which were created using Chimera.

<pre>a DRB1*14:01 DRB1*03:01 (risk) DRB1*03:02 DRB1*14:02 DRB1*13:01 DRB1*11:03 DRB1*11:01 DRB1*11:04</pre>	MVCLRLPGGSCMAVLTVTLMVLSSPLALAGDTRPRFLEYSTSECHFFNGTERVRFLDRYF MVCLRLPGGSCMAVLTVTLMVLSSPLALAGDTRPRFLEYSTSECHFFNGTERVRFLDRYF MVCLRLPGGSCMAVLTVTLMVLSSPLALAGDTRPRFLEYSTSECHFFNGTERVRFLERYF MVCLRLPGGSCMAVLTVTLMVLSSPLALAGDTRPRFLEYSTSECHFFNGTERVRFLDRYF MVCLRLPGGSCMAVLTVTLMVLSSPLALAGDTRPRFLEYSTSECHFFNGTERVRFLDRYF MVCLRLPGGSCMAVLTVTLMVLSSPLALAGDTRPRFLEYSTSECHFFNGTERVRFLDRYF MVCLRLPGGSCMAVLTVTLMVLSSPLALAGDTRPRFLEYSTSECHFFNGTERVRFLDRYF MVCLRLPGGSCMAVLTVTLMVLSSPLALAGDTRPRFLEYSTSECHFFNGTERVRFLDRYF MVCLRLPGGSCMAVLTVTLMVLSSPLALAGDTRPRFLEYSTSECHFFNGTERVRFLDRYF
DRB1*14:01 DRB1*03:01 (risk) DRB1*03:02 DRB1*14:00 DRB1*13:01 DRB1*11:03 DRB1*11:01 DRB1*11:04	HNQEEFVRFDSDVGEYRAVTELGRPAAEHWNSQKDLLERRRÅEVDTYCRHNYGVVESFTV HNQEENVRFDSDVGEYRAVTELGRPDAEYWNSQKDLLEQKRGRVDNYCRHNYGVESFTV HNQEENVRFDSDVGEYRAVTELGRPDAEYWNSQKDLLEQKRGRVDNYCRHNYGVGESFTV HNQEENVRFDSDVGEYRAVTELGRPDAEYWNSQKDLLEDRRAAVDTYCRHNYGVGESFTV YNQEYVRFDSDVGEFRAVTELGRPDAEYWNSQKDILEDRRAAVDTYCRHNYGVESFTV YNQEEYVRFDSDVGEFRAVTELGRPDEEYWNSQKDFLEDRRAAVDTYCRHNYGVESFTV YNQEEYVRFDSDVGEFRAVTELGRPDEEYWNSQKDFLEDRRAAVDTYCRHNYGVESFTV YNQEEYVRFDSDVGEFRAVTELGRPDEEYWNSQKDFLEDRRAAVDTYCRHNYGVESFTV YNQEEYVRFDSDVGEFRAVTELGRPDEEYWNSQKDFLEDRRAAVDTYCRHNYGVESFTV YNQEEYVRFDSDVGEFRAVTELGRPDEEYWNSQKDFLEDRRAAVDTYCRHNYGVESFTV
DRB1*14:01 DRB1*03:01 (risk) DRB1*03:02 DRB1*14:02 DRB1*13:01 DRB1*11:03 DRB1*11:01 DRB1*11:04	151 QRRVHPKVTVYPSKTQPLQHYNLLVCSVSGFYPGSIEVRWFRNGQEEKTGVVSTGLIHNG QRRVHPKVTVYPSKTQPLQHHNLLVCSVSGFYPGSIEVRWFRNGQEEKTGVVSTGLIHNG QRRVHPKVTVYPSKTQPLQHHNLLVCSVSGFYPGSIEVRWFRNGQEEKTGVVSTGLIHNG QRRVHPKVTVYPSKTQPLQHHNLLVCSVSGFYPGSIEVRWFRNGQEEKTGVVSTGLIHNG QRRVHPKVTVYPSKTQPLQHHNLLVCSVSGFYPGSIEVRWFRNGQEEKTGVVSTGLIHNG QRRVHPKVTVYPSKTQPLQHHNLLVCSVSGFYPGSIEVRWFRNGQEEKTGVVSTGLIHNG
DRB1*14:01 DRB1*03:01 (risk) DRB1*03:02 DRB1*14:02 DRB1*13:01 DRB1*11:03 DRB1*11:01 DRB1*11:04	211 DWTFQTLVMLETVPRSGEVYTCQVEHPSVTSPLTVEWRARSESAQSKMLSGVGGFVLGLL DWTFQTLVMLETVPRSGEVYTCQVEHPSVTSPLTVEWRARSESAQSKMLSGVGGFVLGLL DWTFQTLVMLETVPRSGEVYTCQVEHPSVTSPLTVEWRARSESAQSKMLSGVGGFVLGLL DWTFQTLVMLETVPRSGEVYTCQVEHPSVTSPLTVEWRARSESAQSKMLSGVGGFVLGLL DWTFQTLVMLETVPRSGEVYTCQVEHPSVTSPLTVEWRARSESAQSKMLSGVGGFVLGLL DWTFQTLVMLETVPRSGEVYTCQVEHPSVTSPLTVEWRARSESAQSKMLSGVGGFVLGLL DWTFQTLVMLETVPRSGEVYTCQVEHPSVTSPLTVEWRARSESAQSKMLSGVGGFVLGLL DWTFQTLVMLETVPRSGEVYTCQVEHPSVTSPLTVEWRARSESAQSKMLSGVGGFVLGLL
DRB1*14:01 DRB1*03:01 (risk) DRB1*03:02 DRB1*14:02 DRB1*11:01 DRB1*11:01 DRB1*11:04	248 FIGAGLFIYFRNQKGHSGLQPRGFLS FIGAGLFIYFRNQKGHSGLQPRGFLS FIGAGLFIYFRNQKGHSGLQPRGFLS FIGAGLFIYFRNQKGHSGLQPRGFLS FIGAGLFIYFRNQKGHSGLQPRGFLS FIGAGLFIYFRNQKGHSGLQPRGFLS *****
b HLA-DRβ	C 77 77 71 128 HLA-DRβ

