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Materials and Methods 
In situ Hi-C was performed as described previously (5) using two adult female Ae. 

aegypti mosquitoes. The resulting libraries were sequenced using an Illumina NextSeq 
instrument to yield approximately 40X coverage of the Ae. aegypti genome. In situ Hi-C 
was also performed on a female Cx. quinquefasciatus mosquito and sequenced using an 
Illumina NextSeq instrument to yield approximately 100X coverage of the Cx. 
quinquefasciatus genome. All three mosquitoes were obtained from Benzon Research 
(http://www.benzonresearch.com). 

For the human assembly, we used a small fraction (100 million read pairs) of a 
dataset we recently published (HIC001, GEO accession GSM1551550, (5)). 
 
Dependency of Hi-C contact frequency on one-dimensional distance between loci 

Note that we use the term “Hi-C contact” as defined in (5) throughout the 
manuscript and the Supplementary Materials. 

To illustrate the dependency of Hi-C contact frequency on the distance between loci, 
we analyzed the distribution of contacts in the HIC001 library, whose generation and 
initial analysis was reported in (5). In order to match the procedure used there, the 
analysis in this section was performed using hg19 as the human reference. HIC001 is also 
the library that was used to generate Hs2-HiC (see Main text). 

We calculated the contact probability 𝐼(𝑠) using the method we employed in (4, 26), 
focusing on chromosome 1 as a representative chromosome. It is helpful to define the 
“span” of an intrachromosomal contact as the distance between the two loci it connects. 
The relative intrachromosomal contact probabilities were estimated by taking the number 
of contacts whose span ranges from s-500 to s+500, and dividing by 1000*the total 
number of pairs of genomic positions separated by s on chromosome 1 (which is simply 
the length of chromosome 1, or 1,249,250,621, minus s) (4). The interchromosomal 
contact probability was estimated by taking the number of contacts between chromosome 
1 and chromosome 10 and dividing by the product of the lengths of the two chromosomes 
in bp. 

The typical distribution in absolute terms was calculated by generating a histogram 
using all contacts. Each intrachromosomal contact was assigned to a distance bin on the 
basis of its span: less than 10kb span; 10kb – 100kb span; 100kb – 1Mb span; 1Mb – 
10Mb span; 10Mb – 100Mb span; and on the same chromosome, but more than 100Mb 
span. An additional bin included all interchromosomal contacts. This 7-bin histogram 
was then normalized. 
 
Physical coverage achieved by Hi-C datasets 

Again, we analyzed the HIC001 library. The physical coverage was computed by 
summing the span of all intrachromosomal Hi-C contacts. The sequencing coverage 
simply reflects the total amount of sequence generated using the HIC001 library, before 
any filtering. 

Notably, the ratio between physical and sequence coverage for a Hi-C library – as 
for any paired-end library – depends greatly on the read length used for sequencing. So 
long as the reads are long enough to align well, reduction in read length – and the 
resulting reduction in sequence coverage – does not strongly impact the library’s physical 
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coverage. As such, Hi-C assembly costs can sometimes be reduced by sequencing shorter 
reads. In the case of HIC001, a 101bp paired-end sequencing strategy was used. 
 
Pipeline description 

The results reported in this paper are generated using a custom computational 
pipeline. The pipeline takes in as input the fasta file describing the draft assembly and the 
duplicate-free list of paired alignments of Hi-C reads to the draft fasta 
(merged_nodups.txt) as generated by the Juicer pipeline (22). 

For the sake of generality, we will always refer to the inputs to our assembly 
algorithms as scaffolds. This is meant in a broad sense; the algorithms are agnostic as to 
whether the inputs are scaffolds (sequences that are permitted to contain gaps), or contigs 
(gap-free sequences). Input scaffolds can come from a wide variety of sources and 
technologies. 

In characterizing sets of input scaffolds, it is also useful to define the “effective N50 
length” of the input scaffolds. This is simply the N50 of the scaffolds after all misjoins 
they contain have been corrected. Of course, for a typical published set of scaffolds, the 
effective N50 is not known, since it may contain misjoins and other scaffolding errors 
that the authors were unaware of. Naturally, the actual N50 of the scaffold set furnishes 
an upper bound for the effective N50 – but the two are often not equal in practice.  

The overall strategy of our assembler is to remove misjoins until the underlying 
scaffold set is largely free of misjoins. If there is a disparity between the actual N50 
length of the input scaffolds and their effective N50 length, it will be greatly reduced by 
this step. After misjoin detection, the resulting input scaffolds are used to create the final 
ordered-and-oriented chromosome-length scaffolds. 

An overview of the detailed workflow is schematically given in Fig. S1. We begin 
with a series of iterative steps whose goal is to eliminate misjoins in the input scaffolds. 
Each step begins with a scaffold pool (initially, this pool is the set of input scaffolds 
themselves); the scaffolding algorithm is used to order and orient these scaffolds; and the 
misjoin correction algorithm is applied to detect errors in the scaffold pool. Finally, the 
edited scaffold pool is used as an input for the next iteration of the misjoin correction 
algorithm. The ultimate effect of these iterations is to reliably detect misjoins in the input 
scaffolds without removing correctly assembled sequence. After the iterations are 
complete, the scaffolding algorithm is applied to the revised input scaffolds, and the 
output – a single “megascaffold” which concatenates all the chromosomes – is retained 
for post-processing. This post-processing includes four step: (i) a polishing algorithm, 
which is required for genomes in the Rabl configuration; (ii) a chromosome splitting 
algorithm, which is used to extract the chromosome-length scaffolds from the 
megascaffold; (iii) a sealing algorithm, which detects false positives in the misjoin 
correction process, and restores the erroneously removed sequence from the original 
scaffold; and (iv) a merge algorithm, which corrects misassembly errors due to 
undercollapsed heterozygosity in the input scaffolds. Step (ii) is omitted for genomes that 
are not in the Rabl configuration; step (iv) is omitted if the original scaffolds lack 
substantial undercollapsed heterozygosity. 

Figure S2 explains the terminology we use to describe various scaffold 
subpopulations in the main text and supplement as well as relates these populations to 
various pipeline stages. 
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o Preliminary Filtration. First, a set of scaffolds (referred to as ‘Tiny’) is removed 

from the draft. Due to their small size, these scaffolds have relatively few Hi-C 
contacts, making them more difficult to reliably analyze. These are not processed 
further or included in the subsequent analysis. 

 
o Misjoin correction. The input scaffolds are examined for Hi-C signal consistent 

with a misjoin. Scaffolds with no evidence of a misjoin are labeled as ‘consistent.’ 
Scaffolds with evidence of a misjoin are partitioned into segments; each segment 
is classified as either a ‘consistent’ scaffold or an ‘inconsistent’ scaffold on the 
basis of the Hi-C signal. Inconsistent scaffolds are not processed further. (This 
partitioning procedure makes it possible to remove errors while retaining the 
portions of a scaffold that are correctly assembled for subsequent steps.) Note that 
the terms above specifically refer to the results of the last round of misjoin 
correction, not the results of intermediate rounds. 

 
o Ordering and orientation. The consistent scaffolds are then ordered and oriented; 

the results are polished (if needed), and chromosomes are extracted. As a result of 
this process, most of the consistent scaffolds are ‘resolved’, i.e., placed into a ‘raw 
chromosomal scaffold’, although a few remain ‘unresolved’. The ‘unresolved’ 
scaffolds are not processed further. (However, note that although the unresolved 
scaffolds cannot be reliably localized within a chromosome-length scaffold, they 
can often be correctly associated with a particular chromosome. We do not do so 
in this manuscript.) 

 
o Overlap merging. Pairs of resolved scaffolds in each raw chromosomal scaffold 

are examined for overlaps. When an overlap is detected, the scaffolds are merged. 
The result of this process is the final ‘chromosome-length scaffold’. This step is 
crucial when assembling highly heterozygous genomes such as Ae. aegypti and 
Cx. quinquefasciatus. 

 
The central components of the pipeline are the misjoin correction algorithm, the 

scaffolding algorithm, and the merging algorithm (see Figs. 1, S1). We describe each of 
the three blocks in detail below. We also include additional sections describing polishing, 
sealing and chromosome splitting algorithms. 

All of these steps are fully automated and available as open-source code; more 
generally, furthermore, code is available which deploys each of these steps on input 
scaffolds from AaegL2, CpipJ2, and Hs1, producing AaegL4, CpipJ3, and Hs2-HiC 
(respectively) in a single click. The current version of the pipeline is written in the AWK 
programming language in combination with bash scripting. (We use AWK because the 
pipeline requires extremely rapid i/o.) It is optimized for speed using GNU Parallel shell 
tool (27), but can be run without parallelization. The pipeline is designed to take full 
advantage of the Juicebox visualization software for Hi-C data and produces Juicebox-
compatible heatmaps as well as various supplementary annotation outputs at every step. 
Obligatory external dependencies are the Command line tools for Juicebox and Juicer 
(22, 23) as well as the LASTZ sequence aligner (28). 
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I. Algorithm for misjoin correction 

 
The misjoin correction algorithm consists of two parts: (i) misjoin detection and (ii) 

editing of input scaffolds (i.e., misjoin correction). 
Our method for misjoin detection using Hi-C relies on the fact that sequences which 

have been erroneously concatenated in a scaffold form fewer contacts with one another 
than correctly joined sequences. This is because correctly joined sequences lie adjacent to 
one another in 1D, and are therefore proximate to one another in 3D, facilitating the 
formation of Hi-C contacts. Because they do not actually lie in close proximity in the 
one-dimensional (1D) sequence of the chromosome, misjoined sequences usually do not 
exhibit similar 3D proximity or similar contact frequency. 
 

I.a. Calculating an expected model for contact frequency in the absence of an 
accurate genome 
 

To detect this depletion in contact frequency, one must compare the observed 
contact frequency between adjacent genomic loci with an expected model that describes 
the contact frequency typically observed for correctly joined sequences. Given a genome 
assembly with chromosome-length scaffolds, calculating the expected frequency of 
contact for a typical pair of sequences at a particular distance during a given experiment 
is straightforward. Such calculations have been commonplace since our original paper on 
the Hi-C method (4). 

However, the results of such contact probability calculations are influenced by 
disparate factors, ranging from the organism of interest, the cell population interrogated, 
the details of the experimental approach, the particular computational methods used to 
analyze the data, and seemingly random inter-experimental variability. For this reason, 
expected models derived from a particular experiment in a particular cell population in a 
particular organism cannot be reliably applied to all experiments in all cell populations in 
all species. Thus, in the absence of a genome assembly with chromosome-length 
scaffolds, it is unclear how to determine the relationship between contact probability and 
distance even if Hi-C data are available. To the best of our knowledge, no such 
calculations have been performed in the literature to date. 

A second challenge is that the contact probability between a pair of loci varies 
greatly, with frequent “jackpot” effects where the number of contacts is markedly 
enhanced with respect to the background model. This variability makes raw contact 
probability a very noisy indicator of the presence of a misjoin. 

