
Reviewer #1 (Remarks to the Author):  

 

#2017.4.2 FUMA: Functional mapping and annotation of genetic associations  

The manuscript described a web-based toolset, FUMA, to annotate significant locus of genome-wide 

association studies (GWAS). FUMA incorporated several databases and bioinformatics softwares to 

develop a pipeline that help users to better analyze GWAS results and pick up likely functional locus, 

both in coding regions and regulatory regions; while, in the mean time, provide easy visualization 

tools.  

 

The tool is needed in the field; The databases chosen for the genomic annotation is comprehensive 

though straightforward; The design of the website is clear and functional. However, the novelty of 

the work is a concern, since all the bioinformatics tools and databases used by FUMA are well-

established and the annotation process of FUMA is standard. FUMA glues the resources together 

and provides the whole analysis pipeline as a service.  

 

There is room for the improvement of the website. The regional plots that align the annotation of 

multiple databases, such as CADD, regulomeDB, and Chromatine states, is informative. However, it is 

desired that FUMA could provide clickable links that direct the users to more detailed information at 

the original databases. For example, regulomeDB also provide information on cell types and 

transcription factor names, instead of merely a score. In my test run, there are glitches on some 

pages where texts and figures stacked on top of each other, making it impossible to read.  

 

 

Reviewer #2 (Remarks to the Author):  

 

Most genetic variants associated with human disease sit in non-coding regions, but the function of 

these regions is hard to annotate and understand, a factor that challenges modern genetic studies of 

disease. It is in this context that the authors create an important new tool, FUMA for functional 

mapping and annotation of genetic variants associated with disease. They use this in a very striking 

proof of principle to identify new loci for BMI using published GWAS. Overall, I expect that this will 

be a widely referenced and highly cited paper, both for the new biology and for the tool. Most of my 

suggestions for improvement should therefore be considered minor, since this is an exciting advance 

that will substantially augment current genetic analyses.  

 

The tool has two components, SNP to gene and gene to function, which are the key steps in moving 

from genetic association to some functional insight. I discuss each of these steps within this software 



and its application to BMI in turn. The SNP to gene mapping divides LEAD SNPs into those that are 

clearly functional within a gene, and those that have no clear function, which are than annotated 

based on eQTL data. FUMA can calculate LEAD SNPs based itself based on certain (reasonable) 

assumptions, or take a list generated by the User, which is a key feature, since other methods such 

as CAVIAR or PAINTOR etc. may be used to define potentially causal SNP lists, and one needs 

flexibility in such a tool, since methods evolve so rapidly. This makes this a very flexible tool for its 

SNP to gene function, which will promote its use.  

 

Moving from gene to function is a more far more involved and difficult problem. ANNOVAR is used 

to annotate SNPS, as well as CADD, Regulome DB and HMM based chromatin state from ENCODE. 

Non-coding or otherwise non-annotated SNPs are than matched with eQTLs from user defined 

tissues of interest, which is very useful. It is not clear if there are multiple eQTL data sets available, 

how they are merged, or reconciled if they give different or conflicting information. This can be 

easily addressed in the supplemental material.  

 

One weakness of the mapping SNP to gene using ANNOVAR is that it is based on distance, and both 

functional eQTL and physical, Hi-C data indicate that many even intragenic SNPs act at distal genes. 

Assignment of non-coding SNPs to the closest gene is estimated to occur about 50% of the time, so 

50% of the assignments might be off. The authors should consider integrating Hi-C/ChIA-PET and 

other data that is available via 3D genome browser (http://promoter.bx.psu.edu/hi-c/) or one of the 

other visualization tools, which would bring this pipeline to be truly state of the art. There should at 

least be a way to load a 2D matrix of chromatin contacts defined by Hi-C or refined by CTCF binding 

sites combined with other computational predictions, etc (e.g. PMID: 27064255). Since 

Supplemental figure 1 has a box that says “extract all information possible”, I suggest that the 

authors provide a means to incorporate or extract enhancer – promotor interactions from either Hi-

C data, or computational predictions (PMID: 27064255), ATAC-seq correlations, or all of the above. 

Again, this would mean adding a SNP to gene annotation step that could accommodate a 2D 

interaction matrix, adding flexibility similar to the ability to load in a SNP list in the beginning of the 

process.  

 

Similarly, CADD has not proven that powerful for identifying missense mutations in several 

disorders, even though it was originally published in Nature Genetics (the current FUMA software is 

likely to be much more useful!). Annotation with other tools that incorporate mutational frequency 

and locus tolerance to damage (which seems more promising) would be useful (PMID: 26332131; 

PMID: 25086666), but since this field is rapidly evolving, making sure that other emerging forms of 

functional annotation as to the likely deleteriousness of the mutation, both non-coding and coding, 

can be added would be very important. If the software is available as open source, that would also 

aid such additions and building on to this tool in the future.  

 



Finally, with regards to the tool’s functionality, the integration and use of MAGMA, which is a very 

strong and widely used tool for pathway annotation is strength of this current work.  

 

The authors subsequently use this tool to re-annotate BMI GWAS, which adds substantial new 

biology and demonstrates the power of this tool by identifying 96 new putative candidate genes 

missed in the original study and 22 loci implicating single genes, several of which are new. While 

individually these individual genes need additional evidence, as a group, they fall into the same 

functional categories as the original GWAS identified, providing confidence that this FUMA is adding 

substantial value. Further, the demonstration of an eQTL locus overlapping a particular risk locus, 

provides a demonstration of the functionality of the locus, as long as the same SNP is implicated. In 

this regard, it would be useful to know whether direct overlap between the two is needed (same 

SNP or surrogate in both), or whether it is locus overlap, which is slightly less convincing.  

 

The authors also apply FUMA to SCZ and IBD/CD GWAS, which is presented in the supplementary 

material. This shows similar results to the IBD in that new loci are identified, and they are plausible.  

 

With regards to these applications, at least a summary in the main manuscript rather than only 

supplemental – such as the number of new loci and pathways in each (in a figure or table etc) would 

enhance the manuscript. A key question with regards to the SCZ analysis is how it is supported by 

recent Hi-C data (PMID:27760116and TWAS (doi: https://doi.org/10.1101/067355). Both the TWAS 

and Hi-C identify many genes outside the LD block that defines these SCZ loci.  

 

The authors also identify ACH signaling as a pathway, which is interesting, and was also identified in 

the Hi-C work – that could be emphasized and cited as it is an external validation of this current 

work, as long as the loci actually overlap.  

 

 

 

 

Reviewer #3 (Remarks to the Author):  

 

The web service (FUMA) presented by Watanabe et al combines a number of typical steps frequently 

taken in the analysis of GWAS data. They have illustrated their framework at the example of three 

representative data set (BMI, CD, SCZ) to produce priority lists and new suggestions for “causal” 

genes. 



