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Supplementary Tables 

 Diffusion 
pseudotime Wishbone SLICER Destiny Monocle SCUBA scTDA 

Unbiased No No Yes Yes No No Yes 

Statistics Yes* Yes* Yes* No Yes* Yes* Yes 

Exploits 
longitudinal 
information 

No No No No No Yes Yes 

Reference 6 7 8 9 10 11 - 

* Only for branching events 

Supplementary Table 1. Comparison of various features among existing algorithms for 

single-cell RNA-seq data analysis. 

	  

Supplementary Table 2 (Provided as a separate spreadsheet). Characterization of the 

expression profile in the topological representation of the two motor neuron differentiation 

experiments for all RefSeq genes. For each gene and experiment, the number of nodes with non-

zero expression, the mean, minimum and maximum expression values, the value of the gene 

connectivity, the statistical significance before (p-value) and after (q-value) adjusting for the false 

discovery rate (Benjamini-Hochberg), the centroid and dispersion (expressed in days), and the 

gene group assignment are presented. Several gene ontology annotations are also shown. 
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Supplementary Table 3 (Provided as a separate spreadsheet). Gene ontology enrichment 

analysis for each gene group in the two motor neuron differentiation experiments. Statistical 

significant (q < 0.05, Bonferroni) biological process gene ontologies are presented for each gene 

group in the topological representation. 

  

Supplementary Table 4 (Provided as a separate spreadsheet). Characterization of the 

expression profile in the topological representation of the two motor neuron differentiation 

experiments for significant lncRNAs. For each antisense or intergenic NONCODEv4 lncRNA 

with significant (q < 0.05) gene connectivity in both experiments gene and experiment, the number 

of nodes with non-zero expression, the mean, minimum and maximum expression values, the value 

of the gene connectivity, the statistical significance before (p-value) and after (q-value) adjusting 

for the false discovery rate (Benjamini-Hochberg), the centroid and dispersion (expressed in days), 

the gene group assignment, and the number of reads in bulk stranded RNA-seq data from days 2 

to 6 of the differentiation are presented. Alternate RefSeq name is shown, when available. For 

antisense lncRNAs, the name of the coding genes in the opposite strand is presented. Only 

lncRNAs supported by at least 50 reads in one day of the bulk stranded RNA-seq data are 

considered.	  	  

 

Supplementary Table 5 (Provided as a separate spreadsheet). Characterization of the 

expression profile in the topological representation of 80 embryonic (E18.5) mouse lung 
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epithelial cells. For each gene, the number of nodes with non-zero expression, the mean, minimum 

and maximum expression values, the value of the gene connectivity, and the statistical significance 

before (p-value) and after (q-value) adjusting for the false discovery rate (Benjamini-Hochberg), 

are presented. 

 

Supplementary Table 6 (Provided as a separate spreadsheet). Characterization of the 

expression profile in the topological representation of 1,529 individual cells from 88 human 

preimplantation embryos. For each gene, the number of nodes with non-zero expression, the 

mean, minimum and maximum expression values, the value of the gene connectivity, the statistical 

significance before (p-value) and after (q-value) adjusting for the false discovery rate (Benjamini-

Hochberg), the centroid and dispersion (expressed in days), and the gene group assignment are 

presented. 

 

Supplementary Table 7 (Provided as a separate spreadsheet). Characterization of the 

expression profile in the topological representation of 272 newborn neurons from the 

mouse neocortex. For each gene, the number of nodes with non-zero expression, the mean, 

minimum and maximum expression values, the value of the gene connectivity, the statistical 

significance before (p-value) and after (q-value) adjusting for the false discovery rate 

(Benjamini-Hochberg), the centroid and dispersion (expressed in days) are presented. 
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Supplementary Table 8 (Provided as a separate spreadsheet). Barcoded reverse 

transcription primers utilized in motor neuron differentiation experiment 2.	   	  
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Supplementary Note 1	  

A mathematical primer. 

In this note some of the fundamental mathematical objects used to study single cell expression 

data are further explained. scTDA builds upon recent developments in topological data analysis, 

or TDA. The over arching aim of TDA is to infer global properties of spaces from samples of 

points. Most of the constructions in TDA are based on generating sets of simplicial complexes 

(generalizations of networks) and exploit the global structure of these complexes. In particular, we 

are interested in a space that is a simplified, lower dimensional version of the original space. In 

19041 Poincare called this concept the skeleton of the space, or in more modern terms, a Reeb 

graph or space2,3. A Reeb graph is a graph (a one dimensional object) that summarizes some, but 

not necessarily all, topological features of a space, like number of connected components or loops. 