To overcome these challenges, we developed a method that estimates contact 
probability, as a function of genomic distance, using data from a Hi-C experiment 
without utilizing a high quality genome. Instead, our method only assumes the 
availability of a collection of scaffolds that may be short and contain numerous errors. 
Specifically, we show that, even in this scenario, it is possible to calculate a lower bound 
for the expected number of contacts between a pair of loci at a given distance. Our 
estimation scheme relies on the fact that the frequency of contact between a pair of loci 
tends to decrease as the 1D distance between the loci increases. For this reason, pixels 
closer to the diagonal of a Hi-C matrix (which reflect contact frequency between loci that 
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are nearby in 1D) tend to have higher contact counts than pixels further away from the 
diagonal. 

Consider a 𝑁×𝑁 Hi-C contact matrix M generated using a known, correct reference 
genome (Fig. S3). To do so, the genome has been partitioned into N loci of fixed length 
that is matrix resolution r (measured in base pairs). Each pixel 𝑀!" corresponds to all 
contacts between a pair of loci (in this case, the ith locus and the jth locus). Of course, N is 
simply the genome length divided by the matrix resolution, r.  Note that, in such a setting, 
it is often convenient to measure 1D distance in terms of loci (which are all of fixed size 
r), which correspond to rows and columns of the matrix, rather than in terms of base 
pairs. 

In such a matrix, we can consider the set of pixels that derive from pairs of loci that 
are within b loci of one another, i.e. the pixels 𝑀!" such that (𝑖 − 𝑏 ≤ 𝑗 ≤ 𝑖 + 𝑏). Our 
principal goal is to estimate the function 𝑄 𝑏 , which is the minimum value of all these 
pixels: 𝑄 𝑏 = min 𝑀!" , 𝑖 − 𝑏 ≤ 𝑗 ≤ 𝑖 + 𝑏. This function provides a lower bound for 
the values 𝑀!"  for pixels within b of the diagonal. 𝑄 𝑏  is of obvious utility in identifying 
misjoins, for the following reason: if we were to align the Hi-C data against an incorrect 
reference genome, containing numerous misjoins, the presence of a value lower than 
𝑄 𝑏  within b pixels of the diagonal would indicate the presence of a misjoin at that 
position with complete certainty. 

Before we address the estimation of 𝑄 𝑏  in the general case, it is worth considering 
an idealized example. In Figure S3 (A) we show an idealized Hi-C matrix 𝑀′ where 
contact probability decreases monotonically as the distance between a pair of loci 
increases, and the shape of this decay does not vary across the genome. 

Notably, in such a matrix, the fraction of pixels 𝑀!" that derive from pairs of loci 
that are within b loci of one another (𝑖 − 𝑏 ≤ 𝑗 ≤ 𝑖 + 𝑏) can be calculated by simply 
summing the lengths of the principal diagonal and 2×𝑏 non-principal diagonals, and 
dividing by the size of the matrix as a whole (N^2). This yields: 

 
𝐹(𝑏) = 𝑁 + 𝑏 ∗ 2𝑁 − 𝑏 − 1 𝑁!. 

 
Thus, if we select a pixel from the matrix M at random, the probability that the pixel 

lies within b loci of the diagonal is exactly F. 
Similarly, it is possible to determine the probability that a random pixel in the matrix 

contains a value larger than any arbitrary threshold C, denoted 𝐹′(𝐶), by simply counting 
the number of pixels that contain more than C contacts and again dividing by the size of 
the matrix (N^2). 

It is therefore possible to define a function 𝐶(𝑏) so that 𝐹! 𝐶 𝑏 = 𝐹(𝑏). In other 
words, 𝐶(𝑏) is the number of contacts such that the fraction of pixels in M that is larger 
than 𝐶(𝑏) is the same as the fraction of pixels in M that are within b of the diagonal. 
Furthermore, in an idealized Hi-C matrix such as the one shown in Fig. S3 (A), the pixels 
that lie within b of the diagonal will be exactly the pixels whose contact count is larger 
than 𝐶(𝑏). 

It follows from the above that – for an idealized, perfectly monotonic Hi-C matrix – 
𝑄 𝑏  and 𝐶(𝑏) are exactly the same function. 
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In practice, this is relevant because, like the contact probability scaling, 𝑄 𝑏  can be 
challenging to reliably estimate without an accurate genome assembly including 
chromosome-length scaffolds. By contrast, 𝐹 𝑏  can be calculated analytically using the 
formula above, without any experimental data at all.  

Moreover, 𝐹′(𝐶) can be estimated for a given Hi-C experiment even assuming that a 
genome assembly with chromosome-length scaffolds is not available. In fact, 𝐹′(𝐶) can 
be accurately estimated using almost any reference genome assembly, so long as the 
effective scaffold N50 is much larger than the matrix resolution r. 

A simple way to see why is that one can generate a proxy for the actual reference 
genome by concatenating all of the available scaffolds in an arbitrary order. In this proxy 
genome, the relative order and orientation of loci of size r will be entirely wrong. 
Nevertheless, most individual loci in the proxy genome will have a counterpart, 
containing the same sequence and having exactly the same size, in the true (albeit 
unknown) genome. For this reason, the vast majority of pairs of loci in the proxy genome 
will correspond to a pair of loci in the true (albeit unknown) genome. Thus, a Hi-C matrix 
generated with the proxy genome can be thought of as a permutation of the pixels of the 
Hi-C matrix that would be generated with the true genome. Consequently, the distribution 
of pixel values 𝐹′(𝐶) is unaffected by the use of a scrambled proxy genome. (Note that in 
practice 𝐹′(𝐶) can also be calculated from a raw scaffold set, without concatenation.) 

Given estimates for 𝐹′(𝐶) and 𝐹 𝑏 , estimating 𝐶(𝑏) is straightforward. Thus, it is 
possible to estimate 𝐶(𝑏) even with a relatively poor, and error-prone, input genome. 
Although 𝐶(𝑏) is not identical to 𝑄 𝑏  for a real Hi-C matrix, it nevertheless provides a 
serviceable estimate for 𝑄 𝑏 . For this reason, 𝐶(𝑏) is useful in detecting misjoins. 
 

I.b. Misjoin detection strategy 
 
Consider a fragment of the Hi-C map shown in Fig. S3 (B). One possible misjoin 

score would be to place a triangular motif along the diagonal, summing the values of the 
pixels it contains to create a score associated with the particular genomic position: 

     
𝑆 𝑋 = 𝑐!"!!!!!

!!!!!
!!!
!!!!! . 

 
This score reflects the average contact frequency between a particular index locus being 
examined (X), and all other loci within d loci of the index locus. If the value of the 
misjoin score S is anomalously low, it suggests that the corresponding index locus spans 
a misjoin. Unfortunately, there is no simple and reliable way to calculate an expected 
value for this particular score. Thus, it is impossible to know whether the score is indeed 
anomalously low. Moreover, this score is extremely sensitive to “jackpot” effects, when a 
pixel with an anomalously high value (such as a loop or an alignment error) falls within 
the triangular motif. 

By contrast, consider a slightly modified misjoin score. The score is calculated 
exactly as before, but with one change. Before calculating this score, we will apply a 
threshold 𝐶∗ to the Hi-C heatmap, such that, whenever the value of a pixel is larger than 
𝐶∗, we will change that value to exactly match 𝐶∗. Furthermore, we will exploit our 
ability to calculate 𝐶 𝑏  for a proxy genome in order to select 𝐶∗ to be much less than 
𝐶(𝑑), such that nearly all pixels in the triangle motif shown will have a value equal to 𝐶∗ 
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in the saturated matrix – except in the case of a misjoin! When combined with our ability 
to calculate 𝐶 𝑏  for a low quality genome, this saturation step makes it simple to 
calculate an expected value for the misjoin score. Now we can obtain the following for 
the saturated score 𝑆!"# 𝑋  and the expected value (see Fig. S3 (C)): 

 
𝑆!"#(𝑋) = min (𝑐!" ,𝐶∗)!!!!!

!!!!!
!!!
!!!!! ; 

 
𝑆!"#!" = 𝐶∗!!!!!

!!!!!
!!!
!!!!! = 𝑑 ∗ 𝑑 + 1 ∗ 𝐶∗ 2. 

 
On this basis, we annotate a locus as a putative misjoin whenever the misjoin score 

for that locus satisfies 𝑆!"# 𝑋 < 𝑘 ∗ 𝑆!"#!" , where k is an arbitrary stringency parameter 
such that 0 ≤  𝑘 < 1. The availability of a reliable expected model greatly improves the 
sensitivity and specificity of such an approach. The approach is also much less 
susceptible to errors due to “jackpot” effects, since the impact of a single pixel is greatly 
dampened by the saturation step. 

Note that, so long as 𝐶∗ < 𝐶(𝑑), there is considerable latitude in selecting 𝐶∗. In 
practice, since the function 𝐶(𝑏), can only be estimated, rather than exactly calculated, it 
is useful to use 𝐶(𝑑) as an upper bound for 𝐶∗, but to choose values that are smaller, such 
as  𝐶(2 ∗ 𝑑). In the assemblies performed here, 𝐶∗ is set to equal the 95th percentile of all 
nonzero pixels in the contact matrix. 
 

I.c. Misjoin localization 
 

In practice, we perform misassembly detection using two different values of the 
matrix resolution r. First, we annotate misassemblies at coarse resolution (𝑟 = 25kb), to 
eliminate noise. In areas flagged by the coarse resolution misassembly detection 
algorithm, we pinpoint the exact position of the misassembly by repeating the procedure 
at a higher matrix resolution (𝑟 = 1kb). This approach achieves high positional accuracy 
in misjoin identification with relatively few false positives. 
 

I.d. Scaffolding during misjoin detection 
 

Importantly, the misjoin detection algorithm is not performed directly on individual 
input scaffolds. Both misjoin detection and 𝐶(𝑏) estimation are more accurate the longer 
the effective N50 of the input scaffolds. Moreover, misjoin detection is significantly less 
sensitive if the effective N50 is less than 𝑑×𝑟. For this reason, we maximize the effective 
N50 of the scaffold set by running the scaffolding algorithm (see below) on the input 
scaffolds prior to misjoin detection. The input scaffolds are embedded in the resulting 
output scaffold, and thus misjoins detected in this output scaffold can be associated with 
misjoins in the input scaffolds. 
 

I.e. Misjoin classification and correction 
 

After misjoins are identified, we classify them based on whether the misjoin lies 
inside one of the input scaffolds – implying that there is an error in the input scaffold, 
which needs to be corrected – or whether the misjoin lies at the junction between two 
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scaffolds, suggesting that the misjoin is a consequence of an error in the input sequence 
located at a different position. (Notably, our Hi-C based scaffolding step very rarely 
introduces a misjoin unless there is another, “causative” misjoin in one of the input 
scaffolds. For instance, a misjoin connecting loci from two different chromosomes can 
lead to the fusion of two large segments from those chromosomes into a single scaffold; 
as the scaffolder proceeds, this anomalous scaffold will tend to create many “non-
causative” misjoins. Correction of the causative misjoin leads to resolution of the 
downstream misjoins.) 