Supplementary Figure 11. Sequence Alignment of DQA1*01 cluster. Sequence alignment comparing SLE risk allele DQA1*01:02 to non-risk alleles with 95% sequence identity (DQA1*01:03, *01:01, *01:04, and *01:05). Met207 is the only amino acid unique to risk allele DQA1*01:02 from it's non-risk neighbors. Positions in which the risk allele shared an amino acid with 50% or less of the non-risk peptides in this cluster are highlighted in green (Gln34).

DQA1*01:03 DQA1*01:02(risk) DQA1*01:01 DQA1*01:04 DQA1*01:05	³⁴ ³⁷ MILNKALLLGALALTTVMSPCGGEDIVADHVASCGVNLYQFYGPSGQFTHEFDGDEQFYV MILNKALLLGALALTTVMSPCGGEDIVADHVASCGVNLYQFYGPSGQYTHEFDGDEE MILNKALLLGALALTTMMSPCGGEGIVADHVASCGVNLYQFYGPSGQYTHEFDGDEE MILNKALLLGALALTTMMSPCGGEGIVADHVASCGVNLYQFYGPSGQYTHEFDGDEE **********************************
DQA1*01:03 DQA1*01:02(risk) DQA1*01:01 DQA1*01:04 DQA1*01:05	97 DLEKKETAWRWPEFSKFGGFDPQGALRNMAVAKHNLNIMIKRYNSTAATNEVPEVTVFSK DLERKETAWRWPEFSKFGGFDPQGALRNMAVAKHNLNIMIKRYNSTAATNEVPEVTVFSK DLERKETAWRWPEFSKFGGFDPQGALRNMAVAKHNLNIMIKRYNSTAATNEVPEVTVFSK DLERKETAWRWPEFSKFGGFDPQGALRNMAVAKHNLNIMIKRYNSTAATNEVPEVTVFSK ***:*********************************
DQA1*01:03 DQA1*01:02(risk) DQA1*01:01 DQA1*01:04 DQA1*01:05	157 SPVTLGQPNTLICLVDNIFPPVVNITWLSNGHAVTEGVSETSFLSKSDHSFFKISYLTFL SPVTLGQPNTLICLVDNIFPPVVNITWLSNGQSVTEGVSETSFLSKSDHSFFKISYLTFL SPVTLGQPNTLICLVDNIFPPVVNITWLSNGQSVTEGVSETSFLSKSDHSFFKISYLTFL SPVTLGQPNTLICLVDNIFPPVVNITWLSNGQSVTEGVSETSFLSKSDHSFFKISYLTFL ***********************************
DQA1*01:03 DQA1*01:02(risk) DQA1*01:01 DQA1*01:04 DQA1*01:05	PSADEIYDCKVEHWGLDQPLLKHWEPEIPAPMSELTETVVCALGLSVGLVGIVVGTVFII PSADEIYDCKVEHWGLDQPLLKHWEPEIPAPMSELTETVVCALGLSVGLVGIVVGTVFII PSADEIYDCKVEHWGLDQPLLKHWEPEIPAPMSELTETVVCALGLSVGLVGIVVGTVFII PSADEIYDCKVEHWGLDQPLLKHWEPEIPAPMSELTETVVCALGLSVGLVGIVVGTVFII ***********************************
DQA1*01:03 DQA1*01:02(risk) DQA1*01:01 DQA1*01:04 DQA1*01:05	QGLRSVGASRHQGPL QGLRSVGASRHQGPL QGLRSVGASRHQGPL QGLRSVGASRHQGPL QGLRSVGASRHQGPL

