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Supplementary Note

1 Theory

1.1 Background

The derivation of MTAG assumes that each SNP j's e�ect is drawn from a distribution with a common

variance-covariance matrix Ω. We refer to this assumption as the �homogeneous-Ω assumption.�

MTAG is derived in two steps. In step 1, we show that the MTAG estimate of SNP j on trait t depends

on (i) the vector of single-trait GWAS estimates of the e�ect of SNP j on each of the traits included in the

analysis, (ii) the variance-covariance matrix of estimation errors, Σj , and (iii) the variance-covariance matrix

of SNP e�ects, Ω. In practice, the matrices Σj and Ω are usually not known. In step 2, we therefore show

how they can be estimated to yield an operational (feasible) version of the MTAG estimator.

Next, we derive analytic formulas that characterize several of MTAG's theoretical properties. We estab-

lish theoretically that for any joint genetic architecture across the traits�regardless of whether or not

the homogeneous-Ω assumption holds�MTAG estimates have lower genome-wide mean-squared error than

estimates from the corresponding single-trait GWAS. Then, for individual-SNP associations identi�ed by

MTAG, we analytically characterize MTAG's power and false discovery rate, and we calculate them in some

illustrative examples. Finally, we describe a procedure that in many practical applications can be used to

calculate an informative upper bound on the false discovery rate under violations of the homogeneous-Ω

assumption.

1.2 Framework

1.2.1 Statistical Model

MTAG was developed for settings where an investigator has genome-wide association study (GWAS) sum-

mary statistics for T traits, possibly obtained from samples with unknown overlap. Denote the length-T

vector of the true, unconditional e�ects of SNP j on each of the traits by βj . Note that, in contrast to

much of the literature, we use the vector notation βj to refer to the e�ect of the same SNP on multiple

traits rather than the e�ect of multiple SNPs on the same trait. By �true,� we mean that it is the e�ect that

would be estimated in a sample of in�nite size that is free from bias, and by �unconditional� we mean that

it is the marginal e�ect of SNP j, not controlling for other SNPs. We normalize βj so that it is measured

in standardized units; that is, it is the vector of e�ects of SNP j after the genotype of the SNP and all the

traits have been standardized to have mean zero and variance one.
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Denote the corresponding vector of GWAS-estimated e�ects by β̂j and the vector of z-statistics by Zj . We

assume that the β̂j 's were calculated using some estimator that is consistent and asymptotically normal (as

is true for the standard GWAS estimators, such as ordinary least squares and logistic regression). Because

the genotypes are standardized, β̂j is the estimated e�ect of a one-standard-deviation change in genotype.

We can therefore express Zj as

Zj = Wjβ̂j , (1)

where Wj is a diagonal matrix whose kth diagonal entry is a �weight� equal to the square root of sample

size used to estimate the kth element of β̂j . By allowing Wj to vary across j, we account for the possibility

that the available sample size di�ers across SNPs. Note that sinceW j is symmetric,W j = W ′
j . Therefore,

throughout this derivation, we omit the transpose on W j when it would otherwise be necessary.

Denote the vector of GWAS estimation errors by εj ≡ β̂j − βj . It represents factors that cause β̂j to

di�er from βj , the combination of sampling variation and bias from sources such as strati�cation, cryptic

relatedness, or technical artifacts. We assume that this estimation error has a distribution with

E (εj) = 0

Var (εj) = Σj ,

for some variance-covariance matrix Σj . The matrix Σj may vary across SNPs due to di�erences in sample

size and sample overlap. In our empirical implementation of MTAG, we allow Σj to vary depending on SNP

j's sample size, but we make the simplifying assumption that the amount of sample overlap across any two

traits is the same for all SNPs. To be more precise, letting Nt,j and Ns,j denote the sample size used to

estimate the e�ect of SNP j on trait t and trait s, respectively, and letting Nts,j denote the overlapping

sample size, we assume that Nts,j/
√
Nt,jNs,j is constant for all SNPs j.

The o�-diagonal elements of Σj will be nonzero if (a) the phenotypic correlations are nonzero and there

is sample overlap across traits, or if (b) biases in the SNP e�ect estimates (e.g., population strati�cation

or cryptic relatedness) have correlated e�ects across traits. Accounting for the possibility of non-zero o�-

diagonal elements allows us to apply this method to GWAS summary statistics that are estimated using

overlapping or related samples.