 

Novelty.  

The work includes suggestions for new genes that may be of interest for specialists working on the 

respective diseases. But none of the new genes were validated or evaluated beyond a cursory 

literature screen. Also for the computational aspects, I could not identify any novel methodological 

developments or components. Popular tools and data resources have been combined. While I 

recognise the importance of such efforts, it is a major omission that prior works in the field of GWAS 

analysis have not been cited. There is even an old review (Hou & Zhao, Front Genet. 2013) that 

includes many tools and web services for GWAS prioritisation. A thorough comparison with such 

works is necessary to assess the usefulness of this new web server.  

 

Accessibility.  

In general it would be preferable to use their service without registration, and to offer login (and 

perhaps an analysis history) only as an option for recurring users. When I had tried to login as 

example4@fuma.nl I got an error (see attached file). Therefore I could not evaluate the web service 

other than through the descriptions in the manuscript.  

As is common practice for larger collection of data and annotations, it would also be useful to have 

an API for more programmatic access and batch processing.  

 

Sustainability.  

Undoubtedly extensive efforts went into collecting and preparing the various data sources for 

functional annotation of SNPs. Therefore it would be important to understand if, and to what extent, 

this process has been automated. Otherwise the service will soon be outdated and unmaintainable 

by the onslaught of new data and changing annotations. It would be equally important to describe in 

more detail the infrastructure and computational resources which are in place to sustain this service 

long-term.  

 

Data formats  

Throughout the manuscript the data formats were unclear or imprecise. I assume that the input 

“GWAS summary statistics” refers to VCF files, but which version? Similarly, also the output formats 

and standards should be defined more carefully.  

 



Below we provide a point-by-point response indicating the changes made to the manuscript. 
For clarity, our response is written in blue. 
 
 
Editor’s comments 
 
Q1. 

We are particularly interested in the possibility of incorporating chromatin 
conformation data into the tool, as suggested by Reviewer #2.  

A1. 
We have now incorporated chromatin interaction mapping in the tool (see our 
detailed answer to Q9 and Q10). 

 
Q2. 

The other concerns mentioned by R1 and R3 (including but not limited to 
benchmarking with existing tools and sustainability) must be addressed also. 

A2. 
We have now added a comparison of FUMA with existing tools. Direct benchmarking 
with other tools did not seem feasible (as many of the other tools do not aim to 
prioritize genes, but only conduct part of the analysis needed to select genes). We 
did however test the outcomes of FUMA in the three empirical examples against 
what has already been published before on genes for the three traits (BMI, Crohn’s 
disease, Schizophrenia)   

 
Q3. We are aware that this paper had initially been submitted as Letter to Nature Methods. 
At Nature Communications, the limit to the main text (Introduction, Results, Discussion) is 
5000 words and there is no word limit on the Methods section. We encourage you to make 
better use of this word allowance so that descriptions and conclusions drawn become 
clearer for the reader. Please highlight all changes in the manuscript text file. 
 
A3. 

We have reformatted the paper to suit the format of Nature Communications. The 
main text is now 4,469 words and the Methods section is 2,222 words. All changes, 
including the changes in response to the reviewers’ comments are in blue text. 

 
Q4. At the same time, we ask that you ensure your manuscript complies with our editorial 
policies. Please ensure that the following requirements are met, and any relevant checklist 
is completed and uploaded as a Related Manuscript file type with the revised article. 
 
A4. 

We have changed our manuscript where necessary, conform the life sciences 
checklist as well as the format checklist as a related manuscript file. In addition. We 
have added a data availability statement under the Methods section. 

 
 
Reviewer #1 



The manuscript described a web-based toolset, FUMA, to annotate significant locus of 
genome-wide association studies (GWAS). FUMA incorporated several databases and 
bioinformatics softwares to develop a pipeline that help users to better analyze GWAS 
results and pick up likely functional locus, both in coding regions and regulatory regions; 
while, in the meantime, provide easy visualization tools.  
 
The tool is needed in the field; The databases chosen for the genomic annotation is 
comprehensive though straightforward; The design of the website is clear and functional.  
 
Q5. 

However, the novelty of the work is a concern, since all the bioinformatics tools and 
databases used by FUMA are well-established and the annotation process of FUMA 
is standard.  

A5.  
We designed this tool to reduce complexity of connecting various methods and data 
repositories, which is a highly-complicated task. It is now possible for all users with 
GWAS results, such as biologists or computer scientists, to bring all information back 
in the same framework and easily interpret GWAS results. This does not exist and 
requires know-how from databases, data structures, programming languages etc. 
FUMA generates output within 30 minutes in most of the time, which would 
otherwise have taken weeks to compile, using expertise from different individuals 
and by using many different data sources.  
In the new version of FUMA we now also incorporate chromatin interaction mapping 
and provide figures that combine the chromatin interaction mapping with eQTL 
mapping. Since this kind of data is only recently available, this adds to the novelty of 
FUMA. 

 
FUMA glues the resources together and provides the whole analysis pipeline as a service. 
 
Q6. 

There is room for the improvement of the website. The regional plots that align the 
annotation of multiple databases, such as CADD, regulomeDB, and Chromatine 
states, is informative. However, it is desired that FUMA could provide clickable links 
that direct the users to more detailed information at the original databases. For 
example, regulomeDB also provide information on cell types and transcription factor 
names, instead of merely a score. 

A6. 
We would like to thank the reviewer for this suggestion. We now incorporated 
hyperlinks to RegulomeDB to provide more detailed information at the external 
website. For CADD and the 15-core chromatin state all details are incorporated in 
FUMA itself. Of course, links to those databases are provided under “Link” tab on the 
website to allow users to obtain background information on how these resources 
were compiled 
 

• Change made to the web application: 
In the regional plot page (which is linked from the results page of SNP2GENE), we 
have added an external link to RegulomeDB website in the SNP table (which is 



displayed when a user clicks a SNP in the plot). This link opens a new tab and directly 
connects to the RegulomeDB page of the selected SNP. 

 
 
Q7. 

In my test run, there are glitches on some pages where texts and figures stacked on 
top of each other, making it impossible to read. 

A7.  
We are sorry to hear this and ran more extensive tests using various browsers such 
as Google chrome, FireFox and Safari, and fixed glitches when needed. In the 
previous version, some mobile devices did not display FUMA correctly. This was due 
to the grid layout of bootstrap. We now solved this by adding column tags not only 
for full size screen but also smaller devices such as mobile phone or tablet. If the 
reviewer still finds figures or tables that are not displayed properly, please let us 
know with a screenshot and more detailed information and we will fix this asap. 