Supplementary Figure 12. Sequence alignment of DQA1*05 cluster. Sequence alignment comparing SLE risk allele DQA1*05:01 to non-risk alleles with 95% sequence identity (DQA1*05:05 and *05:03). Thr-13 and Ala159 are the only differences among these three alleles are highlighted below.

DQA1*05:05 DQA1*05:03 DQA1*05:01 (risk)	⁻¹³ MILNKALMLGTLALTTVMSPCGGEDIVADHVASYGVNLYQSYGPSGQYTHEFDGDEQFYV MILNKALMLGALALTTVMSPCGGEDIVADHVASYGVNLYQSYGPSGQYTHEFDGDEQFYV MILNKALMLGALALTTVMSPCGGEDIVADHVASYGVNLYQSYGPSGQYTHEFDGDEQFYV ********
DQA1*05:05 DQA1*05:03 DQA1*05:01 (risk)	97 DLGRKETVWCLPVLRQFRFDPQFALTNIAVLKHNLNSLIKRSNSTAATNEVPEVTVFSKS DLGRKETVWCLPVLRQFRFDPQFALTNIAVLKHNLNSLIKRSNSTAATNEVPEVTVFSKS DLGRKETVWCLPVLRQFRFDPQFALTNIAVLKHNLNSLIKRSNSTAATNEVPEVTVFSKS
DQA1*05:05 DQA1*05:03 DQA1*05:01 (risk)	157 PVTLGQPNILICLVDNIFPPVVNITWLSNGHSVTEGVSETSFLSKSDHSFFKISYLTLLP PVTLGQPNILICLVDNIFPPVVNITWLSNGHSVTEGVSETSFLSKSDHSFFKISYLTLLP PVTLGQPNILICLVDNIFPPVVNITWLSNGHSVTEGVSETSFLSKSDHSFFKISYLTLLP
DQA1*05:05 DQA1*05:03 DQA1*05:01 (risk)	SAEESYDCKVEHWGLDKPLLKHWEPEIPAPMSELTETVVCALGLSVGLVGIVVGTVFIIR SSEESYDCKVEHWGLDKPLLKHWEPEIPAPMSELTETVVCALGLSVGLVGIVVGTVFIIR SAEESYDCKVEHWGLDKPLLKHWEPEIPAPMSELTETVVCALGLSVGLVGIVVGTVFIIR *:**********************************
DQA1*05:05 DQA1*05:03 DQA1*05:01 (risk)	GLRSVGASRHQGPL GLRSVGASRHQGPL GLRSVGASRHQGPL

Supplementary Figure 13. Plots of novel Tier 1 meta-analysis and transancestral-mapping regions. Plots appear in the order found in Table 3a. Individual plots were created using LocusZoom standalone software (<u>http://locuszoom.sph.umich.edu/</u>)

a. IL12RB2

b. PAPOLG-FLJ16341

c. DGKQ

d. ST8SIA4

e. UHRF1BP1-SCUBE3-DEF6 (SLE SNP associations adjusted for Classical HLA alleles)