We use a random e�ects framework, i.e., we assume that the e�ect sizes, βj , are independently and identically

distributed across j. Because the genotypes are standardized (and therefore have equal variance across SNPs),

the assumption of identically distributed random e�ects implies that the expected amount of phenotypic

variance explained is equal for each SNP, regardless of SNP characteristics such as allele frequency.1 We

assume that that each trait has non-zero heritability and that each SNP's e�ect is mean zero. The zero-mean

assumption is justi�ed because the choice of reference allele, and therefore the sign of the e�ect, is arbitrary.

Our key substantive assumption is that βj has a variance-covariance matrix across traits, denoted Ω, that

is the same for all j. We do not make any assumptions about the shape of the distribution of true e�ect

sizes βj (such as normal, t-distribution, etc.). Nonetheless, the homogeneous-Ω assumption is strong, and

an extended discussion of its implications is found in section 1.2.5.

1While that is a strong implicit assumption about each trait's genetic architecture, it is an assumption that is common to
many methods in statistical genetics [1, 2, 3]. If we instead assumed that the e�ect sizes of the unstandardized genotypes were
identically distributed across SNPs j, then the expected contribution to heritability of rare variants would be less than the
expected contribution of common variants.
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1.2.2 Generalized Method of Moments

MTAG is a generalized method of moments estimator [4, 5] de�ned by a set of moment conditions and a

weight matrix. For each observation i = 1, 2, ..., N , denote the vector of data we have by Di. Each Di is

treated as a random variable generated by an assumed statistical model that has an unknown vector-valued

parameter θ0. Suppose there is a vector-valued function g (θ; Di) such that

E [g (θ0; Di)] = 0.

This set of equations is referred to as the set of population moment conditions. The GMM estimator is the

value of θ that minimizes the objective function∑
i

g (θ0; Di)
′
Ψg (θ0; Di)

for some positive semi-de�nite weight matrix Ψ. Under some regularity conditions, including the assumption

that

ΨE [g (θ; Di)] = 0

if and only if θ = θ0, GMM is consistent and asymptotically normal as N →∞. Additionally, if we choose

to use the weight matrix

Ψ = (Var [g (θ0; Di)])
−1
,

then GMM will be the most e�cient estimator among all consistent and asymptotically normal estimators

[4]. Below, we derive the moment conditions used by the MTAG estimator.

1.2.3 Derivation of Moment Conditions

The MTAG moment conditions are based on the projection of the GWAS-estimated e�ect of SNP j on some

trait s onto the space spanned by a constant and the true (but unknown) e�ect of SNP j on trait t. More

precisely, the projection is de�ned by the coe�cients

γ ≡

[
γ0

γ1

]

that minimize the expected squared di�erence between the GWAS estimate β̂j,s and a linear function of the

true marginal e�ect coe�cient βj,t,

E
[(
β̂j,s −

[
1 βj,t

]
γ
)2]

.
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To �nd γ, we take the derivative of this expression with respect to γ and set it equal to zero. This gives us

0 =
∂

∂γ
E
[(
β̂j,s −

[
1 βj,t

]
γ
)2]

= E
[
∂

∂γ

(
β̂j,s −

[
1 βj,t

]
γ
)2]

= 2E

[[
1

βj,t

](
β̂j,s −

[
1 βj,t

]
γ
)]

= 2E

[([
β̂j,s

βj,tβ̂j,s

]
−

[
1 βj,t

βj,t β2
j,t

]
γ

)]

0 = E

[([
β̂j,s

βj,tβ̂j,s

]
−

[
1 βj,t

βj,t β2
j,t

]
γ

)]
(2)

= E

([
βj,s

βj,tβj,s

]
+

[
εj,s

βj,tεj,s

]
−

[
1 βj,t

βj,t β2
j,t

]
γ

)

=

[
0

ωts

]
−

[
1 0

0 ωtt

]
γ[

1 0

0 ωtt

]
γ =

[
0

ωts

]

γ =

[
1 0

0 ωtt

]−1 [
0

ωts

]

=

[
1 0

0 1
ωtt

][
0

ωts

]

=

[
0
ωts
ωtt

]
. (3)

Therefore, we see that the projection of β̂j,s onto the space spanned by a constant and βj,t is
ωts
ωtt
βj,t.