If a misjoin lies inside a scaffold, the scaffold is edited by excising sequence 
intervals flagged by the misjoin detection algorithm (see Fig. S4). The excised fragment 
is labeled as an additional, ‘inconsistent’ scaffold and excluded from subsequent 
assembly iterations, since its continued presence during the scaffolding process could 
lead to further misjoins. If the misjoin is sufficiently far from both ends of the scaffold, 
this results in splitting the affected scaffold into two scaffolds at the site of the misjoin (in 
addition to the formation of an inconsistent scaffold). Note that multiple misjoins can be 
identified in a single scaffold during a single round of misjoin detection, which could 
lead to repeatedly splitting one scaffold into multiple smaller scaffolds. 
 

I.f. Pseudocode 
 
The misassembly correction procedure can be described using the pseudocode listed 

in Table S13. 
Overall, our misjoin detection algorithm is characterized by low false positive error 

rates and accurate localization. It is especially sensitive to large misassemblies that give 
rise to large-scale errors in the genome. Several examples of automatic misassembly 
detection are given in Fig. S5. 

 
II. Algorithm for scaffolding 

 
To transform a set of input scaffolds into chromosome-length scaffolds, three 

problems must be solved. “Anchoring” assigns each scaffold to a chromosome, thus 
partitioning the set of scaffolds into multiple subsets. “Ordering” assigns a relative 
position to each scaffold on each chromosome with respect to the other scaffolds 
assigned to the same chromosome. “Orienting” determines which of the two ends of each 
scaffold is adjacent to the preceding scaffold in the ordering, and which end is adjacent to 
the next scaffold in the ordering. (This step is equivalent to assigning each scaffold to one 
of the two complementary strands that comprise a chromosome.) Our algorithm for 
constructing chromosome-length scaffolds begins with a set of input scaffolds, and 
simultaneously anchors, orders, and orients them. 

The algorithm we employ is iterative; the same steps are performed over and over, 
often thousands of times. In each step, subsets of the input scaffolds are ordered and 
oriented with respect to one another to create a new, longer set of scaffolds, which are 
then used as inputs for the next step. (These might be called “superscaffolds,” although 
we will not use that terminology here. Similarly, when the inputs to our algorithm are 
scaffolds, rather than contigs, the algorithm itself might be thought of as a “super-
scaffolding” algorithm, rather than a “scaffolding” algorithm; again, we will not make 
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that distinction here.) For the remainder of this section, we will use the term “input 
scaffolds” to refer to the scaffolds which are the inputs to each step; when needed, we 
will use the term “initial input scaffolds” to refer to the scaffolds which are the inputs to 
the iterative algorithm as a whole. 

Each iterative step involves constructing and solving a graph optimization problem. 
We assume that the input to a given step includes two or more scaffolds. (Otherwise, 

the scaffolding problem is already solved!) 
We begin by splitting each input scaffold into two “hemi-scaffolds” by bisecting the 

scaffold sequence at the midpoint. The pair of hemi-scaffolds that derive from a single 
hemi-scaffold are dubbed “sister hemi-scaffolds.” 

Next, we construct the “density graph,” S. Each hemi-scaffold is represented as a 
single vertex in the density graph. Then we append edges to the density graph as follows 
(see Fig. S6):  

 
o First, we append edges between all pairs of vertices that do not correspond to 

sister hemi-scaffolds. We call these “non-sister” edges. The weight of each non-
sister edge corresponds to the density of Hi-C contacts between the corresponding 
hemi-scaffolds. To calculate this density (i.e., the edge-weight), we count number 
of Hi-C contacts where one read is incident on one of the hemi-scaffolds, and the 
other read is incident on the other hemi-scaffold. We then take the resulting value 
and divide it by the product of the sequence length of the two hemi-scaffolds to 
arrive at the density. Note that, all else being equal, having an edge of greater 
weight between two hemi-scaffolds indicates that the two hemi-scaffolds tend to 
be more proximate in 3D, and thus are more likely to be nearby along the one-
dimensional (1D) chromosome sequence as well.  

 
o Next, we append edges between all pairs of vertices that correspond to sister 

hemi-scaffolds. All of these edges are assigned a weight of 2*MAXS, where 
MAXS is the maximum weight of all of the non-sister edges. This is done in order 
to encode the fact that sister hemi-scaffolds are adjacent to one another according 
to the input scaffold set, and that this evidence is – during each scaffolding 
iteration – regarded as more reliable than any evidence derived from Hi-C. (Of 
course, in the preceding section we described strategies for correcting scaffolds 
using Hi-C data. The results of these strategies influence the input scaffold set for 
any given step of the scaffolding algorithm. However, within the individual 
iterations, the accuracy of the input scaffold set is regarded as a constraint that 
takes precedence over the Hi-C data.) 

 
Note that prior approaches for scaffolding using Hi-C rely directly on measures of 

contact density. This approach can be error-prone. For instance, high-coverage scaffolds, 
scaffolds containing loci engaged in strong long-range interactions, scaffolds containing 
repeat sequences, etc. might all display very frequent contacts with scaffolds that are far 
away from them along the 1D chromosome sequence. Conversely, input scaffolds from 
low-coverage regions of the genome might exhibit a relatively low contact density, even 
with scaffolds that are adjacent to them in 1D. 
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In order to reliably determine the relative positioning and orientation of scaffolds 
given these potential pitfalls, we have developed a method for identifying adjacent 
scaffolds that is not directly based on absolute read density. (We call a pair of input 
scaffolds “adjacent” if they are on the same chromosome, and no other input scaffold has 
a true genomic position that lies on that same chromosome, in between them.) 

To accomplish this, we first use our density graph to define an “unfiltered 
confidence graph,” C’. The vertices of the unfiltered confidence graph again correspond 
to the hemi-scaffolds. The edges of the unfiltered confidence graph are defined as follows 
(see Figure S6): 
 

o If A and B are not sister homologs, then we append an edge between them whose 
weight is the ratio of the weight of the edge connecting them in the density graph 
(sAB), and the weight of the second-largest non-sister edge incident on either A or 
B in the density graph. Note that cAB>1 if and only if there is no hemi-scaffold 
whose contact density with either A or B exceeds the contact density between A 
and B. Informally, this means that, based on the Hi-C data, A is the best partner 
for B, and B is also the best partner for A. Thus we can be confident that A and B 
are adjacent. We therefore call any edge in the unfiltered confidence graph whose 
weight is greater than 1 “reliable.” Edges whose weight is 1 or smaller are called 
“unreliable.” 

 
o Next, we append edges between all pairs of vertices that correspond to sister 

hemi-scaffolds. All of these edges are assigned a weight of 2*MAXC, where 
MAXC is the maximum weight of all of the non-sister edges in the unfiltered 
confidence graph. This is done in order to encode the fact that sister hemi-
scaffolds are adjacent to one another according to the input scaffold set, and that 
this evidence is – during each scaffolding iteration – regarded as more reliable 
than any evidence derived from Hi-C. 

 
If all of the non-sister edges are unreliable, then the iteration has failed, in the sense 

that no reliable adjacency information could be extracted from the Hi-C data. Therefore, 
if all the non-sister edges are unreliable, we remove the smallest input scaffold from the 
input scaffold set and repeat the step, constructing a new density graph, etc. Note that 
removing the smallest input scaffold and repeating the step might still not yield a reliable 
edge, in which case another scaffold is removed, and so on. Eventually, either a reliable 
edge will be found or there will only be one scaffold left (at which point the algorithm 
halts and outputs the remaining scaffold.) 

Assuming there is a reliable non-sister edge in the unfiltered confidence graph, we 
next filter the unfiltered confidence graph by removing all edges whose weight is less 
than or equal to 1. The resulting graph is called the confidence graph. Note that every 
vertex is adjacent to 1 sister edge in the confidence graph, and to at most 1 non-sister 
edge. Thus, all vertices in the confidence graph have either degree 1 or degree 2. Hence 
(by an elementary fact of graph theory) the confidence graph is a collection of disjoint 
paths and cycles. 

(Note that it is possible to use our methods to reconstruct circular plasmids and 
chromosomes, in which case the following steps must be modified; we will not do so 
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here. Instead, for the sake of simplicity, we describe methods that apply to organisms 
with linear chromosomes.) 

Vertices that are adjacent in the confidence graph are very likely to correspond to 
hemi-scaffolds that are adjacent in 1D. Therefore, each path in the confidence graph 
corresponds to a high-confidence scaffold. Furthermore, each path in the confidence 
graph whose length is greater than 2 corresponds to a new scaffold comprised of multiple 
input scaffolds whose relative order and orientation has been determined using Hi-C. 

Cycles in the confidence graph are harder to interpret, since they contain multiple 
possible paths (i.e., new scaffolds) spanning all the vertices (hemi-scaffolds) in the cycle. 
Here the key is to identify the maximal path contained in the cycle, which corresponds to 
the new scaffold in which we have the highest confidence given the Hi-C data. This can 
be easily accomplished by removing the edge in each cycle whose weight is smallest. 
(Because of how the confidence graph is constructed, this edge will always be a non-
sister edge.) In graph theoretic terms, this procedure can be thought of as a way to 
construct the maximal (in terms of total edge weight) vertex-disjoint path cover of the 
confidence graph. 

A complementary way of formulating this procedure (which is mathematically 
guaranteed to produce exactly the same output) is to greedily select the highest weight 
edges from the confidence graph, ensuring that no vertex in the graph will be incident on 
two or more edges. (This constraint is equivalent to the rule that, after selecting non-sister 
edge AB, we must remove all other non-sister edges incident on either A or B.) 
Following this procedure, a maximum weight vertex-disjoint path cover is eventually 
obtained. Notably, for the special case of confidence graphs, this complementary 
formulation is exactly equivalent to Kruskal’s algorithm for constructing a maximal 
spanning forest (29). (Because a confidence graph consists of disjoint paths and cycles, 
its maximal spanning forest is always a vertex-disjoint path cover.)  In fact, it is this 
complementary procedure that is implemented in our code. 

Since vertices that are adjacent in the confidence graph are very likely to correspond 
to hemi-scaffolds that are adjacent in 1D, and since each path in the confidence graph 
corresponds to a high-confidence scaffold, the maximum weight vertex-disjoint path 
cover in the confidence graph corresponds to a new set of scaffolds that is optimal with 
respect to the input scaffolds and the Hi-C data. Each of these new “output” scaffolds 
comprises one or more input scaffolds; within each output scaffold, the relative order and 
orientation of the input scaffolds has been determined using Hi-C. 