*SLE SNP associations adjusted for Classic HLA alleles

- UHRF1BP1-SCUBE3-DEF6*† 10 100 META rs34840245 rs936688 8 rs1194 80 0.8 0.6 0.4 0.2 6 60 rs34840245 rs9366881 40 4 2 20 1104 0 0 10 rs3484024 100 Heterogeneity rs936688 8 rs1194 80 0.8 0.6 0.4 0.2 r² 6 60 4 40 rs936688* 2 rs34840245 20 rs1194 0 0 10 100 ΕA rs3484024 rs936688 8 rs1194 80 r² 0.8 0.6 0.4 0.2 60 **Recombination Rate** 6 rs34840245 4 40 rs9366881 • 2. -log10 (p-value) 2 20 s1194 0 0 100 10 AA rs3484024 rs936688 (cM/Mb) 8 80 rs1194 0.8 0.6 0.4 0.2 r 6 60 40 4 rs9366881 s34840245 2 20 rs1194 0 0 10 100 HA rs34840245 rs936688 8 rs1194 80 0.8 0.6 0.4 0.2 60 6 4 40 rs9366881 rs34840245 20 2 s1194 0 0 150 eQTL (# Additional Tissues) 100 80 DEF6 | whole blood; 100 monocytes 60 UHRF1BP1 . 40 50 adipose; lung; SCUBE3 TCP11 60 0 muscle; (12) fibroblasts 20 adipose; skin; (2) ZNF76 | whole blood 0 0 PACSIN1-SNRPC→ ←TAF11 ←TCP11 ZNF76→ PPARD -SPDEF UHRF1BP1→ SCUBE3-DEF6-> ←C6orf106 ANKS1A-> 34.6 34.8 35 35.2 35.4 Position on chr6 (Mb)
- f. UHRF1BP1-SCUBE3-DEF6 (SLE SNP associations adjusted for Classical HLA alleles, and top 3 ancestry-specific SNPs: *rs34840245, rs9366881, rs1194*)

* SLE SNP associations adjusted for Classic HLA alleles

+Post-adjustment for top 3 SNPs in region: rs34840245; rs9366881; rs1194

g. PKIA-ZC2HC1A

h. AK057451

i. ATXN2

j. CCL22

k. CLEC16A

I. ZFP90

n. LRRC25-SSPB4

o. PTPRH-TMEM86B

p. ENTHD1-GRAP2

Supplementary Figure 14. Plots of novel Tier 2 meta-analysis and transancestral-mapping regions. Plots appear in the order found in Table 3b. Individual plots were created using LocusZoom standalone software (<u>http://locuszoom.sph.umich.edu/</u>).

GFI1 10 100 META 80 8 rs6662618 0.8 0.6 6 60 4 40 2 20 0 10 Heterogeneity 100 80 8 - 0.8 0.6 6 60 0.4 40 4 rs6662618 2 20 2 0 0 10 100 EA 80 8 0.8 rs6662618 0.6 60 6 He of 40 4 -log₁₀ (p-value) ination Rate 2 20 0 0 10 100 AA (cM/Mb) 8 80 - 0.8 0.6 60 6 0.4 4 40 0.2 2 rs6662618 20 0 0 10 100 HA 8 80 0.8 0.6 6 60 0.4 4 40 rs6662618 🥰 2 20 0 0 100 20 eQTL EVI5 | liver 80 0 - 0.8 15 RPAP2 | whole blood - 0.6 60 0.4 10 00 40 0.2 EVI5 | thyroid 🔮 🥎 5 0 20 0 0 ←SETSIP C1orf146→ RPAP2→ ←GFI1 RPL5 BTBD8→ ← GLMN ←EVI5 KIAA1107→ ←FAM69A SNORD21-SNORA66-92.6 92.8 93 93.2

Position on chr1 (Mb)

a. GFI1

b. NOTCH2

c. FASLG


```
d. LBH
```


f. ATXN1

j. TRAFD1-HECTD4

Supplementary Figure 15. Plots of Tier 1 meta-analysis regions noted for transancestral-mapping. Plots appear in the order found in Table 4. Individual plots were created using LocusZoom standalone software (<u>http://locuszoom.sph.umich.edu/</u>).

a. TNFSF4-LOC100506023

b. TNFSF4-LOC100506023

c. NMNAT2-SMG7-NCF2

d. IL2-IL21

f. IRF5-TNPO3

51

Supplementary Figure 16. Plots of additional meta-analysis regions noted for transancestral-mapping (p-value_{fdr} <0.001). Plots appear in the order found in Supplementary Data 8. Individual plots were created using LocusZoom standalone software (<u>http://locuszoom.sph.umich.edu/</u>).

a. VANGL2

b. FCGR2A

c. RGS1

d. IL10

e. STAT4

f. PXK-PDHB-KCTD6

g. TMEM39A-TIMMDC1

h. BANK1

i. TNIP1

k. TAGAP

m. C7orf72-IKZF1

n. BLK

o. WDFY4

q. ATXN2

r. ITGAM

s. UBE2L3

Supplementary Figure 17. The non-additive effect of EA risk-allele genetic load on SLE risk (beta values). Plots of the beta (natural logarithm of the odds ratio), instead of the odds ratios, as found in Figure 5.

Supplementary Figure 18. Kaplan-Meier curve for age at SLE diagnosis.