1.2.4 MTAG Estimator

Substituting (3) into the �rst element of (2) above, we have

E
(
β̂j,s −

ωts
ωtt

βj,t

)
= 0. (4)

Since this is a function of the unknown parameter we wish to estimate (βj,t) and the data (β̂j,s) that is zero

in expectation, we will use it as our moment condition. In fact, there are T moment conditions of the form

(4), one for each trait s. De�ning ωt as the t
th column of Ω, our vector of moment conditions is

E
(
β̂j −

ωt
ωtt

βj,t

)
= 0. (5)
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We would like to estimate βj,t given β̂j , Ω, and Σj . The GMM estimator of βj,t corresponding the moment

conditions above is the value of βj,t that minimizes

Q (βj,t) =

(
β̂j −

ωt
ωtt

βj,t

)′
WQ

(
β̂j −

ωt
ωtt

βj,t

)
for some positive semi-de�nite weight matrix WQ. The e�cient GMM estimator uses the weight matrix:

WQ =

[
Var

(
β̂j −

ωt
ωtt

βj,t

)]−1
=

[
Var

(
β̂j

)
+ Var

(
ωt
ωtt

βj,t

)
− 2Var

(
β̂j ,

ωt
ωtt

βj,t

)]−1
=

[
Var

(
β̂j

)
+
ωt
ωtt

Var (βj,t)
ω′t
ωtt
− 2Var

(
β̂j , βj,t

) ω′t
ωtt

]−1
=

[
Ω + Σj +

ωt
ωtt

ωtt
ω′t
ωtt
− 2ωt

ω′t
ωtt

]−1
=

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
. (6)

So our e�cient GMM objective function is

Qe� (βj,t) =

(
β̂j −

ωt
ωtt

βj,t

)′(
Ω− ωtω

′
t

ωtt
+ Σj

)−1(
β̂j −

ωt
ωtt

βj,t

)
. (7)

To obtain the MTAG estimator of βj,t, we minimize (7) with respect to βj,t. The �rst-order condition of

this minimization problem is

0 =
∂

∂βj,t
Qe� (βj,t)

=
∂

∂βj,t

[(
β̂j −

ωt
ωtt

βj,t

)′(
Ω− ωtω

′
t

ωtt
+ Σj

)−1(
β̂j −

ωt
ωtt

βj,t

)]

=
∂

∂βj,t

[
β̂
′
j

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
β̂j − 2

ω′t
ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
β̂jβj,t +

ω′t
ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt
ωtt

β2
j,t

]

= −2
ω′t
ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
β̂j + 2

ω′t
ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt
ωtt

βj,t.

Solving for βj,t gives

β̂MTAG,j,t =

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
β̂j

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

. (8)

MTAG estimates of the e�ect of each SNP on each trait by using this equation, substituting estimates of the

variance-covariance matrices of the e�ect sizes, Ω, and of the estimation error, Σj , in place of the matrices.

In some special cases, we may be able to increase the precision and computational speed of MTAG by making

particular assumptions about these matrices. In the Online Methods, we discussed the four special cases

that are implemented in the MTAG software. Here we discuss two of the cases in more detail.
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No sample overlap across traits. To be more precise, the assumption in this special case is that the estimation

error is uncorrelated across phenotypes, in which case Σj is a diagonal matrix. This is equivalent to assuming

not only no sample overlap across estimates but also that the biases in the GWAS estimates are uncorrelated.

Under this assumption, it is only necessary to conduct univariate LD score regressions for each trait, which

will speed estimation. We highlight, however, that it is di�cult to assess the assumption that the biases

in the GWAS estimates are uncorrelated. For this reason, when this special case of MTAG is applied, we

recommend running LD score regression on the MTAG results, and then in�ating the MTAG standard errors

by the square root of the estimated intercept. Doing so will correct the MTAG estimates for any new bias

introduced by possible correlation of biases in the GWAS estimates.