Once the output scaffolds are obtained, the iteration ends. The next iteration can 
now begin; the output scaffolds from the previous iteration can be used as input scaffolds 
for the new iteration, and the density and confidence graphs are constructed for the new 
inputs. Note that reconstructing the graph from scratch allows more Hi-C data spanning 
larger scales to be incorporated into the analysis. Of course, reconstructing the density 
and confidence graphs is computationally expensive, and is therefore only done once no 
more information can be extracted from the reliable edges in the previous iteration; i.e., 
after the vertex-disjoint path cover of the confidence graph has been calculated, new 
scaffolds have been obtained, and the previous iteration is complete.  

(Note that a more computationally efficient alternative to recalculating the density 
graph is to use a more permissive threshold for including edges in the confidence graph; 
i.e. require cAB>k where k<1. This would allow more scaffolding information to be 



	
	

13 
 

extracted at each step, and thus fewer steps would be required to complete the scaffolding 
procedure. However, this strategy could also increase the frequency of errors, and it is not 
the strategy we employ here.) 

If there is only one output scaffold, the process ends and the single output scaffold is 
reported. 

To summarize we give pseudocode in Table S14. 
Note that the algorithm does not rely on a preliminary Hi-C based clustering step to 

identify chromosomes (compare to (10)). This is particularly useful for species like 
mosquito, where loci that lie far apart on the same chromosome may not exhibit 
enhanced contact frequency relative to loci on different chromosomes (see Fig. 1 and Fig. 
S15). 
 

III. Polishing 
 
Polishing is an optional step in our pipeline that has been designed to address 

challenges associated with unusual 3D features that arise for organisms exhibiting strong 
telomere and centromere clustering. This can create false positives during scaffolding, 
since extremely strong off-diagonal 3D signals associated with telomere and centromere 
clustering can sometimes be strong enough to rival the contact frequencies observed for 
loci that are adjacent in 1D. 

Figure S7 shows the Hi-C contact map built with respect to the Ae. aegypti genome 
assembly before and after the polishing step. The map suggests that chromosome 3 is 
very accurately assembled, but chromosomes 1 and 2 contain a type of error that is 
characteristic of assembly in genomes that exhibit strong telomere-to-telomere clustering. 
In this error, the enhanced proximity between the two telomeres is mistaken for 1D 
proximity. As a result, the raw chromosomal scaffolds corresponding to chromosomes 1 
and 2 exhibit a cyclic permutation with respect to the true chromosome. 

As an example, if the sequence of the true chromosome was ABCDEFG, where 
locus A and G are telomeres, then the erroneous sequence might be DEFGABC. We call 
this sort of error a “cycle break.” Note that, when a cycle break occurs, an off-diagonal 
peak linking the two putative ends of the chromosome (in the example, D and C) is still 
seen in the Hi-C map. However, this signal is actually due to the true 1D proximity 
between the two ends of the putative chromosome, rather than at true 3D signal. 
Conversely, the on-diagonal signal between A and G, which appears to reflect 1D 
proximity, is in fact due to the telomere clustering. (Similar errors may arise due to strong 
interaction between telomeres of two different chromosomes. They are addressed in the 
same way. See Fig. S7, chromosomes 2 and 3.) 

Such errors can be corrected by a single additional round of misjoin correction, 
performed at extremely low resolution (𝑟~1Mb ). The low-resolution misassembly 
detection identifies reliable “superscaffolds”, each of which is many megabases in length. 
These superscaffolds are then ordered and oriented using a version of the scaffolder that 
exploits the large size of the superscaffolds to more reliably distinguish 1D and 3D signal 
by utilizing Hi-C contacts incident only on the superscaffold ends, rather than on the 
whole superscaffold. 
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IV. Algorithm for extracting raw chromosomal scaffolds from the megascaffold 
 

The scaffolding algorithm produces a single megascaffold that concatenates all the 
chromosomes. 

For genomes that do not exhibit pronounced telomere clustering in the Hi-C map 
(such as human), we split the megascaffold into chromosomes by running a variant of the 
misassembly detector to identify the chromosome boundaries. This algorithm relies on 
the fact that the contact frequency between scaffolds that are adjacent on the 
megascaffold but which lie on different chromosomes is relatively low, since they are not 
actually in 1D proximity. Thus the boundaries between chromosomes generate a signal 
that is similar to a typical misjoin. Moreover, this effect is enhanced by the tendency of 
loci on the same chromosome to exhibit elevated contact frequency. 

If the spatial clustering of telomeres is evident in the Hi-C map, the phenomenon 
can be exploited in the effort to partition the genome into chromosomes. In particular, the 
first scaffold in the megascaffold must come from the end of a chromosome, and 
therefore derives from a telomere. Identifying positions in the Hi-C matrix that have an 
enriched number of contacts with the megascaffold edge thus enables the detection of 
chromosome boundaries. 

 
V. Algorithm for detection and correction of false positives that occurred during 

misjoin detection (“Sealing”) 
 
During the sealing step, sequences that were erroneously excised during misjoin 

correction may be re-introduced. In particular, if the two parts of a corrected scaffold 
remain adjacent to one another in the raw chromosomal scaffold, it suggests that the 
original scaffold was correct, since the independent contact patterns from both parts are 
consistent with the original scaffold. In this case, the misjoin that led to the correction is 
judged to be a false positive and the intervening sequence is restored. 
 

VI. Algorithm for merging assembly errors due to undercollapsed heterozygosity 
 

A frequent error modality found in draft haploid genome assemblies is 
undercollapsed heterozygosity. This is when there exists a subset of the scaffolds such 
that each scaffold accurately corresponds to a single locus in the genome, but these loci 
overlap one another. Consequently, there are individual loci in the genome that are 
covered multiple times by different scaffolds. This error is typically caused by the 
presence of multiple haplotypes in the input sample material, which are sufficiently 
different from one another that the contig and scaffold generation algorithms do not 
recognize them as emerging from a single locus. This class of error is frequent in 
AaegL2; the step can be omitted when assembling genomes of organisms with low 
heterozygosity such as Hs1. 

Undercollapsed heterozygosity error leads to highly fragmented draft assemblies 
with a larger-than-expected total size (30, 31). This, in turn, causes numerous problems in 
downstream analyses such as erroneous gene copy number estimates, fragmented gene 
models etc. The challenge remains significant even when special effort is taken to reduce 
the levels of heterozygosity in genomic data by inbreeding as has been done with the 



	
	

15 
 

draft AaegL2 assembly (18). It is therefore important to ensure that the final genome 
reported by our assembler minimizes the number of assembly errors due to 
undercollapsed heterozygosity. 

To specifically address this class of misassembly error, we have developed an 
algorithm whose goal is to merge these overlapping scaffolds into a single scaffold 
accurately incorporating the sequence from the individual scaffolds. The result of this is a 
merged haploid reference scaffold. 

One assumption of the overlap merging algorithm is that, when multiple scaffolds 
correspond to multiple haplotypes, these scaffolds will exhibit extremely similar contact 
patterns, genome-wide. (Note that although some interesting examples of homolog-
specific folding have been documented (5, 32), the relative input from the differential 
signal is very small as compared to that coming from the ‘diagonal’, i.e. from 3D 
interaction associated with proximity in 1D, so the assumption seems to hold true for the 
vast majority of candidate loci.) Because they exhibit similar long-range contact patterns, 
the scaffolding algorithm tends to assign such scaffolds to nearby positions in the 
genome. Thus, the merge algorithm seeks to identify pairs of resolved scaffolds that (i) 
lie near one another in the raw chromosomal scaffolds, and (ii) exhibit long stretches of 
extremely high sequence identity. 

Briefly, we search for undercollapsed loci by running a sliding window of fixed 
width along the raw chromosomal scaffolds. We then use LASTZ to do pairwise 
alignment of all pairs of resolved scaffolds that fall in the sliding window (28). The total 
score of all collinear alignment blocks (stanzas), normalized by the length of the overlap, 
is used as a primary filtering criterion to distinguish between alternative haplotypes and 
false positive sequence similarity. The location of the overlap relative to input scaffold 
boundaries is also taken into account in determining whether the scaffolds can be 
correctly merged (see Fig. S8). 

We next construct a graph whose nodes are resolved scaffolds, and where edges 
reflect significant sequence overlap between resolved scaffolds that are proximate on the 
raw chromosomal scaffold. The resulting graph contains a series of connected 
components. Cycles in the graph are analyzed in order to filter out components with 
overlaps on conflicting strands. 

Finally, we construct a tiling path through the scaffolds of each individual connected 
component, recursively aligning scaffolds to an already collapsed portion of the group, 
finding the highest scoring alignment block and switching from one haploid sequence to 
the other at the endpoints of the alignment. 

Ideally the resolved scaffolds in each connected component are consecutive on the 
raw chromosomal scaffold, and with relative orientations that match those suggested by 
the pairwise alignments. In practice, however, this is not always the case. This can be due 
to differences in haplotype representation between the genomic data used to produce the 
draft assembly and that of the Hi-C experiment. For example, sequences belonging to 
different clusters may be intertwined. Similarly, the orientation of contigs/scaffolds 
within the cluster as suggested by pairwise alignment may not match those suggested by 
the scaffolding step. In such cases the relative position and orientation of the connected 
components with respect to the rest of the assembly is decided by majority vote with each 
input scaffold’s contribution weighed by its length. Alternatively, assembly can be rerun 
using the merged components as input. 
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Note that although it is possible to add additional constraints when appropriate, such 
as the exact number of haplotypes present in the data, we do not rely on such knowledge 
in general, or in any of the assemblies we performed in this paper. This allows us to work 
with polymorphic assemblies, such as when multiple individuals were used to produce 
the draft assembly. In particular it allows us to handle cases where the degree of 
polymorphism is unknown. 

 
Computational details 

Each of the genomes reported in the paper were produced by running the pipeline on 
a single compute node: Intel Xeon E5-2683v3 for Hs2-HiC and AaegL4 and Power8 
8335-GCA for CpipJ3 assembly. The number of iterations that were necessary to remove 
misassemblies in the input scaffold set was two for Hs2-HiC and CpipJ3, and nine 
iterations for AaegL2. Polish and merge steps were omitted for Hs2-HiC. 

 
Hs1 draft genome 

Hs1 was created using DISCOVAR de novo version 52488 (13, 33), setting  
min_link_count to 10. 

 
Small scaffolds 

The small scaffolds, and more specifically the unresolved scaffolds (see Fig. S2) in 
Hs2-HiC are often associated with small scaffolds in hg38 that are not included in any 
chromosome. For example, 12.3% of all alignments (primary, secondary and chimeric) 
for unresolved scaffolds map to non-chromosomal scaffolds in hg38, as compared with 
1.7% for resolved scaffolds. Unresolved scaffolds also have an elevated repeat content. 
The average alignment quality (mapq) for unresolved scaffolds is 31, as compared with 
55 for resolved scaffolds. Finally, 9% of reads that align to unresolved scaffolds have 
mapq<10, as compared with 3% for resolved scaffolds. The alignments for this analysis 
were performed using BWA (34). 
 