 
 
Reviewer #2 
Most genetic variants associated with human disease sit in non-coding regions, but the 
function of these regions is hard to annotate and understand, a factor that challenges 
modern genetic studies of disease. It is in this context that the authors create an important 
new tool, FUMA for functional mapping and annotation of genetic variants associated with 
disease. They use this in a very striking proof of principle to identify new loci for BMI using 
published GWAS. Overall, I expect that this will be a widely referenced and highly cited 
paper, both for the new biology and for the tool. Most of my suggestions for improvement 
should therefore be considered minor, since this is an exciting advance that will 
substantially augment current genetic analyses.  
 
The tool has two components, SNP to gene and gene to function, which are the key steps in 
moving from genetic association to some functional insight. I discuss each of these steps 
within this software and its application to BMI in turn. The SNP to gene mapping divides 
LEAD SNPs into those that are clearly functional within a gene, and those that have no clear 
function, which are than annotated based on eQTL data.  
 
FUMA can calculate LEAD SNPs based itself based on certain (reasonable) assumptions, or 
take a list generated by the User, which is a key feature, since other methods such as 
CAVIAR or PAINTOR etc. may be used to define potentially causal SNP lists, and one needs 
flexibility in such a tool, since methods evolve so rapidly. This makes this a very flexible tool 
for its SNP to gene function, which will promote its use.  
 
Moving from gene to function is a more far more involved and difficult problem. ANNOVAR 
is used to annotate SNPS, as well as CADD, Regulome DB and HMM based chromatin state 
from ENCODE. Non-coding or otherwise non-annotated SNPs are than matched with eQTLs 
from user defined tissues of interest, which is very useful. 

 
Q8. 



It is not clear if there are multiple eQTL data sets available, how they are merged, or 
reconciled if they give different or conflicting information. This can be easily 
addressed in the supplemental material.  

A8. 
We apologize this was unclear. FUMA includes 4 eQTL datasets. As pointed out by 
the reviewer, a SNP could have multiple eQTLs from distinct data sources which 
might provide conflicting information. We decided to provide all information from all 
available eQTL datasets (currently 4 but this can be extended when more become 
available) and not to pre-calculate a merged P-value using predefined weights for 
different datasets. By doing so all information is available to users allowing  
maximum flexibility in determining their own weights. We have added the following 
text to clarify this: 
 

• Added to the manuscript 
Supplementary Note 2 
eQTL datasets were obtained from four data repositories. From GTEx v61, single 
tissue cis-eQTL data for every tested SNP-gene association for 44 tissue types was 
extracted (Supplementary Table 3). From Blood eQTL browser (5,311 peripheral 
blood samples)2, we obtained cis-eQTLs that were pre-filtered at FDR 0.50. From 
BIOS QTL browser (2,116 peripheral blood samples)3, gene-level cis-eQTLs were 
obtained and were pre-filtered at FDR 0.05. From BRAINEAC (134 individuals)4, 
cis-eQTLs of 10 brain regions were obtained and were pre-filtered at nominal P-value 
0.05. Genes were mapped to ensembl gene ID. Tested alleles were not provided for 
BRAINEAC eQTLs (assigned NA). 
Since FUMA contains 4 different eQTL data sources, there might be conflicting 
information, such that a SNPs is found to be an eQTL for a certain gene based on 
information from one repository but not the other. FUMA provides the evidence from 
the four different repositories as is, and users can decide to select only one repository 
or combine evidence from different repositories. 
 

Q9. 
One weakness of the mapping SNP to gene using ANNOVAR is that it is based on 
distance, and both functional eQTL and physical, Hi-C data indicate that many even 
intragenic SNPs act at distal genes. Assignment of non-coding SNPs to the closest 
gene is estimated to occur about 50% of the time, so 50% of the assignments might 
be off. The authors should consider integrating Hi-C/ChIA-PET and other data that is 
available via 3D genome browser (http://promoter.bx.psu.edu/hi-c/) or one of the 
other visualization tools, which would bring this pipeline to be truly state of the art.  

A9.  
The reviewed version of FUMA actually provided two different mapping options, one 
is ‘positional mapping’ which uses ANNOVAR annotation and is based on physical 
distance, as described by the reviewer. The second mapping option (‘eQTL mapping’) 
however is not based on physical position but is based on cis-eQTL relations 
between SNPs and genes. We agree with the reviewer that mapping SNPs to genes 
purely based on ANNOVAR annotations is not sufficient since most of the GWAS 
findings fall into non-coding regions which might have regulatory elements affecting 
expression of genes located far from the risk loci. On top of the eQTL mapping, we 
now also incorporated a third gene mapping based on 3D chromatin interactions; 



‘chromatin interaction mapping’. For this, we implemented Hi-C data obtained from 
GSE87112 which contains 21 tissue/cell types. Additionally, predicted promoter and 
enhancer regions for 111 tissue/cell types from Roadmap Epigenetic Projects are 
also annotated to interacting regions. Although we currently implemented one Hi-C 
data set, we will implement further publicly available data, such as ChIA-PET and 
Capture Hi-C, when these are available. We also allow users to upload their own, 
custom chromatine interaction matrices. 
As this is a novel way of gene mapping, we also updated the results of FUMA for the 
three apllications to GWAS results (BMI, CD and SCZ), and added the followings: 
  

• Change made to the web application 
Chromatin interaction mapping is now added to SNP2GENE process with using Hi-C 
data of 21 tissue/cell types from Gene Expression Omnibus; GSE87112. SNPs in one 
end of significantly interacting regions are mapped to genes whose promoter regions 
overlap with another end of the interaction. Predicted enhancer and promoter 
regions from Roadmap Epigenomics Project for 111 tissue/cell types are also 
included to annotate significant interacting regions and can be used for further 
filtering of SNPs and mapped genes.  
 

• Change made to the manuscript 
1. Results: Workflow of FUMA web application (page 5 line 82) 

Functionally annotated SNPs are subsequently mapped to genes based on 
functional consequences on genes by i) physical position on the genome 
(positional mapping), ii) eQTL associations (eQTL mapping) and iii) 3D 
chromatin interactions (chromatin interaction mapping). Gene mapping can be 
controlled by setting several parameters (Supplementary Table 2) that allow to 
in- or exclude specific functional categories of SNPs (Supplementary Fig. 1). 
 
(page 6 line 100) 
 
iii) Chromatin interaction mapping is used to map SNPs to genes when there is a 
significant chromatin interaction between the disease-associated regions and 
nearby or distant genes. Chromatin interaction mapping can involve long-range 
interactions as it does not have a distance boundary as in eQTL mapping. FUMA 
currently contains Hi-C data of 14 tissue types and 7 cell lines from the study of 
Schmitt et al.11, yet new chromatin interaction data will be added when it becomes 
available and FUMA also allows users to upload their own chromatin interaction 
matrices, which is not limited to Hi-C, but also accommodates ChIA-PET, 5C or 
Capture Hi-C data (Methods and Supplementary Note 3). Since chromatin 
interactions are often defined in a certain resolution (as a genomic region), such as 
40kb, an interacting region may span multiple genes. To further prioritize 
candidate genes from chromatin interaction mapping, information on tissue/cell 
type specific enhancer and promoter regions from the Roadmap Epigenomics 
Project10 can be optionally integrated with interacting regions to filters SNPs and 
target genes (see Methods for details). 
 