Perfect genetic correlation but di�erent heritabilities. This special case applies when the �traits� are di�erent

measures of the same trait, with di�erent amounts of measurement error. In this case, we set the correlation

of the e�ect sizes to one, which implies

ωuv =
√
ωuuωvv,

where ωuv is the (u, v)
th

element of Ω. In this case, the (u, v)
th

element of
ωtω

′
t

ωtt
is[

ωtω
′
t

ωtt

]
uv

= ωtuωtv
ωtt

=
√
ωttωuu

√
ωttωvv

ωtt

=
√
ωuuωvv

= ωuv.

It follows that

Ω =
ωtω

′
t

ωtt
, (9)

and therefore

β̂MTAG,j,t =

ω′
t

ωtt
Σ−1j β̂j

ω′
t

ωtt
Σ−1j

ωt
ωtt

.

1.2.5 MTAG Standard Errors

The estimator of the MTAG standard error for SNP j 's e�ect on trait t is:

SE
(
β̂MTAG,j,t

)
=

1√
ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

(10)

We will show that the standard error calculated using equation (10) has three properties: (i) it is the

asymptotic standard error of the MTAG estimator, (ii) under the homogeneous-Ω assumption, it is also the

exactly correct small-sample standard error of the estimator, and (iii) when the homogeneous-Ω assumption

does not hold, using (10) will lead to standard errors that are conservative (i.e., too large) on average. We

establish each of these properties in turn.

Asymptotic Standard Error. Applying a standard result about GMM estimators, the e�cient MTAG esti-

9 
 

  



mator has asymptotic distribution

β̂MTAG,j,t |βj,t
a∼ N

(
βj,t,

[
∂g′ (b)

∂b
W−1Q

∂g (b)

∂b

]−1)
(11)

where

g (b) =

(
β̂j −

ωt
ωtt

b

)
(12)

is the moment condition used in MTAG. Substituting (6) and (12) into (11), the asymptotic sampling

variance is [
∂g′ (b)

∂b
W−1Q

∂g (b)

∂b

]−1
=

1

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

,

which yields the standard error in (10). In MTAG, however, the unit of observation is a trait, so these

asymptotics may not be a good approximation if only a small number of traits is used.

Finite-Sample Standard Error. We will show that if the homogeneous-Ω assumption holds, then equation

(10) holds exactly. We will use the fact that under the homogeneous-Ω assumption,

Var
(
βj |βj,t

)
= Ω− ωtω

′
t

ωtt
.

Given this, we calculate

Var
(
β̂MTAG,j,t |βj,t

)
= Var

 ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
β̂j

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

|βj,t


=

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
Var

(
β̂j |βj,t

)(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt
ωtt[

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

]2

=

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1 [
Var

(
βj |βj,t

)
+ Var (εj |βj,t)

] (
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt
ωtt[

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

]2

=

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1 (
Ω− ωtω

′
t

ωtt
+ Σj

)(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt
ωtt[

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

]2
=

1

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

. (13)

Equation (13) follows. We note that even if the homogeneous-Ω assumption does not hold, the standard

error formula is likely to provide an accurate approximation if all traits are highly genetically correlated,

since in such cases Ω− ωtω
′
t

ωtt
≈ 0.

Conservative (on average) when the homogeneous-Ω assumption does not hold. In a slight abuse of notation,

we let Ω denote the genome-wide (i.e., across-SNP) variance-covariance matrix of e�ect sizes, and we calculate
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the expectation of the sampling variance of the MTAG estimator:

E
[
Var

(
β̂MTAG,j,t − βj,t |βj,t

)]
= E

[
E
[(
β̂MTAG,j,t − βj,t

)2
|βj,t

]
− E

(
β̂MTAG,j,t − βj,t |βj,t

)2]
= E

[
E
[(
β̂MTAG,j,t − βj,t

)2
|βj,t

]]
− E

[
E
(
β̂MTAG,j,t − βj,t |βj,t

)2]
= E

[(
β̂MTAG,j,t − βj,t

)2]
− E

[
E
(
β̂MTAG,j,t − βj,t |βj,t

)2]
≤ E

[(
β̂MTAG,j,t − βj,t

)2]
= E

(
β̂2
MTAG,j,t

)
+ E

(
β2
j,t

)
− 2E

(
β̂MTAG,j,tβj,t

)
=

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
E
(
β̂
2

j

)(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt
ωtt[

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

]2

+ E
(
β2
j,t

)
− 2

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
E
(
β̂jβj,t

)
ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

=

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
(Ω + Σj)