Mapper is the algorithm developed by Singh, Memoli, and Carlsson4 that constructs simplicial 

complexes from finite metric spaces (points with distances) as approximations to Reeb spaces. 

We are interested in studying dynamic biological processes (like development or evolution) from 

samples of points, reconstructing and inferring properties of the underlying or some derived spaces 

(as Reeb spaces), showing how these properties relate to time, and studying functions on these 

spaces by performing statistical analysis. Although TDA is able to represent, summarize and 

quantify properties of spaces from finite sampling, TDA is not adapted to study dynamical 

processes or to perform statistical analysis on functions on associated objects (e.g. simplicial 

complexes). The primary intellectual contributions of this paper are the following: to extend the 

construction of Reeb spaces in finite metric spaces with temporal sampling, to study statistics on 
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functions defined on the data, and to apply these methods in the context of single cell 

transcriptomic data. 

Starting from single cell transcriptomic data, the final reconstructed object is an annotated 

simplicial complex, with a single vertex labeling the initial state and statistics associated with 

functions on the data. The marked single point in the construction allows the association of a real-

valued function to the rest of the complex representing the imputed pseudotime. The statistics on 

functions on the simplicial complex measure how expression profiles are localized.  

Simplicial complexes and topological data analysis. 

The final object we calculate is an annotated simplicial 

complex together with statistics associated to functions 

defined on the complex. The basic “atomic” objects that 

compose a simplicial complex are simplices. An n-

dimensional simplex spanned by points [v0, v1,…, vk] is the 

convex hull of k+1 affine-independent points in	  ℝn. A zero-dimensional simplex is just a point, a 

one-dimensional simplex a line segment, a two-dimensional simplex a triangle, a three 

dimensional a tetrahedron, etc. Each n-simplex is a collection of n+1 points, n(n+1)/2 lines joining 

the points, etc. Simplicial complexes are collections of simplices of different dimensions (see 

figure). Indeed, a simplicial complex can be defined as a set of simplices with the property that a 

non-empty intersection between two simplices in the set is a face in each of the two simplices 

forming the intersection. 
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Most of data, including most of biological data, and certainly the data from single cell expression, 

can be presented as a set of points (e.g. cells) with some notion of similarity or distance (e.g. 

similarity between expression profiles), i.e. these data constitute a finite metric space (X, ¶). We 

can associate different simplicial complexes with the data. For instance, consider a scale e at which 

we are going to study our data and define the Vietoris-Rips complex VRe(X, ¶) as 

1. vertices are the points of X, and 

2. a simplex [v0, v1,…, vk] is in the complex when ∂(vi, vj) < e	  for	  all	  0≤	  i,	  j	  ≤	  k.	  

Topological Data Analysis (or TDA) refers to a set of techniques to characterize the topological properties 

of data. Typically it involves constructing an auxiliary set of objects, e.g. simplicial complexes. 

Morse functions, Reeb graphs and Reeb spaces. 

Imagine that we have a topological space M, as in the left 

side of the figure, and a continuous function f : M -> ℝ. Let 

us define an equivalence relation on M between two points 

p ~ q in M if f(p)=f(q) and p and q in the same connected 

component in f-1(p). The Reeb graph associated to the 

space M and the function f is Reeb(M,f) = M/~, the quotient 

of M by the above equivalence relation (see figure). The 

first mention of this construction was in the 5th Supplement 

of the funding paper of topology (Analysis Situs) from 1904. Poincare referred to the Reeb graph 

of a manifold as the skeleton.	  



40	  

	  

	  
	   	   	  

	  

One can generalize the notion of Reeb graph to Reeb spaces by considering functions f: M -> 

ℝn.Using the above equivalence relation one can define Reeb(M,f) = M/~. In the applications to 

single cell data we will be only using n=1 and n=2. 

Mapper as an approximation to Reeb spaces. 

The data that we will considering in single cell analysis can be understood as points in a high 

dimensional space with some notion of similarity between them (X, ¶). We can approximate the 

“skeleton” or Reeb space of these data by considering an auxiliary function f: X -> ℝn. The Mapper 

algorithm generates a simplicial complex Mapper(X, ¶,C) from (X, ¶, f) and C={Ui}, a cover on 

the image of f in ℝn.	  	  	  

Several types of covers are possible, depending on specific applications. The Mapper algorithm 

proceeds as follows: 

1.- Cluster the elements of f-1(Ui) , the inverse image of each element in the cover. Let us denote 

each of the clusters by Cµ. 