2. Results: Application to BMI GWAS (page 10 line 201; text updated to 
incorporate chromatin interaction results) 



To validate the utility of FUMA, we applied it to summary statistics of the most 
recent GWAS for Body Mass Index (BMI; 236,231 individuals)43. FUMA 
identified 95 lead SNPs (from 223 independent significant SNPs) across 77 
genomic risk loci (Fig. 2 and Supplementary Data 1-3), in accordance with the 
original study. We first conducted positional mapping of deleterious coding SNPs 
and eQTL mapping (Methods) which prioritized 151 unique genes; 23 genes with 
deleterious coding SNPs (positional mapping) and 144 genes with eQTLs that 
potentially alter expression of these genes (eQTL mapping) including 16 genes 
that had both deleterious coding SNPs and eQTLs (Supplementary Data 4). The 
151 genes consist of 55 genes that were also reported in the original study43 and 
96 novel genes implicated by FUMA, including 50 genes which are located 
outside the risk loci. These novel candidates have shared biological functions with 
the 55 previously known candidate genes such as ‘metabolism of carbohydrate’, 
‘metabolism of lipid and lipoprotein’, ‘immune system’ and ‘calcium signalling’ 
(Supplementary Data 5). In addition, FUMA results showed that, although 
several genomic loci for BMI included multiple prioritized genes, a single gene 
was prioritized in 22 out of 43 loci which contain at least one prioritized gene 
(Supplementary Fig. 2), suggesting that these 22 genes have a high probability of 
being the causal gene in that region. The 22 ‘highly likely causal genes’ include 
several well-known genes for BMI such as NEGR1, TOMM40 and TMEM18. The 
strongest GWAS association signal for BMI was on 16q.12.2 where 3 genes were 
prioritized; FTO, RBL2 and IRX3 (Fig. 3). These three genes were only prioritized 
by eQTL mapping as the positional mapping showed no deleterious coding SNPs 
located in these genes. The original study43 only mentioned FTO, because the 
associated SNPs were located in this gene, however none of the associated SNPs 
have a potential direct affect such as coding SNPs on FTO. Two of the genes 
prioritized by FUMA (RBL2 and IRX3) are physically located outside the genomic 
locus and are missed when using conventional approaches that prioritize genes 
located in the locus of interest based on LD around the top SNP. Although the 
IRX3 gene was not reported in the original study43, recent functional work has 
indeed validated this as the causal gene whose expression is affected by SNPs in 
the 16q.12.2 locus44. 
We then performed chromatin interaction mapping using Hi-C data of 14 tissue 
types (Methods). FUMA prioritized 208 genes (Supplementary Data 4), of 
which 39 genes are overlapped with the genes prioritized by positional and/or 
eQTL mappings and 165 genes are located outside of the genomic risk loci (Fig. 
2).  That resulted in total of 320 prioritized genes by combining three mapping 
strategies including 256 novel candidates which were not reported in the original 
study (Table 2 and Supplementary Data 4). These novel candidates further 
supported shared biological functions with previously reported known genes, such 
as lipid and lipoprotein metabolism, homeostatic process and various metabolic 
pathways, with greater number of genes compared to the mappings without Hi-C 
data (Supplementary Data 5). Out of 320 prioritized genes, 39 genes are mapped 
by both eQTLs and chromatin interactions including IRX3 on the 16q.12.2 locus 
(Fig. 4), which further support the hypothesis that these genes are involved in the 
risk of BMI. From the 48 loci that contained at least one prioritized gene from 
positional and eQTL mappings, chromatin interaction mapping identified 
candidate genes in additional 13 loci (Supplementary Fig. 2), including loci 
mapped to known genes associated with BMI such as MC4R, FOXO3 and ADCY9. 
The 320 prioritized genes showed enrichment in 10 GO terms, such as ‘response 



to zinc ion’ and ‘oligopeptide binding’ overlapping with multiple 
Metallothioneins and Glutathione S-Transferase genes whose association with 
obesity risk has been reported45,46 (Supplementary Data 6). 
 

3. Results: Application to CD GWAS (page 12 line 249; text updated to incorporate 
chromatin interaction results) 
To further illustrate its utility, we applied FUMA to the summary statistics of 
Crohn’s disease47 (CD; 6,333 cases and 15,056 controls). With FUMA, 95 lead 
SNPs from 184 independent significant SNPs across 71 genomic loci were 
identified for CD (Supplementary Fig. 3 and Supplementary Data 7-10). First 
describing the results of positional mapping of deleterious coding SNPs and eQTL 
mapping, FUMA prioritized 95 unique genes from 32 loci (Supplementary Fig. 
4), of which 39 genes were implicated by deleterious coding SNPs and 69 were 
implicated by eQTLs influencing expression of these genes (12 genes had both 
deleterious coding SNPs and eQTLs; Table 2 and Supplementary Data 11). The 
prioritized 95 genes include 37 known candidates genes that were also reported in 
the original study47 including well-known CD related genes such as NOD2, IL23R 
and SLC22A5, while 58 genes were novel (Supplementary Fig. 3; see 
Supplementary Note 4 and Supplementary Fig. 5-7 for detail results). These 
novel candidates include 18 genes that are physically located outside the GWAS 
risk loci, and the novel candidates mainly share immune system related biological 
functions with 37 previously known genes (Supplementary Data 12). 
Chromatin interaction mapping using Hi-C data in Small Bowel and Liver 
prioritized 190 genes of which 17 genes are overlapped with genes prioritized by 
positional and/or eQTL mappings and 152 genes are located outside of the 
genomic risk loci (Supplementary Data 11). That resulted in total of 268 
prioritized genes including 208 novel candidates which were not reported in the 
original study (Table 2 and Supplementary Fig. 3). From the 32 loci which are 
mapped to at least one gene by positional and eQTL mappings, additional 22 loci 
are mapped to candidate genes by chromatin interaction mapping, in which 
several of genes prioritized from those loci are involved in immune system and 
cytokine signalling pathways (Supplementary Fig. 4 and Supplemental Data 
12). One of these 22 risk loci, the 17q12 locus is mapped to 6 chemokine ligands 
by Hi-C in Liver; CCL1, CCL2, CCL7, CCL8, CCL11 and CCL13. Additionally, 
prioritised genes include 11 cytokines (IL4, IL5, IL10, IL19, IL23R, IL24, IL27, 
IL33, IL1RL1, IL18R1 and IL18RAP) wherein IL18R1 and IL18RAP are also 
mapped by eQTLs in whole blood and, IL23R and IL27 are also mapped by 
deleterious coding SNPs which further support the involvement of these cytokine 
genes in CD. Role of these chemokines and cytokines in inflammatory disease has 
been widely studied48 and yet, chromatin interaction mapping identified additional 
relevant candidates from the risk loci. The prioritized 268 genes showed 
enrichment in 112 canonical pathways such as immune system and cytokine 
related pathways, which are known to be highly relevant to CD49 
(Supplementary Data 13). 
 