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt
ωtt[

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

]2

+ ωtt − 2

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt

ωtt

=

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
(Ω + Σj)

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt
ωtt[

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

]2 − ωtt

=

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
(Ω + Σj)

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt
ωtt[

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

]2

−
ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt
ωtt
ωtt

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt
ωtt[

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

]2

=

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
(Ω + Σj)

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt
ωtt[

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

]2

−
ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωtω

′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt
ωtt[

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

]2
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=

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1 (
Ω− ωtω

′
t

ωtt
+ Σj

)(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt
ωtt[

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

]2

=

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt
ωtt[

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

]2
=

1

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

.

Since this is the same sampling variance formula as above, we see that in expectation (10) will be larger than

the true standard errors when the homogeneous-Ω assumption does not hold. This reduces MTAG's power

to detect true SNP associations.

1.3 Estimation of Model Parameters

The derivation of MTAG above assumed the matrices Σj and Ω were known. In practice, they are not

known, and it is necessary to �rst estimate the matrices and plug these estimates into equation 8 to obtain

feasible versions of equations (8) and (10). In brief, we use LD score regression [1, 6] to estimate the elements

of Σj , and we estimate Ω using the method of moments. We now describe these procedures.

1.3.1 Estimating Σj

The matrix Σj is the variance-covariance matrix of the estimation error of the SNPs' e�ects, εj ≡ β̂j − βj ,
which includes both sampling variation and biases (e.g., strati�cation, cryptic relatedness, or technical

artifacts). To construct an estimate for Σj , we exploit the fact that the intercept from LD score regression

estimates how much of the variance (or covariance) in the z-statistics is due to such biases [1].

More precisely, for some SNP j and for phenotypes t and s (where t may be equal to s), LD score regression

partitions the product of z-statistics as

E (Zj,tZj,s) = Wj,t,tWj,s,sE (βj,tβj,s) +Wj,t,tWj,s,sE (εj,tεj,s)

= Wj,t,tWj,s,sE (βj,tβj,s) +Wj,t,tWj,s,sΣj,t,s.

Note that E (βj,tβj,s) is proportional to the LD score of SNP j, which can be estimated in a reference sample.

Thus, the intercept from a regression of the product of SNP j's z-statistics for traits t and s on SNP j's LD

score is an estimator of Wj,t,tWj,s,sΣj,t,s.

For MTAG, we run univariate LD score regression for each trait (i.e., we estimate the above equation with

t = s for each trait) and bivariate LD score regression for each pair of traits. We then construct a matrix,

ΣLD, whose (t, s)
th

element is the intercept from the LD score regression for traits t and s. The LD score

regression equation above implies that

ΣLD = W jΣjW j .
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Since Wj,t,t and Wj,s,s are known, we back out an estimate of each Σj,t,s by calculating

Σj = W−1
j ΣLDW−1

j . (14)

We use this formula to calculate an estimate, Σ̂j , for each SNP. Under our procedure, the estimates Σ̂j can

only di�er across SNPs because of di�erences in sample size; that is, the relative contribution of sampling

variation and bias is assumed to be the same across SNPs.

Because we are using the intercepts from LD score regressions to estimate Σj , MTAG relies on many of the

assumptions underlying LD score regression. For example, if the reference sample and estimation sample are

not drawn from the same population, then the LD score regression intercept will be biased. Note, however,

that some assumptions mainly matter for the slope of LD score regression rather than the intercept, making

MTAG robust to violations of those assumptions. For instance, if the distribution of a SNP's e�ect size is

related to the LD score of that SNP, the heritability estimate from LD score regression may be biased, but

the intercept will be largely una�ected [7].

1.3.2 Estimating Ω

Using method of moments, we will estimate each of the elements of Ω independently. Suppose we would like

to estimate the (t, s)
th

element of Ω, which we denote by ωt,s. Note that for some SNP j,

E
(
β̂j,tβ̂j,s

)
= E [(βj,t + ej,t) (βj,s + ej,s)]

= E (βj,tβj,s + βj,sej,t + βj,tej,s + ej,tej,s)

= E (βj,tβj,s) + E (βj,sej,t) + E (βj,tej,s) + E (ej,tej,s)

= ωt,s + Σj,t,s,

where Σj,t,s is the (t, s)
th

element of Σj . We can therefore use the moment condition

E
(
β̂j,tβ̂j,s − ωt,s − Σj,t,s

)
= 0.