2.- Vertices of Mapper(X, ¶,C) are the clusters Cµ from 1. and a simplex [C0, C1,…, Ck] is in the 

simplicial complex Mapper(X, ¶,C) when the (k+1)-fold intersection of elements in {C0, C1,…, 

Ck} is not empty. 

The results of Mapper can be considered as an approximation of Reeb spaces. Indeed, the work of 

Elizabeth Munch and Bei Wang have shown the convergence of Mapper and Reeb graphs5. 

Weinberger theorems. 
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One natural question is how many points we should sample to get a “good” approximation to the 

topology of the original space. Without any assumption on connectivity, Weinberger6 estimated 

the number of topological types (potential solution to the topology inference problem, which could 

be in this context homeomorphisms, diffeomorphisms or homotopy type) from finite sampling in 

a manifold of dimension n embedded in ℝN. These estimates depend on a scale number, called the 

condition number (the minimum size at which a tubular neighborhood self-intersects) and the 

diameter of the manifold (D) measure in units of the scale number (so is dimensionless). For 

dimension, n=0 (clusters) or n=1  (graphs) the number grows as DN, while for n=2 the number of 

types grows like exp(DN/2), and for N>2 exp(DN). Notice that the problem has a polynomial on 

size only for inference of low dimensional objects (clusters and graphs), but become exponential 

on the diameter for higher dimensions. Even to express the right answer, one needs many bits (on 

the order of log of the number of possibilities), so one needs at least O(N log(D)) points in 

dimension 0 and 1,  O(DN/2) for dimension 2 and O(DN) for higher dimensions. That implies that 

in our single cell experiments, where N, the embedding dimension (number of genes used in the 

reconstruction) is of the same order as the number of cells, we can only aim to capture 0 or 1 

dimensional features. Notice that the exponential of number of genes will be always be bigger than 

the atoms in the universe, then bigger than the number of cells in the universe, so we will never 

reach the complexity needed for characterizing the topology type in dimension bigger than 1. 

These obstacles become even more daunting when interested in estimating additional structure 

(local coordinates, metric structure, etc) as in some manifold learning procedures.  
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These results that one is more likely to be successful to identify low dimensional features of spaces 

(likes clusters of graphs) that to capture higher dimensional ones. We have two advantages in this 

direction. First is a technical one. Inference of Reeb graphs or clustering should be easier with 

finite number of points. Second is a biological presumption. When looking at single cell data we 

expect data to come in clusters (different cell types) and trajectories (like lineage differentiation, 

or evolution). These theoretical and practical implications suggest that a potential approach to 

study single cell data should be through the study of low dimensional objects, as the approximation 

of Reeb graphs that Mapper generates.  However, the Mapper reconstructed complexes lack 

annotation regarding time and statistics associated to functions on it,  that are fundamental for an 

application to single cell applications. 

Studying temporal single cell data, scTDA. 

scTDA builds upon Mapper to generate an simplicial complex that captures some of the low 

dimensional features from the space (like clusters and trajectories) from single cell data. One of 

the main ideas described in this manuscript is how to use the temporal information to find a single 

vertex in the inferred complex that represents the closest point to the most “ancestral” state. This 

ancestral node could be a stem cell state, progenitor, embryonic state, cancer initiating cell, etc. 

The idea, explained throughout the manuscript, is based on the association between the graph 

distance from a node and the measured time. The ancestral state is defined as the node that 

maximizes this correlation. The details are explained in Results and Methods sections of the 

manuscript. 
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The second fundamental point in our applications, and in many others as well, is the identification 

of some features in the space. That requires to study functions from data to real numbers, g: X -> 

ℝ and statistics associated to them. In our case, these functions could the expression of genes or 

phenotypic observations in single cells, and we are interested in identifying transcriptional 

programs associated to states, such as genes expressed on the cell membrane, that could work as 

markers.  A simple idea is to construct functions on the simplicial complex by averaging functions 

on X over the points representing each simplex (in each cluster). That defines a kind of 

pushforward of the function on the original data to a function on the simplicial complex g~: 

Mapper(X, ¶, f, C) -> 	  ℝ. Statistics are defined by permuting the values of the function on the 

original data, and comparing the pushforward of the permuted values with the original ones. The 

details for the single cell analysis are described in the manuscript.	  

Using scTDA, we refine TDA simplicial representations by providing a marked state, a derived 

pseudotime, a set of pushforward functions g~ on the complex and statistics associated to them. 