Proof-of-concept NA12878 genome assembly from Pacific Biosciences data 

A proof-of-concept experiment was performed using contigs from the draft 
assembly of NA12878 published by Pendleton et al. (GenBank assembly accession: 
GCA_001013985, (16)). Crucially we did not use any scaffolding information from (16), 
which was derived from BioNano optical mapping data (35). Instead, the reported 
scaffolds were split to yield a contig set spanning 3.03Gb of sequenced bases with a 
contig N50 of 1.56Mb. After scaffolding these contigs using Hi-C we again obtained 23 
chromosome-length scaffolds, which spanned 95% of the sequenced bases of hg38. 
 
AaegL2 draft assembly 

The AaegL2 assembly was downloaded from GenBank (GenBank accession number 
GCA_000004015.2). 
 
AaegL4 genome assembly validation 

Of the 2006 markers in the genetic linkage map (19), 1826 markers were assigned to 
chromosome-length scaffolds in AaegL4 (Table S15). Of these, 1814 have a position in 
AaegL4, which is in perfect agreement with the linkage map, in the sense that these 1814 
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markers appear in the same order in AaegL4 and in the linkage map. In 8 cases, a marker 
from one linkage group has a position in AaegL4 that is consistent with the immediately 
adjacent linkage group (19). These may reflect fine-structure ordering errors in AaegL4, 
small errors in the linkage map, or errors in the draft assembly (see below).  

For the remaining 4 markers, AaegL4 and the linkage map disagree (i.e., AaegL4 is 
not consistent with placement of the marker in its original position in the linkage map, or 
in either of the neighboring linkage groups; see Fig. 2 and Fig. S10). We examined these 
cases of disagreement more closely. Specifically, we examined the scaffolds in the draft 
assembly (supercontigs 1.3, 1.32, 1.45, 1.90) that contain these markers (accession 
numbers AAGE02000222.1, AAGE02002163.1 AAGE02003018.1, AAGE02005396.1). 
Upon reexamination of the Hi-C data, we found that all of these draft scaffolds contained 
misassemblies. In all four cases, a small locus (23kb, 16kb, 125kb and 4kb in length) 
from a different 1D position was erroneously inserted into these larger scaffolds. These 
misassemblies had not been identified by our misassembly correction procedure. 
Crucially, these smaller loci contained the actual genetic marker. 

Although these errors in AaegL2 are retained in the final version of AaegL4, we 
confirmed our assessment of the origin of the disparities between the linkage map and 
AaegL4 by manually removing the small marker loci from the misassembled larger 
scaffold. We then used the Hi-C data to specifically localize these small marker loci. The 
position suggested by the Hi-C data for both marker loci agreed with the position 
suggested by the genetic map. 

We also compared misassembly errors identified in the linkage study with those that 
we detected. Notably, all 63 contigs identified as misassembled in (19) were identified as 
misassembled on the basis of Hi-C data. Furthermore, the breakpoints in the scaffolds are 
consistent across the two methods (see Fig. S11). However, the Hi-C signal allows the 
misjoins to be localized with much higher resolution. 

Taken together, the above findings indicate outstanding agreement between AaegL4 
and the best available genetic map of Aedes aegypti. 

 
We have also examined the correlation between the position of 500 mapped BAC 

clones in the recently published physical map (36) and their positions on AaegL4. Each 
BAC end was treated independently. The results are presented in Fig. S12. Alignment 
data are listed in Table S16. 

Out of 828 unambiguous alignments to chromosome-length scaffolds in AaegL4, 
90% lie in a 50Mb band around the diagonal. Manual examination of a few selected 
markers from the remaining 10% reveals no obvious discrepancy between their 
placement in AaegL4 and the Hi-C signal. 

Finally, we have analyzed the 29 AaegL2 scaffolds with inconsistent markers in the 
physical mapping study: 27 of these were flagged as misassembled on the basis of Hi-C 
data. The remaining two AaegL2 scaffolds, 1.209 and 1.302, had also been examined in 
the linkage mapping study (19). The latter study did not detect a misassembly. Thus, in 
this case, the Hi-C and linkage studies are consistent with one another, and the physical 
map is inconsistent with both. 

Given the strong agreement of our genome assemblies with the best available 
genetic maps, we believe that the relatively higher rate of inconsistency seen in the 
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physical maps may be due to strain-specific variation or inaccuracies in the physical map, 
but does not represent errors in AaegL4 scaffolding. 

Note that the raw chromosomal scaffolds were used for the above analysis, which 
enabled us to employ alignments generated in prior mapping work, when such alignments 
were available; when they were not, BWA was used instead (34). 
 
CpipJ2 draft assembly 

The CpipJ2 assembly was downloaded from VectorBase Release VB-2016-06. 
 
CpipJ3 genome assembly validation 

We assessed the accuracy of our chromosome-length scaffolds by aligning markers 
from existing linkage and physical mapping studies to CpipJ3.  

To the best of our knowledge, the most comprehensive extant genetic map of Culex 
quinquefasciatus is (21), a microsatellite map which characterizes 63 markers that 
aligned to the raw chromosomal scaffolds of CpipJ3. Of these, 61 out of 63 markers are 
in perfect agreement with CpipJ3; 1 marker corresponds to a position in CpipJ3 that is 
consistent with an immediately adjacent linkage group; and 1 marker is in disagreement 
with CpipJ3 (see Fig. S13). 

We examined the lone marker that disagreed with CpipJ3 more closely. As in the 
case of earlier discrepancies (discussed above, see Supplemental Note 9), the CpipJ2 
scaffold (supercontig 3.99) with the marker C99GTC1 (NCBI probe 32416933) 
contained a misassembly error. A small locus (13kb in length) from a different 1D 
position, which contained the marker, was erroneously inserted into the larger scaffold. 
This misassembly had not been identified by our procedure. Six out of nine scaffolds 
identified as misassembled from the mapping data in (21) were flagged as misassembled 
by the misassembly detector. One of the three remaining scaffolds is 3.99 with a 13kb 
insertion spanning the C99GTC1 marker. Manual analysis of the other two scaffolds 
(3.65, 3.177) revealed no large-scale inconsistencies in the Hi-C signal associated with 
these scaffolds. 

Taken together, the above findings indicate outstanding agreement between CpipJ3 
and the best available genetic map of Culex quinquefasciatus. 

We also compared our findings with a lower-quality map containing fewer markers. 
For the RFLP map (20), we observed six differences with CpipJ3 (see Fig. S13). Three of 
these were relatively small: the marker’s position in CpipJ3 corresponds to a position on 
the linkage map that is within two linkage groups of the group suggested by the map. 
These disagreements may be due to misassemblies that we were unable to detect, errors 
in the linkage map, strain-specific rearrangements, or to fine-scale ordering errors in 
CpipJ3. 

Composite RFLP (20) and microsatellite linkage map (21) marker positions are 
compared to CpipJ3 placement in Figs. 2 and S13. Individual marker data are listed in 
supplementary Tables S17, S18. 

 
The physical maps we analyzed represented two different approaches: polytene 

chromosome mapping (37), and mitotic chromosome mapping (38). CpipJ3 is in good 
agreement with both datasets (see Fig. S14).  
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For the polytene chromosome map (37) (see Fig. S14 (A) and Table S17), CpipJ3 is 
consistent with the positions of all but one marker CX51 (accession  number GT056146). 
As in earlier cases, this disagreement was due to the marker locus being erroneously 
inserted into a larger scaffold (supercontig 3.28) in CpipJ2, which we did not correct. 
Notably six CpipJ2 scaffolds contained exactly two markers in this map; thus, the map 
suggests an orientation for these 6 scaffolds. In each case, this orientation matches the 
orientation in the CpipJ3 assembly (see Table S19). 

A larger number of inconsistencies were observed between CpipJ3 and the mitotic 
physical map (38) (see Table S20). At least in the case of some of the disagreements, 
CpipJ3 is consistent with linkage data, which is inconsistent with the mitotic physical 
map. For example, the position of marker LF108 (accession number T58322) in CpipJ3 is 
inconsistent with the Naumenko et al. physical mapping data (38), but is consistent with 
the genetic linkage map which places this marker on chromosome 2 (21). 

Given the strong agreement of our genome assemblies with the best available 
genetic maps, we believe that the relatively higher rate of inconsistency seen in the 
lower-quality maps may be due to strain-specific variation or inaccuracies in the physical 
map, but does not represent errors in CpipJ3 scaffolding. 

Note that the raw chromosomal scaffolds were used for the above analysis, which 
enabled us to employ alignments generated in prior mapping work when such alignments 
were available; when they were not, BWA was used instead (34). 

 
Comparative analyses with An. gambiae genome 

Comparative analyses with An. gambiae genome relied on existing LASTZ_NET 
alignment data between the An. gambiae genome assembly AgamP4 and the AaegL2 and 
CpipJ2 draft genomes available from VectorBase (28, 39). The alignment data were 
further processed in order to assign each alignment block a position on the raw 
chromosomal scaffolds of AaegL4 and CpipJ3. Thus, each block represents an alignment 
between one locus in a genome and a second, orthologous locus in another genome. 

We process this list of ortholog pairings in various ways. For instance, we describe 
how often loci on a particular arm in one genome are paired with loci on a particular arm 
in another genome. Matrices describing such analyses for all pairs of arms are provided 
in Tables S8-S11. In Figures S17 and S18, we provide histograms at 1Mb resolution 
showing the frequency with which loci on a particular chromosome arm of AgamP4 align 
to all positions, genome-wide in AaegL4 and CpipJ3. 

Note that although the results are in broad correspondence with several cytogenetic 
studies (18–20), the extent to which individual arms are conserved in An. gambiae, Cx. 
quinquefasciatus and Ae. aegypti was not apparent from prior genome assemblies, even 
after improvements using various anchoring and mapping strategies (Figs. S17 and S18).  

 
Comparative analyses with D. melanogaster genome 

Comparative analyses with D. melanogaster genome rely on LASTZ_NET 
alignment data between the D. melanogaster genome assembly BDGP6 and the AaegL2 
and CpipJ2 draft genome assemblies available from Ensembl (28, 40). The distribution of 
conserved sequences highlights several highly conserved chromosome arms (Fig. S19). 
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Cost estimate for Hi-C based assembly 
Overall, our results show that incorporating Hi-C data into genome assembly 

provides a rapid, inexpensive methodology for generating highly accurate de novo 
assemblies with chromosome-length scaffolds for a wide variety of species. For example, 
using the Hs2-HiC strategy, the actual production costs in our lab for a de novo 
mammalian genome are less than $10,000. Since most of this cost is sequencing, and the 
quotes we rely on for our cost estimates are consistent with rates available to the broader 
community, there is no reason this strategy could not be employed in other labs at a 
similar cost. 