This implies that the objective function for the method of moments estimator for ωt,s is

Qt,s =

M∑
j=1

(
β̂j,tβ̂j,s − ωt,s − Σj,t,s

)2
,
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where M is the number of SNPs in our data.2 Minimizing this function with respect to ωt,s gives us the

�rst-order condition

0 =
∂Qt,s
∂ωt,s

=
∂

∂ωt,s

M∑
j=1

(
β̂j,tβ̂j,s − ωt,s − Σj,t,s

)2
=

M∑
j=1

∂

∂ωt,s

(
β̂j,tβ̂j,s − ωt,s − Σj,t,s

)2
= −2

M∑
j=1

(
β̂j,tβ̂j,s − ωt,s − Σj,t,s

)
,

0 =

M∑
j=1

(
β̂j,tβ̂j,s − Σj,t,s

)
−

M∑
j=1

ωt,s

=

M∑
j=1

(
β̂j,tβ̂j,s − Σj,t,s

)
−Mωt,s.

Solving for ωt,s gives us the method of moments estimator:

ω̂t,s =
1

M

M∑
j=1

(
β̂j,tβ̂j,s − Σj,t,s

)
,

which is consistent (and asymptotically normal). The estimator for each component can simply be extended

to the whole matrix Ω as

Ω̂ =
1

M

M∑
j=1

(
β̂jβ̂

′
j −Σj

)
.

Note that, while Ω − ωtω
′
t

ωtt
+ Σj is a variance-covariance matrix (which implies it is positive de�nite and

therefore invertible), since each of the elements of Ω̂ and Σ̂j is estimated separately, it is possible that the

estimate of Ω− ωtω
′
t

ωtt
+ Σj will be non-invertible and that the MTAG estimates will be unde�ned. Such an

event is in general unlikely, however, for two reasons. First, it will be non-invertible if and only if at least

one of its eigenvalues is exactly one (which is unlikely to occur unless there is user error, e.g., including the

same set of GWAS results twice).3 Second, Σ̂j will be positive de�nite except in very extreme circumstances.

To understand why, �rst note that elements of ΣLD tend to be fairly precisely estimated when the GWAS

summary statistics are from moderately well-powered studies. For example, in our data, the standard errors

2In principle, it is possible to improve upon the e�ciency of the estimator by using the e�cient GMM estimator with M

moment conditions de�ned by E
(
β̂j,tβ̂j,s − ωt,s − Σj,t,s

)
= 0 for each SNP j. Our method of moments estimator corresponds

to GMM where the weight matrix is the identity matrix. Since βj corresponds to the unconditional e�ect of SNP j on the
vector of traits, our �observations��which are SNPs in this case�will be correlated. Therefore the e�cient GMM weight
matrix is not the identity matrix. However, the e�cient weight matrix is computationally intensive to calculate, whereas our
method of moments estimator has a closed-form solution. For this reason�and because Ω will typically be estimated precisely
anyway�we simply use the method of moments estimator here.

3In the limit of an in�nite sample, this can happen if one set of summary statistics is a linear combination of some other
set of summary statistics included in the analysis. In that case, the term can be made invertible without a loss of power by
dropping the redundant trait. Because we are using estimates of Ω and Σj , non-invertibility may also be observed even if the
matrix would be invertible with the true values of Ω and Σj . In practice, this is extremely unlikely unless the same set of
summary statistics have been passed into MTAG more than once. Because such a condition is so unlikely absent any user error,
we have programmed the MTAG software to return an error under this condition.
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on our estimates of the elements of ΣLD are on the order of 0.01. This implies that the estimate of ΣLD is

unlikely to be non-positive de�nite unless ΣLD is nearly non-positive de�nite to begin with. Next, note that if

the GWAS included reasonably e�ective controls for bias (e.g., principal components), the diagonal elements

of ΣLD primarily capture the sampling variances of the z-statistics (which are equal to one), while the

o�-diagonal elements primarily capture the degree of sample overlap jointly with the phenotypic correlation

(see [1]). These o�-diagonal elements approach one as sample overlap and phenotypic correlations approach

100%, but as long as they are substantially smaller than 100%, the o�-diagonal elements will be substantially

smaller than one, and ΣLD will be far from non-positive de�nite.