Homology in simplicial complexes and persistent homology. 

Now that we have an annotated simplicial complex representing the data and functions on it, we 

can further use topological tools to characterize the presence of different topological tools on them. 

In particular, in our applications, we have used simplicial homology and persistent homology. The 

basic idea of simplicial homology is to associate groups with objects of different dimension. The 

zero dimensional homology captures the number of connected components in a simplicial complex 

in the following fashion: we say that two zero simplices a and b are in the same equivalence class 
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a~b if they are the boundary of a chain of one dimensional objects (i.e. if there is a path connecting 

a and b). The same procedure can be defined to objects of higher dimension: closed loops are 

related if they form the boundary of two dimensional objects, etc. The rank of the homology 

groups, or Betti numbers, captures the number of independent components of different dimensions 

that are in the space. The first Betti number counts the number of loops in a space. 

When working with finite metric spaces (X, ¶) one can define a set of related simplicial complexes 

in the following fashion. At each scale e one can define a simplicial complex (for instance, the 

Vietoris-Rips complex VRe(X, ¶)). At a bigger scale e’> e one can define a different complex that 

will include the scale at complex 𝑉𝑅𝜖(𝑋, 𝜕) ↪ 𝑉𝑅𝜖′(𝑋, 𝜕). This allows to track the different chains 

of objects at different scales and to identify the relevant scales at which different homology classes 

are present. A summary of the different scales at which homology classes are present is capture by 

the notion of a barcode: a multiset of non-empty intervals of the form either [ai, bi) ⊂	  R or [ai, ∞), 

representing the scales when the homology class hi is present. Notice that the zero dimensional 

homology shows how different clusters are joined as the scale e increases, and it is formally 

equivalent to single linkage clustering. The presence of a barcode [a, b) in one dimensional 

persistent homology, on the other hand, shows the scales 𝜖 ∈ [𝑎, 𝑏) at	  which there is a loop in the 

data.	  

As we show in the manuscript, both simplicial and persistent homology are useful tools to data 

mine the results from the analysis. We encourage the interested reader to read about the topic in 

introductory textbooks for simplicial homology7 and textbooks and reviews on persistent 

homology8, 9. 
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Supplementary Note 2	  

Single cell library generation 

In one biological replicate, we sorted a small sample size from a differentiation, sequencing 80 

cells per differentiation time-point utilizing standard CEL-Seq primers with anchor bases at the 

3’ end of reverse transcription primers, pooling 40 cells at a time prior to in vitro transcription 

(IVT).  To assess library saturation and capture efficiency, two single cell libraries from each 

differentiation time point (consisting of 40 cells each) from the experiment 1 were paired end 

sequenced (2x125 bps) on an Illumina HiSeq 2500, operating in high output mode, sequencing 
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with Illumina v4 chemistry.  To increase capture efficiency, enhanced in vitro transcription based 

amplification, and leveraging the library saturation curves from experiment 1, we utilized 96 

barcoded CEL-Seq RT primers (Supplementary Table 4), forgoing the usage of anchor bases at 

the 3’ terminus.  We then conducted a differentiation on a second biological replicate, sampling 

384 cells per time-point (inclusive of 96 FACS purified mid-level GFP expressing, and 288 high 

GFP expressing cells), collected into 96 well plates and implemented CEL-Seq, now pooling 96 

cells per IVT reaction. Following IVT, aRNA was fragmented using magnesium (NEBNext 

Magnesium RNA Fragmentation Module) for 90 seconds and column purified (Zymo Research 

RNA Clean & Concentrator-5).   Purified aRNA was then subjected to treatment with Antarctic 

Phosphatase and T4 polynucleotide kinase.  Ligation of Illumina RA3 adapters was conducted 

using truncated T4 RNA Ligase 2 for 1 hour at 28 C.  Following adapter ligation, adapter ligated 

aRNA was reverse transcribed using Illumina RTP at 50 C for 1 hour and placed on ice.  To 

avoid amplification based batch effects, the resultant cDNA was PCR amplified with Illumina 

RPIX primers to no more than 15 cycles.  The sequencing libraries were then twice purified 

using AmpureXP beads, held at a ratio of 1:0.65, yielding size selected libraries with an insert 

size of ~250 bps.  The single cell libraries were then multiplexed to a total representation of 384 

cells per lane at equimolar concentrations and mixed with 50% exome libraries generated using 

an Illumina TruSeq Exome Kit.   

	  