The breakdown of projected expenses can be found in Table S12. The whole library 
preparation and quality control sequencing pipeline takes a single technician a full work-
week from end-to-end. Assuming 20 samples are processed at a time (which is a 
reasonable estimate for a skilled technician) yields an estimate of ~$50 per library in 
terms of library preparation costs. The DNA-seq library preparation estimate is calculated 
based on Qiagen Genomic Tip ($233 per 25 columns), Qiagen Genomic DNA Buffer Set 
($163 per 75 minipreps) and TruSeq® DNA PCR-Free HT Kit ($3000 for 96 samples) 
list prices in 2016. The Hi-C library preparation estimate is calculated based on the price 
for consumables listed in the in situ Hi-C protocol (5). The sequencing costs are listed 
based on estimates of $8,600 per HiSeq2500 flow cell for PE250 and $1,750 per HiSeqX 
lane, PE150. These estimates were obtained by comparing quotes from several 
institutions. It is worth noting that, instead of HiSeqX PE150, shorter read-length 
NextSeq instruments can be used to achieve comparable physical coverage by Hi-C 
(though the quality of the mapping will be somewhat reduced). This yields a total cost 
estimate of ~$9,450. 

The cost can be much lower for smaller genomes, or if some draft sequencing data 
are already available. For example, the combined cost of AaegL4 and CpipJ3 was 
~$4,000, which includes library preparation and sequencing for both projects. The 
sequencing run was performed on a NextSeq500 machine; using HiSeqX technology, the 
total cost for improving both assemblies would have been $2,000.  

 
Comparison with existing methods: Hs1 genome assembly 

We compare the algorithms introduced in the paper with LACHESIS (10), the most 
widely-used tool for large-scale Hi-C based genome assembly (8, 11). LACHESIS was 
downloaded from GitHub (permalink 81ea957348ce0db454145399f2cfe1253c0ff427). 

The input to both algorithms was the same: a set of DISCOVAR de novo scaffolds 
from 60X PE250 Illumina short reads and 6.7X of Hi-C data. Only scaffolds longer than 
20kb were used, although the results were similar without this restriction. Since 
LACHESIS does not contain an error correction module we have also disabled misjoin 
detection in our pipeline for this comparison. In addition, LACHESIS was provided with 
the correct number of scaffolds (23; this number is required in order to run LACHESIS), 
whereas our algorithm was not. 

The dotplots showing alignment of the resulting scaffolds to hg38 are shown in Fig. 
S20. As the dotplots illustrate, LACHESIS was able to anchor many of the scaffolds, but 
failed to generate chromosome-length scaffolds. In contrast, our algorithm correctly 
reconstructed the 23 chromosomes as evidenced by a near-perfect diagonal in the dotplot. 
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(Though several inversions remain due to the fact that we did not use our misjoin 
detection algorithm for this comparison.) 

 
Comparison with existing methods: AaegL2 genome assembly 

 We also compare the results of running LACHESIS, our scaffolding algorithm 
(without misjoin correction), and our full pipeline (including misjoin correction) on 
AaegL2. Since an accepted reference does not exist for the Aedes aegypti genome, the 
quality of each algorithm’s output is illustrated by comparison with a genetic linkage map 
(19). Neither LACHESIS nor our scaffolding algorithm alone can assemble the genome. 
In contrast, by employing misjoin correction, our full pipeline produces an extremely 
accurate assembly (see Fig. S21). 
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Fig. S1. 
Workflow diagram describing the computational pipeline. The pipeline starts with 
scaffolding the input and assessing the result for misassemblies. The detected 
misassemblies are linked to misjoins in the draft contigs/scaffolds. Once the misjoins 
have been removed from the input, the scaffolding and misassembly analysis is repeated. 
Iterative scaffolding and misassembly detection constitute the core section of the 
pipeline. For some genomes polishing and merging is also employed. Additional steps 
include chromosome splitting and sealing (see Pipeline description). 
	 	



	
	

23 
 

 

Fig. S2. 
A workflow diagram illustrating the processing of various scaffold populations, 
beginning with draft scaffolds and ending with chromosome-length scaffolds. Each node 
corresponds to a set of scaffolds; the terminology used in the paper and supplement to 
refer to that set of scaffolds is shown. 
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Fig. S3. 
Misassembly detection notation and algorithm. (A) Calculating the number of bins in 
between the diagonals from 𝑐!!!,! to 𝑐!,!!! and from 𝑐!,!!! to 𝑐!!!,!. (B) Triangular 
shape used to calculate the scores 𝑆(𝑋) and 𝑆!"# 𝑋  along the assembly. (C) Schematic 
representation of matrix saturation and the distribution of the score 𝑆!"#(𝑋) along the 
genome. Bright red signifies the highest scoring bin in a given matrix. 
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Fig. S4. 
Misassembly correction. Once the misassembly detection algorithm has identified a 
problematic region that lies inside an input scaffold (a bin marked with an X), the region 
gets excised resulting in two internally consistent fragments of the original input scaffold. 
The third fragment that spans a misassembled region is labeled as inconsistent. 
Inconsistent fragments do not participate in the next round of scaffolding. 
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Fig. S5. 
Misassembly detection algorithm performance on Hs1 (A) and AaegL2 (B) input. Left 
panel shows a fragment of the Hi-C map for the assembly obtained by scaffolding the 
original input scaffolds, without any editing. The tracks on top of the map show the 
distribution of 𝑆!"# 𝑋, 𝑟!  along the assembly (blue) as well as coarse (top green track) 
and fine (bottom green track) positioning of misassembled sequences as identified by the 
misassembly detector. Right panel shows a zoom-in on a fragment of the map with input 
scaffold boundaries superimposed to assist in classifying the detected misassemblies. 
Intrascaffold misassemblies constitute a list of edits to be applied to the original scaffold 
set; misassemblies that overlap with scaffold boundaries are ignored. There is one 
intrascaffold misassembly in Hs1 and 5 intrascaffold misassemblies in AaegL2 in the 
corresponding fields of view. 
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Fig. S6. 
An example of applying an iterative scaffolding algorithm to a mock Hi-C dataset. The 
input scaffold pool consists of three scaffolds: 1, 2 and 3. The scaffolds are split into 
hemi-scaffolds. (To be able to distinguish between the hemi-scaffolds we annotate one as 
H for head and T for tail. The choice in each case is arbitrary.) The number of pairwise 
Hi-C contacts observed between all loci in all scaffolds is given as a Hi-C contact map. 
The assembly finishes in two steps. We show the intermediate results for both steps: 
density graph, unfiltered confidence graph, confidence graph, path cover and redefinition 
of scaffold pool. Note that to reduce cluttering the weights on the density graph are given 
without normalization. For the same reason the weights of sister edges are not shown in 
the density and confidence graphs; instead the sister edges are marked with black color. 
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Fig. S7. 
Polishing the assembly during the construction of AaegL4 genome. Clustering of 
telomeres and centromeres can create false positives during scaffolding, since extremely 
strong off-diagonal 3D signals associated with telomere and centromere clustering can 
sometimes be strong enough to rival the contact frequencies observed for loci that are 
adjacent in 1D. Such errors are corrected by low-resolution misassembly detection and 
reassembly of the resulting multimegabase fragments. 
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Fig. S8. 
The location of the overlap relative to input scaffold boundaries is taken into account in 
determining whether the scaffolds can be correctly merged. 
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Fig. S9. 
Dotplots showing alignment of Hs2-HiC chromosome-length scaffolds vs hg38 
chromosome-length scaffolds. The hg38 reference (NCBI accession number 
GCA_000001405.23) is shown on the X axis. The Y axis shows the 23 largest scaffolds 
of the Hs2-HiC assembly; they have been ordered and oriented to match the 
chromosomes as defined in hg38 in order to facilitate comparison. (For the same reason, 
all gaps are removed in both assemblies.) Each dot represents the position of an 
individual resolved scaffold aligned to hg38. The color of the dots reflects the orientation 
of individual alignments with respect to hg38 (red indicates a match, whereas blue 
indicates disagreement). The track on top illustrates the scaffold N50 of the draft 
DISCOVAR de novo assembly Hs1 as a function of position (calculated in windows of 
1Mb for individual chromosomes and 10Mb for the whole-genome graph). Alignment 
was performed using BWA (34). The dotplots illustrate excellent correspondence 
between hg38 and Hs2-HiC, with the exception of a few low-complexity regions of the 
human genome. 
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Fig. S10. 
The correlation between the position of a scaffold on a genetic linkage map in 
centimorgans (cM) and its position in the AaegL4 assembly. Out of 1826 markers, only 
four are inconsistent. These inconsistencies are due to errors in the draft assembly 
(AaegL2) that were not flagged by our approach. 
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Fig. S11. 
Misassembly detection using Hi-C: comparison with evidence from linkage mapping. 
Shown are contact maps for the first four AaegL2 scaffolds that were identified as 
misassembled in a genetic linkage mapping study (19). The boundaries of consistent 
fragments as identified via automatic misassembly detector are overlaid over the contact 
maps (green squares). The upper track shows the location of breakpoints as well as the 
position of the resulting scaffold fragments (indicated using color) along the Ae. aegypti 
chromosomes according to the linkage map (19). White bars indicate a lack of markers 
on the fragment, making more precise identification of breakage position on the basis of 
the genetic map impossible. The lower track illustrates the location of breakpoints as well 
as the position of the resulting scaffold fragments (indicated using color) according to 
current study. The overall coloring scheme used is shown; however note that the 
individual color gradients along each scaffold fragment were enhanced in order to 
heighten the contrast between nearby positions on the same chromosome. All 63 
scaffolds that were identified as misassembled in (19) through linkage mapping were 
independently flagged as misassembled based on their Hi-C signal. 
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Fig. S12. 
The correlation between chromosomal band assignment by physical mapping (36) and 
position in AaegL4 genome. 
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Fig. S13 
The correlation between the position of a marker on a genetic linkage map in 
centimorgans (cM) and its position in the CpipJ3 assembly. (A) Map of microsatellite 
loci (21); (B) Map of restriction fragment length polymorphism (RFLP) markers (20).  
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Fig. S14. 
Correlation between chromosomal band assignment by physical mapping and position in 
CpipJ3 genome. (A) Physical mapping of polytene Cx. quinquefasciatus chromosomes 
(37); (B) Mitotic chromosome-based physical mapping (38). 
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Fig. S15. 
The 3D map of the Cx. quinquefasciatus genome. Both Ae. aegypti and Cx. 
quinquefasciatus genomes exhibit bright, off-diagonal peaks, which indicate the spatial 
clustering of telomeres and centromeres. These peaks facilitate the annotation of 
centromeric sequences for each chromosome (41).  
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Fig. S16. 
Size distribution for synteny blocks between Ae. aegypti and An. gambiae. The block 
sizes are measured with respect to the Ae. aegypti genome. The blocks are defined as 
chains of conserved sequence markers that are both consecutive and collinear in both 
genomes. The chain ends when two consecutive markers disagree with the rest of the 
chain; however, one marker in the wrong order and/or the wrong orientation does not 
break the chain. 
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Fig. S17. 
The AaegL4 genome assembly enables genome-wide analysis of conservation of synteny 
between Ae. aegypti and An. gambiae. (A) Density of conserved alignments between 
chromosomes of Ae. aegypti and An. gambiae as suggested by the AaegL2 assembly. 
Below the histogram tracks we show the linkage groups reported in AaegL2 (18). (B) 
The synteny analysis from panel A is repeated using improved linkage groups generated 
via physical mapping (36), which are indicated below the plot. (C) The synteny analysis 
from panel A is repeated using improved linkage groups generated via genetic linkage 
mapping (19), which are indicated below the plot. (D) Synteny analysis for the AaegL4 
assembly. A one-to-one correspondence between the chromosome arms of Ae. aegypti 
and An. gambiae is apparent. Chromograms along the x- and y- axes indicate which 
portions of AaegL4 correspond to which positions in the other genomes and genome 
assemblies.  
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Fig. S18. 
The CpipJ3 mapping reveals strong conservation of the contents of chromosome arms 
between Cx. quinquefasciatus and An. gambiae. A) Conservation of synteny between 
chromosomes of Cx. quinquefasciatus and An. gambiae as suggested by the CpipJ2 
assembly. B) Conservation of synteny as represented by the CpipJ3 assembly. 
Chromograms along the x- and y- axes indicate which portions of CpipJ3 correspond to 
which positions in the other genomes and genome assemblies.  
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Fig. S19. 
Conservation of synteny across dipterans. Several chromosome arms, such as D. 
melanogaster 2L, Ae. aegypti 2q, and Cx. quinquefasciatus 2p, show strong conservation 
of content. Chromograms along the x- and y- axes indicate which portions of BDGP6 
correspond to which positions in the other genomes and genome assemblies.  
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Fig. S20. 
Comparison of scaffolding algorithms presented in (10) and the current paper. 
Misassembly detection has been disabled in our pipeline to focus the comparison 
specifically on scaffolding abilities. The algorithms have been given the same data as 
input: set of DISCOVAR de novo scaffolds from 60X PE250 Illumina short reads and 
6.7X of Hi-C data. In both cases only scaffolds longer than 20kb have been used. 
Although clustering is clearly visible in the LACHESIS output individual chromosome-
length scaffolds were not correctly reconstructed. 
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Fig. S21. 
Comparison of the results of running LACHESIS (10), our scaffolding algorithm 
(without misjoin correction), and our full pipeline (including misjoin correction) on 
AaegL2 with the existing linkage map (19).  
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Table S1. 
Chromosome-length scaffolds of the Hs2-HiC de novo short read assembly as compared 
to those in the current human genome reference, hg38. Comparison of the position of the 
first and last contig of Hs2-HiC to the hg38 chromosome termini demonstrates that the 
Hs2-HiC scaffolds are chromosome-length. 
 