4. Results: Application to SCZ GWAS (page 14 line 284; text updated to 
incorporate chromatin interaction results) 
We also applied FUMA to the most recent Schizophrenia (SCZ; 36,989 cases and 
113,075 controls) GWAS summary statistics3, and 128 lead SNPs from 269 
independent significant SNPs across 109 genomic loci were identified 



(Supplementary Note 5, Supplementary Fig. 8 and Supplementary Data 14-
17). Positional mapping of deleterious coding SNPs and eQTL mapping 
prioritized 84 unique genes, of which 36 genes were implicated by deleterious 
coding SNPs and 65 were implicated by eQTLs influencing expression of these 
genes (6 genes had both deleterious coding SNPs and eQTLs; Supplementary 
Data 18). The prioritized 84 genes include 65 genes which were previously 
reported as candidates in the original study3, while 19 genes were novel (Table 2) 
including 14 genes which are physically located outside the GWAS risk loci. 
These 19 novel candidates have several shared biological functions with 65 
previously known genes, such as ‘matrisome’ and ‘neuronal system’ 
(Supplementary Data 19). Out of 84 prioritized genes, 60 of them were also 
identified by the recent TWAS50 and Hi-C51 studies including 10 genes which are 
physically located outside the risk loci. The prioritized genes cover 34 genomic 
loci out of 109 of which 20 loci are mapped to single prioritized gene 
(Supplementary Fig. 9; see Supplementary Note 5 and Supplementary Fig. 10 
for detailed results). These 20 genes are highly likely to drive the association 
signal in the genomic loci. Chromatin interaction mapping using Hi-C data in 
hippocampus and prefrontal cortex prioritized 6 genes in which DPYD is also 
mapped by a deleterious coding SNP and VPS45 is also mapped by eQTL in 
frontal cortex (Supplementary Data 18). Out of these 6 genes, 4 of them are 
located outside of the genomic risk loci. Together with positional and eQTL 
mapping, it resulted in total of 88 candidate genes including 21 novel candidates 
which are not reported in the original study (Table 2 and Supplementary Fig. 8). 
The 4 genes prioritized only by chromatin interactions have shared functions with 
other genes such as ‘regulation of response to stress’ (RWDD3), ‘intracellular 
signal transaction’ (SGSM3) and several functions involved in regulation of 
transcriptions (OTUD7B and ZBTB18; Supplementary Data 19). 
Enrichment was seen in several brain systems related pathways, such as Nicotinic 
acetylcholine receptors (nAChR), transmission across chemical synapses and 
long-term potentiation (Supplementary Data 20). nAChR is an important neuron 
receptor in which one of the subunits alpha-7 (CHRNA7) has been recently 
studied as a new Schizophrenia drug target52,53. nAChR was also identified as 
enriched pathways in the recent study using Hi-C in human cerebral cortex51 that 
suggests potential involvement of nAChR pathway in SCZ risk. 
 

5. Discussions (page 15 line 334) 
The availability of biological resources that can aid in the interpretation of GWAS 
results, such as Hi-C and ChIA-PET, have dramatically increased recently and 
several studies have identified novel candidates from GWAS risk loci by 
integrating their results for example with chromatin interactions51,54–57. These 
technologies have the potential to identify distal interactions of promoters and 
enhancers. Especially for risk loci where it has been difficult to identify target 
genes due to the presence of gene desserts, distal interactions might point to 
causal gene. Indeed, we identified additional putative causal genes by performing 
chromatin interaction mapping on outcomes from three GWAS studies (BMI, CD, 
and SCZ) and the additionally identified genes based on chromatin interaction 
information were mostly located outside of the risk loci, and were shown to have 
shared function with known candidates. Although chromatin interactions are 
highly tissue/cell type specific, as well as time-dependent, and currently available 
data is still limited in those aspects, FUMA provides an option to upload custom 



interaction matrices. Additionally, FUMA is built in such a way that newly 
published data including 3D chromatin interactions, eQTLs and other variant 
annotations can easily be included in the SNP2GENE process. That makes FUMA 
is a flexible web tool which can be utilized not only for new GWAS results but 
also for previously published GWAS to re-annotate risk loci with the latest 
biological data sources. 
 

6. Figure 1 (main text) 
Added chromatin interaction mapping. 
 

7. Figure 4 (main text) 

 
The most outer layer is the Manhattan plot displaying SNPs with P-value < 0.05. 
Candidate SNPs are colored based on the highest r2 to one of the independent 
significant loci (red: r2 > 0.8, orange: r2 > 0.6). Other SNPs are colored in grey. 
rsID of top SNPs per locus are labelled. The outer circle is the chromosome 
coordinate and genomic risk loci are highlighted in blue. Genes mapped by either 
Hi-C or eQTLs are shown on the inner circle. Genes mapped by Hi-C, eQTLs are 
colored orange and green, respectively. Genes mapped by both are colored red. 
Chromatin interaction and eQTLs are shown as links colored orange and green 
respectively. 
 



8. Methods: Data Pre-process (page 17 line 367) 
Pre-processed Hi-C data for 14 tissue types and 7 cell lines were obtained from 
GSE8711211 (Supplementary Note 3). Predicted enhancer and promoter regions 
for 111 epigenomes were obtained from the Roadmap Epigenomics Projects10. 
 

9. Methods: Gene Mapping (page 19 line 422) 
Chromatin interaction mapping is performed by overlapping independent 
significant SNPs and SNPs in LD of them with one end of significantly interacting 
regions in user-selected tissue/cell types. These SNPs are then mapped to genes 
whose promoter regions (250bp up- and 500bp down-stream of TSS by default) 
are overlapped with another end of the significant interactions. Optionally SNPs 
can be filtered for those overlapping with predicted enhancer regions of the user 
selected epigenomes. Similarly, mapped genes can also be filtered for having 
promoter regions overlap with predicted promoter regions of the user selected 
epigenomes. 
 