Chr hg38  
Sequenced Bases 

Hs2-HiC  
Sequenced Bases 

Hs2-
HiC % of 

hg38 

Hs2-HiC p-
terminus 

vs hg38 p-
terminus 

(% of chr length) 

Hs2-HiC q-
terminus 

vs hg38 q-
terminus 

(% of chr length) 
1 230,481,014 209,243,285 91% 0.3% 0.0% 
2 240,548,237 223,996,452 93% 0.0% 0.0% 
3 198,100,142 188,079,834 95% 0.0% 0.1% 
4 189,752,667 179,103,191 94% 0.0% 0.1% 
5 181,265,378 167,410,379 92% 0.0% 0.2% 
6 170,078,523 160,862,810 95% 0.1% 0.1% 
7 158,970,135 143,026,896 90% 0.0% 0.0% 
8 144,768,136 135,766,704 94% 0.1% 0.0% 
9 121,790,553 103,710,604 85% 0.1% 0.2% 

10 133,262,998 122,608,161 92% 0.1% 0.1% 
11 134,533,742 123,909,805 92% 0.1% 0.0% 
12 133,137,819 124,764,976 94% 0.1% 0.0% 
13 97,983,128 91,655,170 94% 2.8% 0.0% 
14 90,568,149 83,363,733 92% 4.1% 0.2% 
15 84,641,325 74,204,551 88% 3.4% 0.2% 
16 81,805,944 69,176,130 85% 0.0% 0.3% 
17 82,920,216 70,715,528 85% 0.4% 0.1% 
18 80,089,605 70,899,228 89% 0.2% 0.0% 
19 58,440,758 52,113,858 89% 0.4% 0.1% 
20 63,944,257 58,053,966 91% 0.0% 0.1% 
21 40,088,622 32,584,600 81% 2.3% 0.1% 
22 39,159,782 28,584,318 73% 21.0% 0.4% 
X 154,893,034 140,293,516 91% 0.2% 0.0% 

All 2,911,224,164 2,654,127,695 91% 0.7% 0.1% 
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Table S2. 
Statistics describing various scaffold populations. See Fig. S2, which illustrates the 
corresponding scaffold populations in the context of the assembly workflow. 
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Scaffold Type Statistic Hs2-HiC AaegL4 CpipJ3 

Draft 

Sequenced Base Pairs 2,819,306,710 1,310,076,332 539,974,961 

# of Scaffolds 73,770 4,756 3,172 

Scaffold N50, bp 125,775 1,547,048 486,756 

Length of Longest 
Scaffold, bp 1,261,627 5,856,339 3,873,040 

Unattempted 

Sequenced Base Pairs 151,762,261 14,122,292 112,343 

% of Total Sequenced 
Base Pairs 5.4% 1.1% 0.02% 

# of Scaffolds 43,231 2,222 25 

Scaffold N50, bp 6,144 6,577 9,403 

Length of Longest 
Scaffold, bp 14,999 9,990 9,957 

Input 

Sequenced Base Pairs 2,667,544,449 1,295,954,040 539,862,618 

% of Total Sequenced 
Base Pairs 94.6% 98.9% 99.98% 

# of Scaffolds 30,539 2,534 3,147 

Scaffold N50, bp 134,113 1,557,198 486,756 

Length of Longest 
Scaffold, bp 1,261,627 5,856,339 3,873,040 

Resolved 

Sequenced Base Pairs 2,654,127,695 1,213,489,564 508,694,417 

% of Attempted 
Sequenced Base Pairs 99.5% 93.6% 94.2% 

% of Total Sequenced 
Base Pairs 94.1% 92.6% 94.2% 

# of Scaffolds 30,209 3,613 2,902 

Scaffold N50, bp 134,623 1,010,000 459,995 

Length of Longest 
Scaffold, bp 1,261,627 4,485,194 3,873,040 

Unresolved & 
Inconsistent 

Sequenced Base Pairs 13,416,754 82,464,476 31,168,201 

% of Attempted 
Sequenced Base Pairs 0.50% 6.36% 5.77% 

% of Total Sequenced 
Base Pairs 0.48% 6.29% 5.77% 

# of Scaffolds 832 3,987 1,227 

Scaffold N50, bp 28,016 65,155 45,079 

Length of Longest 
Scaffold, bp 231,347 474,197 323,163 
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Table S3. 
Statistics describing the results of assembly using Hi-C, including only draft scaffolds 
that we attempted to scaffold further as input. The values describe the chromosome-
length scaffolds, as well as other, smaller scaffolds generated during the Hi-C assembly 
process. Note that the total number of scaffolds, and their total length in base pairs, can 
change on account of the misjoin correction and scaffold merge steps.  
 
Scaffold Type Statistic Hs2-HiC AaegL4 CpipJ3 

Input 

Sequenced Base Pairs 2,667,544,449 1,295,954,040 539,862,618 

# of Scaffolds 30,539 2,534 3,147 

Scaffold N50, bp 134,113 1,557,198 486,756 

Length of Longest 
Scaffold, bp 1,261,627 5,856,339 3,873,040 

Chr-length & 
Small 

Sequenced Base Pairs 2,667,544,449 1,240,425,868 523,568,378 

% of Sequenced Base 
Pairs in Input 100% 95.7% 97.0% 

# of Scaffolds 834 3,984 1,227 

Scaffold N50, bp 141,244,516 404,248,146 190,989,159 

Length of Longest 
Scaffold, bp 225,222,252 471,868,560 212,641,822 

Chr-length 

Sequenced Base Pairs 2,654,127,695 1,157,961,392 492,400,177 

% of Sequenced Base 
Pairs in Input 99.5% 89.4% 91.2% 

# of Scaffolds 23 3 3 

Scaffold N50, bp 141,244,516 404,248,146 190,989,159 

Length of Longest 
Scaffold, bp 225,222,252 471,868,560 212,641,822 

Small 

Sequenced Base Pairs 13,416,754 82,464,476 31,168,201 

% of Sequenced Base 
Pairs in Input 0.50% 6.36% 5.77% 

# of Scaffolds 811 3,981 1,224 

Scaffold N50, bp 30,467 65,348 45,079 

Length of Longest 
Scaffold, bp 231,347 474,197 323,163 
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Table S4. 
Statistics describing the results of assembly using Hi-C, including all draft scaffolds as 
input. The values describe the chromosome-length scaffolds, as well as other, smaller 
scaffolds generated during the Hi-C assembly process. Note that the total number of 
scaffolds, and their total length in base pairs, can change on account of the misjoin 
correction and scaffold merge steps.  
 
Scaffold Type Statistic Hs2-HiC AaegL4 CpipJ3 

Draft 

Sequenced Base Pairs 2,819,306,710 1,310,076,332 539,974,961 

# of Scaffolds 73,770 4,756 3,172 

Scaffold N50, bp 125,775 1,547,048 486,756 

Length of Longest 
Scaffold, bp 1,261,627 5,856,339 3,873,040 

Chr-length, 
Small, 
& Tiny 

Sequenced Base Pairs 2,819,306,710 1,254,548,160 523,680,721 

% of Sequenced Base 
Pairs in Draft 100% 95.8% 97.0% 

# of Scaffolds 44,065 6,206 1,252 

Scaffold N50, bp 141,244,516 404,248,146 190,989,159 

Length of Longest 
Scaffold, bp 225,222,252 471,868,560 212,641,822 

Chr-length 

Sequenced Base Pairs 2,654,127,695 1,157,961,392 492,400,177 

% of Sequenced Base 
Pairs in Draft 94.1% 88.4% 91.2% 

# of Scaffolds 23 3 3 

Scaffold N50, bp 141,244,516 404,248,146 190,989,159 

Length of Longest 
Scaffold, bp 225,222,252 471,868,560 212,641,822 

Small & 
Tiny 

Sequenced Base Pairs 165,179,015 96,586,768 31,280,544 

% of Sequenced Base 
Pairs in Draft 5.9% 7.4% 5.8% 

# of Scaffolds 44,042 6,203 1,249 

Scaffold N50, bp 6,869 57,616 44,425 

Length of Longest 
Scaffold, bp 231,347 474,197 323,163 
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Table S5. 
Cumulative assembly statistics for the assemblies. The values describe the combined set 
of chromosome-length scaffolds, as well as small scaffolds; however, they exclude the 
tiny scaffolds from the draft assembly, which we did not attempt to analyze (see Fig. S2). 
 

Statistics	 Hs2-HiC AaegL4 CpipJ3 
Base Pairs 2,667,544,449 1,240,425,868 523,568,378 

Number of contigs 37,466 35,001 46,660 
Contig N50 108,337 85,367 28,747 

Number of scaffolds 834 3,984 1,227 
Scaffold N50 141,244,516 404,248,146 190,989,159 

In chromosome-length scaffolds 99.5% 93.4% 94.0% 
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Table S6. 
Cumulative assembly statistics for the assemblies. The values describe the combined set 
of chromosome-length scaffolds, as well as small and tiny scaffolds (see Fig. S2). 
 

Statistics	 Hs2-HiC AaegL4 CpipJ3 

Base Pairs 2,819,306,710 1,254,548,160 523,680,721 
Number of contigs 80,725 37,224 46,721 

Contig N50 102,793 84,074 28,735 
Number of scaffolds 44,065 6,206 1,252 

Scaffold N50 141,244,516 404,248,146 190,989,159 
In chromosome-length scaffolds 94.1% 92.3% 94.0% 
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Table S7. 
Chromosome-length scaffolds of AaegL4 and CpipJ3. 
	

Assembly Name AaegL4 
Total length, bp 

AaegL4 
Sequenced bases, 

bp 

CpipJ3 
Total length, bp 

CpipJ3 
Sequenced bases, 

bp 

Chromosome 1 307,202,349 299,394,366 119,556,434 112,137,428 

Chromosome 2 471,868,560 460,653,950 212,641,822 201,346,683 

Chromosome 3 404,248,146 397,913,076 190,989,159 178,916,066 
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Table S8. 
Conservation of arm content between AgamP4 and AaegL4 based on whole-genome 
alignment. Each alignment block represents an alignment between one locus in a genome 
and a second, orthologous locus in another genome. Here, we show the number of 
orthologous loci associated with each AgamP4 chromosome arm, broken down by their 
chromosome arm on AaegL4. Some loci orthologous to AgamP4 are not assigned to 
chromosome-length scaffolds in AaegL4, but rather to small or tiny scaffolds; we 
therefore also show the total number of orthologs that are anchored to chromosome-
length scaffolds. The percentages are calculated with respect to the number of anchored 
orthologous loci. 
	

 AaegL4 Total Anchored 1p 1q 2p 2q 3p 3q 

A
ga

m
P4

 

X 5,296 
 

4,831 3,923 276 145 174 140 173 

91% 81% 6% 3% 4% 3% 4% 

2L 13,734 
 

12,740 454 522 10,220 391 235 918 

93% 4% 4% 80% 3% 2% 7% 

2R 16,841 
 

16,118 787 5,643 309 644 8,316 419 

96% 5% 35% 2% 4% 52% 3% 

3L 9,995 
 

9,529 376 238 237 339 245 8,094 

95% 4% 2% 2% 4% 3% 85% 

3R 13,060 
 

12,494 424 268 278 10,749 284 491 

96% 3% 2% 2% 86% 2% 4% 
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Table S9. 
Conservation of arm content between AgamP4 and AaegL4 based on whole-genome 
alignment. Each alignment block represents an alignment between one locus in a genome 
and a second, orthologous locus in another genome. Here, we show the total length of the 
orthologous loci associated with each AgamP4 chromosome arm, broken down by their 
chromosome arm on AaegL4. Some loci orthologous to AgamP4 are not assigned to 
chromosome-length scaffolds in AaegL4, but rather to small or tiny scaffolds; we 
therefore also show the total length of orthologs that are anchored to chromosome-length 
scaffolds. The percentages are calculated with respect to the total length of anchored 
orthologous loci. 
	

 AaegL4 Total Anchored 1p 1q 2p 2q 3p 3q 

A
ga

m
P4

 

X 2,089,304 
  

1,890,087 1,509,472 99,495 75,343 70,506 59,288 75,983 

90% 80% 5% 4% 4% 3% 4% 

2L 5,299,103 
  

4,885,106 177,858 193,741 3,948,264 135,464 85,130 344,649 

92% 4% 4% 81% 3% 2% 7% 

2R 6,771,249 
  

6,467,981 292,991 2,231,191 104,908 207,432 3,485,755 145,704 

96% 5% 34% 2% 3% 54% 2% 

3L 3,946,137 
  

3,748,373 125,450 80,424 93,035 116,912 71,548 3,261,004 

95% 3% 2% 2% 3% 2% 87% 

3R 5,060,186 
  

4,855,922 196,795 104,498 109,172 4,133,038 111,008 201,411 

96% 4% 2% 2% 85% 2% 4% 
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Table S10. 
Conservation of arm content between AgamP4 and CpipJ3 based on whole-genome 
alignment. Each alignment block represents an alignment between one locus in a genome 
and a second, orthologous locus in another genome. Here, we show the number of 
orthologous loci associated with each AgamP4 chromosome arm, broken down by their 
chromosome arm on CpipJ3. All loci orthologous to AgamP4 get assigned to 
chromosome-length scaffolds in CpipJ3, as highlighted by the anchored alignment count. 
Note that the regions in the centromere-associated cluster observed in the Hi-C map of 
CpipJ3 are relatively large in comparison to those in AaegL4. Because loci lying in these 
regions cannot be assigned to a specific chromosome arm, they were excluded from the 
analysis in the last 6 columns. 
	

 CpipJ3 Total Anchored 1p 1q 2p 2q 3p 3q 

A
ga

m
P4

 

X 4,696 
  

4,526 3,840 77 101 89 89 83 

96% 85% 2% 2% 2% 2% 2% 

2L 13,112 
  

12,538 318 422 400 816 9,832 274 

96% 3% 3% 3% 7% 78% 2% 

2R 16,884 
  

16,310 498 5,756 423 441 382 7,814 

97% 3% 35% 3% 3% 2% 48% 

3L 10,148 
  

9,541 352 173 430 7,973 232 201 

94% 4% 2% 5% 84% 2% 2% 

3R 12,933 
  

12,477 309 160 10,754 289 264 239 

96% 2% 1% 86% 2% 2% 2% 

	 	



	
	

54 
 

	

Table S11. 
Conservation of arm content between AgamP4 and CpipJ3 based on whole-genome 
alignment. Each alignment block represents an alignment between one locus in a genome 
and a second, orthologous locus in another genome. Here, we show the total length of the 
orthologous loci associated with each AgamP4 chromosome arm, broken down by their 
chromosome arm on CpipJ3. All loci orthologous to AgamP4 get assigned to 
chromosome-length scaffolds in CpipJ3, as highlighted by the anchored alignment length. 
As in Table S10, pericentromeric regions were excluded from the analysis in the last 6 
columns. 
	

 CpipJ3 Total Anchored 1p 1q 2p 2q 3p 3q 

A
ga

m
P4

 

X 1,833,620 
  

1,770,493 1,553,607 32,787 31,127 29,180 25,623 26,427 

97% 88% 2% 2% 2% 1% 1% 

2L 5,030,653 
  

4,824,352 107,944 147,390 117,779 329,880 3,889,684 82,639 

96% 2% 3% 2% 7% 81% 2% 

2R 6,722,672 
  

6,521,544 160,791 2,325,319 123,219 150,203 105,720 3,364,617 

97% 2% 36% 2% 2% 2% 52% 

3L 3,959,192 
  

3,730,270 135,065 48,100 144,628 3,227,489 72,513 57,471 

94% 4% 1% 4% 87% 2% 2% 

3R 4,855,195 
  

4,706,392 116,050 44,500 4,163,259 118,621 71,312 66,790 

97% 2% 1% 88% 3% 2% 1% 

	 	



	
	

55 
 

	

Table S12. 
Breakdown of the projected costs for generating a de novo human or mammalian genome 
with chromosome-length scaffolds following the Hs2-HiC strategy. 
	
Library Preparation	 $50	
Reagents (DNA-Seq)	 $50	
Reagents (Hi-C)	 $150	
Sequencing (DNA-Seq)	 $8600	
Sequencing (Hi-C)	 $600	
Total Cost	 $9450	
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Table S13. 
Pseudocode for misassembly correction algorithm. 

 
Misassembly correction: 
1) Calculate 𝐶(𝑏) for the contact matrix at a coarse resolution 𝑟! 
2) Compute the saturated score function 𝑆!"#(𝑋, 𝑟!) at the coarse resolution 
3) Calculate 𝐶(𝑏) for the contact matrix at fine resolution 𝑟! 
4) Compute the saturated score function 𝑆!"# 𝑋, 𝑟!  
5) Flag misjoined loci satisfying 𝑆!"# 𝑋, 𝑟! < 𝑘 ∗ 𝑆!"#!"  
6) For each misjoined locus identified: 

a. Localize the misjoin at resolution 𝑟!  by finding the minimum of 
𝑆!"# 𝑋, 𝑟!  in the locus 

b. Compare localized misjoins with scaffold boundaries to distinguish 
scaffolds containing misjoins from misjoins that lie between scaffolds 

c. Correct the input scaffolds by excising misjoins inside scaffolds and 
labeling the excised fragment as inconsistent; in addition, if the misjoin is 
far from the ends of the scaffold, divide the input scaffold into two 
scaffolds by splitting it at the misjoin site 
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Table S14. 
Pseudocode for iterative scaffolding algorithm. 
 

Scaffolding: 
Initialize the scaffold pool using a set of input scaffolds 
While there is more than one scaffold in the scaffold pool: 

a. Construct the density graph for the scaffolds in the scaffold pool 
b. Transform the density graph into a confidence graph 
c. If the confidence graph does not contain edges linking hemi-scaffolds 

from distinct scaffolds in the pool (“non-sister edges”): 
i. Remove the smallest scaffold from the scaffold pool 

d. Else: 
i. Find maximum weight vertex-disjoint path cover of the 

confidence graph 
ii. Determine the corresponding output scaffolds 

iii. Replace the scaffold pool with the output scaffolds 
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Table S15 (provided online as a separate excel file). 
AaegL4 alignments of markers from Juneja et al. Ae. aegypti genetic mapping study (19). 
 

Table S16 (provided online as a separate excel file). 
AaegL4 alignments of markers from Timoshevskiy et al. Ae. aegypti physical mapping 
study (36). 
 

Table S17 (provided online as a separate excel file). 
CpipJ3 alignments of microsatellite loci markers from Hickner et al. Cx. quinquefasciatus 
genetic mapping study (21). 
 

Table S18 (provided online as a separate excel file). 
CpipJ3 alignments of RFLP markers from Arensburger et al. Cx. quinquefasciatus 
genetic mapping study (20). 
 

Table S19 (provided online as a separate excel file). 
CpipJ3 alignments of markers from Unger et al. Cx. quinquefasciatus physical mapping 
study (37). 
 

Table S20 (provided online as a separate excel file). 
CpipJ3 alignments of markers from Naumenko et al. Cx. quinquefasciatus physical 
mapping study (38). 
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