10. Supplementary Figure 1 
Added chromatin interaction mapping. 
 

11. Supplementary Table 1 
Hi-C data sources and predicted enhancer/promoter regions from Roadmap are 
added.  
 

12. Supplementary Table 2 
Options for chromatin interaction mapping are added. 
 

13. Supplementary Note 3 
Built-in Hi-C data of 14 tissue and 7 cell types were obtained from GSE871125 in 
which the raw data was processed to intra chromosomal interactions at 40kb 
resolution. We used Fit-Hi-C output which computed the significance of 
interactions within binned genomic regions. As suggested by Schmitt et al., 
interactions are filtered at FDR 1e-6 by default. However, interactions significant 
at FDR 0.05 are also available in FUMA and can be obtained by modifying this 
parameter when submitting a job. 
As an option, users can upload custom chromatin interaction matrices not limited 
to Hi-C but also 5C, ChIA-PET and Capture Hi-C. The input file for this is 
required to have the following 7 columns: (1) chromosome of region 1,  (2) start 
position of region 1, (3) end position of region 1, (4) chromosome of region 2, (5) 
start position of region 2, (6) end position of region 2 and (7) parameter of 
significance of interaction such as FDR in which the order of region 1 and 2 are 
arbitral. Therefore, in the chromatin interaction mapping, the direction of 
interaction is not considered. 
 

 
Q10. 

There should at least be a way to load a 2D matrix of chromatin contacts defined by 
Hi-C or refined by CTCF binding sites combined with other computational predictions, 
etc (e.g. PMID: 27064255). Since Supplemental figure 1 has a box that says “extract 
all information possible”, I suggest that the authors provide a means to incorporate 



or extract enhancer – promotor interactions from either Hi-C data, or 
computational predictions (PMID: 27064255), ATAC-seq correlations, or all of the 
above. Again, this would mean adding a SNP to gene annotation step that could 
accommodate a 2D interaction matrix, adding flexibility similar to the ability to load 
in a SNP list in the beginning of the process.  

A10. 
This is a nice suggestion, we implemented an option to upload custom chromatin 
interaction matrices, such as for HiC/ChiA-PET data, in the SNP2GENE process. 
 

• Change made to the web application 
We have added an option to upload custom chromatin interaction matrices with a 
certain format which is explained in detail in the tutorial on the web application. 
Files can be uploaded in when a SNP2GENE job is submitted. 

 
Q11. 

Similarly, CADD has not proven that powerful for identifying missense mutations in 
several disorders, even though it was originally published in Nature Genetics (the 
current FUMA software is likely to be much more useful!). Annotation with other 
tools that incorporate mutational frequency and locus tolerance to damage (which 
seems more promising) would be useful (PMID: 26332131; PMID: 25086666), but 
since this field is rapidly evolving, making sure that other emerging forms of 
functional annotation as to the likely deleteriousness of the mutation, both non-
coding and coding, can be added would be very important. If the software is 
available as open source, that would also aid such additions and building on to this 
tool in the future.  

A11. 
We agree that it is crucial that FUMA allows to quickly incorporate data from novel 
tools and resources. We have written the code of the FUMA backend in such a way 
that adding additional scores or functional information at both SNP and gene levels 
can be easily done and is partly automated. Source code of FUMA web application is 
available on GitHub (https://github.com/Kyoko-wtnb/FUMA-webapp) with MIT 
licence which allow users to contribute the improvement of FUMA application.  
As pointed out by the reviewer, CADD scores provide information at the SNP level, 
yet scores at gene level such as intolerance to deleterious mutations or non-coding 
sequence stretches provides additional information to prioritized genes. 
In one of the papers the reviewer suggested, i.e. Samocha et al. (2014; 
PMID:25086666), a statistical framework is proposed to compute excess of de novo 
mutation per gene. FUMA currently works best for common variant annotation, but 
we will work on incorporating de nove / very rare variants as well. We did add pLI 
(probability of being loss-of-function intolerance) introduced by Lek et al. (2016; 
PMID:27535533), as well as a gene score for tolerance of non-coding mutation called 
ncRVIS (non-coding residual variation intolerance score) Petrovski et al. (2015; 
PMID:26332131) introduced.  

  
• Added to the web application 

Two additional gene score, pLI and ncRVIS are annotated to prioritized gene in 
SNP2GENE process. The scores are available in the “Mapped gene” table and 



downloadable “genes.txt” file. 
 

• Added to the manuscript 
1. Methods: Gene mapping (page 20 line 436) 

For mapped genes, two scores of intolerance to functional mutations are 
annotated; probability of being loss-of-function intolerant (pLI)58 and non-
coding residual variation intolerance score (ncRVIS)59. 
 

2. Supplementary Table 1 
Data sources of pLI and ncRVIS are added 

 
The authors subsequently use this tool to re-annotate BMI GWAS, which adds substantial 
new biology and demonstrates the power of this tool by identifying 96 new putative 
candidate genes missed in the original study and 22 loci implicating single genes, several of 
which are new. While individually these individual genes need additional evidence, as a 
group, they fall into the same functional categories as the original GWAS identified, 
providing confidence that this FUMA is adding substantial value. Further, the demonstration 
of an eQTL locus overlapping a particular risk locus, provides a demonstration of the 
functionality of the locus, as long as the same SNP is implicated. 
 
Q12. 

In this regard, it would be useful to know whether direct overlap between the two is 
needed (same SNP or surrogate in both), or whether it is locus overlap, which is 
slightly less convincing.  

A12. 
We understand from the reviewer’s question that it is unclear whether the eQTLs 
used for gene mapping in FUMA are matched with SNPs that are independent 
significant SNPs and SNPs which are in LD of them, or are merely overlapping with 
genomic risk loci. In FUMA, we only use SNPs that are in LD of one of the 
“independent significant SNPs” which are the SNPs that reached the user defined 
genome wide significant (5e-8 by default) and are independent of each other at the 
user defined r2 (0.6 by default), to match with eQTLs in user selected databases. 
Therefore, the former is correct. We clarified this in the Method section. 
 

• Change made to the manuscript  
Methods: Annotation of candidate SNPs in genomic risk loci (page 18 line 400) 
eQTLs are also extracted by matching chromosome, position and alleles of all 
independent significant SNPs and SNPs which are in LD with one of the independent 
significant SNPs for each user selected tissue types, wherein SNPs can have multiple 
eQTLs for distinct genes and tissue types (Supplementary Note 2). 

 
Q13. 

With regards to these applications, at least a summary in the main manuscript rather 
than only supplemental – such as the number of new loci and pathways in each (in a 
figure or table etc) would enhance the manuscript. A key question with regards to 
the SCZ analysis is how it is supported by recent Hi-C data (PMID:27760116 and 
TWAS (doi: https://doi.org/10.1101/067355). Both the TWAS and Hi-C identify many 
genes outside the LD block that defines these SCZ loci.  



The authors also identify ACH signaling as a pathway, which is interesting, and was 
also identified in the Hi-C work – that could be emphasized and cited as it is an 
external validation of this current work, as long as the loci actually overlap.  

A13.  
As suggested by the reviewer, we have moved the summary of the applications (CD 
and SCZ GWAS) to the main text. We now also added results with chromatin 
interaction mapping using Hi-C data for the three applications (BMI, CD, SCZ) and 
compared the results of the SCZ GWAS with recent TWAS and Hi-C studies in the 
Result section. The changes made to the manuscript regarding this are answered in 
A9. We also added Table 2 in the main text as suggested by the reviewer. 
 

• Added to the manuscript 
Table 2 (main text)  

  
 
Reviewer #3 
The web service (FUMA) presented by Watanabe et al combines a number of typical steps 
frequently taken in the analysis of GWAS data. They have illustrated their framework at the 
example of three representative data set (BMI, CD, SCZ) to produce priority lists and new 
suggestions for “causal” genes.  
 
Q14. 

Novelty. 
The work includes suggestions for new genes that may be of interest for specialists 
working on the respective diseases. But none of the new genes were validated or 
evaluated beyond a cursory literature screen.  

A14. 
FUMA is an in-silico tool that aims to provide rapid and extensive information to 
facilitate gene prioritization. Validation of prioritized genes requires functional 
experiments, and is beyond the scope of the current work. We hope that FUMA aids 
in selecting the most likely causal genes for further (labour intensive and expensive) 
functional follow-up. 

 
Q15. 

Also for the computational aspects, I could not identify any novel methodological 
developments or components.  

A15. 

  

GWAS Risk loci 
Reported 

genes in the 
original study 

positional 
mapping 

eQTL 
mapping 

chromatin 
interaction 

mapping 
Total* 

Genes located 
outside the 

risk loci 

novel 
candidates 

Loci contain 
prioritized genes

BMI 77 117 23 144 208 320 204 256 61
CD 71 115 39 69 190 268 152 208 54
SCZ 109 349 36 54 6 88 19 22 38 

   *The number of unique genes mapped by one of the positional, eQTL and chromatin interaction mappings 



FUMA aims to facilitate post-GWAS annotation and prioritization. The current 
version includes chromatin interaction mapping, which is a novel way of mapping 
SNPs to genes and interpreting GWAS results. See our more detailed response in A5. 

 
Q16. 

Popular tools and data resources have been combined. While I recognise the 
importance of such efforts, it is a major omission that prior works in the field of 
GWAS analysis have not been cited. There is even an old review (Hou & Zhao, Front 
Genet. 2013) that includes many tools and web services for GWAS prioritisation.  

A16. 
We apologize for this omission and thank the reviewer for pointing this out, we have 
now added a comparison of FUMA with multiple bioinformatics tools and data 
sources and cited the reference mentioned by the reviewer (see A17). 

 
Q17. 

A thorough comparison with such works is necessary to assess the usefulness of this 
new web server. 

A17. 
As suggested we have added a comparison with other tools that perform post-GWAS 
analyses. A systematic comparison with FUMA is performed by feature comparison 
of widely used bioinformatics tools and databases in post-GWAS follow-up analyses. 
Note that comparison of the outcome of the tools is not feasible as the purpose of 
each is different and input/output formats are not comparable.  
 

• Added to manuscript 
1. Results: FUMA covers various features of existing tools (page 8 line 152) 

As a variety of bioinformatics tools have been developed to obtain insights in 
GWAS results23–25, we compared the list of features available in FUMA with the 
features available in other tools, and describe these further below (and see Table 
1). 
LD calculation is the first step to characterize risk loci of GWAS by computing 
population specific LD structure, so called clumping which identifies independent 
significant SNPs and defines the genomic risk loci. PLINK26 is the most widely 
used software for this task which takes GWAS summary statistics (requiring a 
reference panel) or genotype data as input. In FUMA, this task is automated by 
using pairwise LD (r2) of SNPs in the reference panel (1000 genomes project 
phase 327) pre-computed by PLINK, resulting in a list of independent significant 
SNPs, lead SNPs and genomic risk loci based on the GWAS input file. FUMA 
also adds SNPs to the identified risk loci that do not have a P-value (i.e. they were 
not available in the GWAS input file), but that are LD proxies of the identified 
lead SNPs, as these SNPs might be causally relevant. Alternatively, users can pre-
compute lead SNPs or risk loci and upload these to FUMA. 
Variant Annotation is required to obtain information on biological consequences 
of SNPs in the risk loci. There are several tools such as ANNOVAR12 and VEP28 
which annotate functional consequences on genes, and variant scores such as 
deleteriousness and phylogenetic conservations (extensive review is available in 
Hou and Zhang29). Particularly for non-coding SNPs, SCAN30, RegulomeDB14 
and HaploReg31 annotate regulatory information, such as eQTLs, 



enhancer/promoter regions and transcription factor binding sites (TFBS) (see Tak 
and Farnham32 for extensive overview). Although SCAN and HaploReg correct 
for LD, the input of the tools mentioned above is a list of SNPs of interest which 
does not take genetic associations into account and thus requires pre-processing of 
GWAS results by the user. FUMA performs annotation of SNPs that are in LD of 
independent significant SNPs in a single flow, and does not require additional data 
preformatting. 
Gene-based test / Gene-set analyses are methods that enable to summarize SNP 
associations at the gene level and associate the set of genes to biological pathways. 
For instance, VEGAS performs permutation based simulation33,34, MAGMA 
employs multiple linear regression35 and Pascal computes sum and maximum of 
chi-squared statistics36 to obtain gene-based P-values. Additionally, there are 
several tools that perform not only gene-based test but also gene-set analyses 
using full distribution of genetic associations (e.g. MAGMA35, MAGENTA37, 
INRICH38 and DEPICT39). FUMA implements MAGMA gene-based analysis and 
gene-set analysis on the full GWAS input data. In addition, genes prioritized by 
SNP2GENE or by the user are also tested for overrepresentation in various gene 
sets in GENE2FUNC process. 
Visualization is one of the essential features that allows (quick) insights into the 
GWAS results, e.g. summarizing annotated information of SNPs and genes. 
LocusZoom is one of the most widely used visualization tool for GWAS results 
which plots LD structure of a risk locus, gene locations as well as SNP association 
values40. LocusTrack is an extension of LocusZoom which also plots additional 
information together such as Chip-seq and chromatin state41. 3D Genome Browser 
is a recently developed web application which contains comprehensive 3D 
chromatin interaction datasets such as Hi-C and ChIA-PET42, though it does not 
integrate with GWAS summary statistics. These tools are primary focused on 
visualization of a subset of functionally relevant data sources. FUMA integrates 
results from multiple lines of evidence and provides interactive visualization of 
results, facilitating rapid interpretation. 
The current lack of a single platform that integrates all possible resources for post-
GWAS annotation hampers our understanding of GWAS results, as different 
GWAS studies may use a different selection of queried resources rendering their 
post-GWAS interpretation incomplete and difficult to compare. FUMA provides a 
central place for a wide variety of post-GWAS annotation strategies and to our 
knowledge is the most versatile tool in doing so. 
 



2. Table 1 (main text) 

 
 
Q18. 

Accessibility. 
In general it would be preferable to use their service without registration, and to 
offer login (and perhaps an analysis history) only as an option for recurring users.  

A18. 
We now offer built-in examples without registration. This allows users to browse 
through the example results, and see the functionality of FUMA. For security reasons, 
we do require any user that wants to upload GWAS summary statistics to register.  

 
• Added to the web application 

From the “Browse Examples” tab on top of the page, we have prepared three 
example results which does not require to login/register to browse. The result page 
contains full functionality of FUMA which allow users to use interactive plots and 
download results. 

 
Q19. 

When I had tried to login as example4@fuma.nl I got an error (see attached file). 
Therefore I could not evaluate the web service other than through the descriptions 
in the manuscript.  

A19. 
We are very sorry this happened. We now tested FUMA on 3 different browsers 
(Chrome, Safari and Firefox) and on separately on Windows 7, Windows 10, Mac OSX, 
Linux distribution (Ubuntu and Mint) using the example4 login and were unable to 
re-produce the error. We hope the issue is solved, but if it happens again, please let 
us know and we fix it. 

 

Tools Format 
GWAS 

summary 
statistics 

LD  
Functional 

consequence
s on genes 

Regulatory 
elements eQTLs

3D 
chromatin 

interactions

Prioritize 
SNPs 

Map 
SNPs to 
genes 

Gene 
expression 

Pathways 
and 

gene sets

Prioritize 
genes Visualization

LD calculation 
  PLINK St x x 

Variant Annotations 
 ANNOVAR St x x x x
 VEP St x x x x
 SCAN Web x x x x 
 ReglomeDB Web x x x x
 HaploReg Web x x x x

Gene-based test / Gene-set analyses 
 VEGAS St x x x
 MAGMA St x x x x
 Pascal St x x x x
 MASENTA St x x x x
 INRICH St x x x 
 DEPICT St x x x x

Visualization tools 
 LocusZoom St/Web x x
 LocusTrack St/Web x x x
 3D genome 
   browser Web      

x      
x 

FUMA Web x x x x x x x x x x x x

    St: Standalone software, Web: Web based application. 



Q20. 
As is common practice for larger collection of data and annotations, it would also be 
useful to have an API for more programmatic access and batch processing. 

A20. 
Developing API is a good suggestion since some users may prefer scripts or 
command line functions to a web interface. However, creating an API is not trivial 
and will take some time.  We would like to make the current version of FUMA 
available in the community and are working with other groups, such as the 
Psychiatric Genomics Consortium, to create API and include FUMA in a command-
line based post-GWAS annotation pipeline.  

 
Q21. 

Sustainability. 
Undoubtedly extensive efforts went into collecting and preparing the various data 
sources for functional annotation of SNPs. Therefore it would be important to 
understand if, and to what extent, this process has been automated. Otherwise the 
service will soon be outdated and unmaintainable by the onslaught of new data and 
changing annotations. It would be equally important to describe in more detail the 
infrastructure and computational resources which are in place to sustain this service 
long-term. 

A21.  
We agree with the reviewer that sustainability is one of the most important aspects 
for this kind of bioinformatics tool since a variety of new methods and databases are 
constantly evolving. Updating tools and database are partially automated, e.g. once 
new data is available, this can be easily pre-processed the format and added to 
FUMA. We currently have one dedicated person for the next 3 years working to 
make sure FUMA remains updated and to prepare new datasets (with new formats 
and new requirements for data normalization), and after this period aim to 
continuously have a researcher part-time available for this project. In addition, we 
are setting up an advisory board for FUMA consisting of experts in the field of 
genetics, and have opened a google forum 
(https://groups.google.com/forum/#!forum/fuma-gwas-usersn) on which users can 
not only report bugs or errors but also suggestions of data/tools to be implemented 
into FUMA as well as open contributions on GitHub. 

 
Q22. 

Data formats 
Throughout the manuscript the data formats were unclear or imprecise. I assume 
that the input “GWAS summary statistics” refers to VCF files, but which version? 
Similarly, also the output formats and standards should be defined more carefully. 

A22. 
We apologize this was unclear. The tutorial section (SNP2GENE/input files) on the 
FUMA website provides instructions on input formats. We have now added 
additional information in the Supplementary Note about input and output formats. 
The input GWAS summary statistics is a plain text file with multiple columns, and 
needs to contain at least rsID or both chromosome and position, and GWAS P-value.  

 



• Added to the manuscript 
Supplementary Note 1 
As input, FUMA takes GWAS summary statistics as a plain text file. Since there are 
multiple applications which are widely used to perform GWAS such as PLINK, 
SNPTEST and METAL, to minimize input data formatting, FUMA automatically 
captures headers of the output files from these three tools. Users can also provide 
custom header names instead. Tab and single or multiple white spaces are accepted as 
delimiters. 
The downloadable output files from both SNP2GENE and GENE2FUNC processes 
are tab delimited plain text files. The descriptions of each file are below. 
 
GenomicRiskLoci.txt 
Genomic risk loci defined by independent lead SNPs and maximum distance between 
their LD block. 

o Genomic locus : Index of genomic rick loci. 
o uniqID : Unique ID of SNPs consists of chr:position:allele1:allele2 where 

alleles are alphabetically ordered. 
  … 

(see Supplementary Note 1 for complete list of output format) 

 
 
 
 



Reviewer #1 (Remarks to the Author):  

 

The authors have addressed my comments. The revised manuscript and the website have been 

significantly improved. Therefore, I recommend the publication of this work on Nature 

Communication. I hope the authors will continue making progress and provide outstanding services 

to the community.  

 

 

Reviewer #2 (Remarks to the Author):  

 

The authors have done an excellent job replying to all of the reviews, mine and the others. They 

have added all of the tools suggested and made the FUMA more flexible -- they are providing a 

person dedicated to continuing updates for 3 years. This will make this a widely used tool.  

 

 

Reviewer #3 (Remarks to the Author):  

 

The authors have significantly improved the manuscript. Especially the inclusion of HiC data is an 

important and novel addition over the previous version. At the same time the authors have also 

demonstrated much clearer where the FUMA web service goes beyond previous efforts (Table 1) 

and cited them properly. I would encourage the authors to state their cookies policies more 

explicitly. This had caused significant problems and delays during the revision.  

 