1.3.3 Consistency of MTAG

Aside from variation due to bias in the GWAS estimates that may persist even in a large sample, MTAG is a

consistent estimator. Recall from section 1.2.2 that in general, a GMM estimator is consistent irrespective of

the GMM weight matrix that is used. In MTAG, however, the unit of observation is a trait, so this standard

consistency property only applies as T → ∞.4 Here, we show that the estimate β̂MTAG,j,t converges to the

true parameter βj,t as the GWAS sample size for trait t goes to in�nity. For this sample-size consistency, it

is necessary that MTAG uses the e�cient GMM weight matrix.

We �rst note that for all s, the (t, s)
th

element of
ωtω

′
t

ωtt
is[

ωtω
′
t

ωtt

]
t,s

=
ωtsωtt
ωtt

= ωts.

Therefore the tth row and tth column of Ω− ωtω
′
t

ωtt
contain only zeros. Without loss of generality, we reorder

the traits such that the tth trait is the �rst trait. Then we can can write
(
Ω− ωtω

′
t

ωtt
+ Σj

)
as a block matrix

[
A B′

B C

]
,

where A is the (t, t)
th

element of Σj (a scalar), B is the tth column of Σj omitting the tth element, and C

is some positive de�nite matrix. Similarly, ωt
ωtt

can be partitioned as[
1

Y

]

where Y is some length-(T − 1) vector.

Our assumption that bias in the GWAS estimate vanishes in a large sample implies that A and all elements

of B go to zero. Since Ω̂, Σ̂j , and β̂j are consistent estimators of Ω, Σj , and βj , respectively, the probability

4This result requires an additional assumption: the sequence of GWAS estimates is a weakly stationary, ergodic process.
Intuitively, this means that the information added by each additional trait is large enough that as the number of traits goes to
in�nity, the total information content from the set of traits goes to in�nity as well.
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limit of the MTAG estimator is

plim
Nt→∞

β̂MTAG, j,t = plim
Nt→∞

ω̂′
t

ω̂tt

(
Ω̂− ω̂tω̂

′
t

ω̂tt
+ Σ̂j

)−1
β̂j

ω̂′
t

ω̂tt

(
Ω̂− ω̂tω̂′

t

ω̂tt
+ Σ̂j

)−1
ω̂t
ω̂tt

= lim
Nt→∞

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
βj

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

= lim
A→0,B→0

[
1

Y

]′ [
A B′

B C

]−1
βj[

1

Y

]′ [
A B′

B C

]−1 [
1

Y

] .

By the properties of block matrices, we have

plim
Nt→∞

β̂MTAG, j,t = lim
A→0,B→0

[
1

Y

]′ [
A−1 +A−1B′

(
D −BA−1B′

)−1
BA−1 −A−1B′

(
D −BA−1B′

)−1
−
(
D −BA−1B′

)−1
BA−1

(
D −BA−1B′

)−1
]
βj[

1

Y

]′ [
A−1 +A−1B′

(
D −BA−1B′

)−1
BA−1 −A−1B′

(
D −BA−1B′

)−1
−
(
D −BA−1B′

)−1
BA−1

(
D −BA−1B′

)−1
][

1

Y

]

= lim
A→0

[
1

Y

]′ [
A−1 0

0 D−1

]
βj[

1

Y

]′ [
A−1 0

0 D−1

][
1

Y

]

= lim
A→0

A−1βj,t + Y ′D−1βj,−t

A−1 + Y ′D−1Y
,

where βj,−t is the vector βj omitting the tth element. Multiplying the numerator and denominator by A,

we get

plim
Nt→∞

β̂MTAG, j,t = lim
A→0

βj,t +AY ′D−1βj,−t

1 +AY ′D−1Y

= βj,t.

Hence MTAG is a consistent estimator.

1.4 Theoretical Properties of MTAG

In this section, we derive analytic formulas for three possible measures of MTAG's performance: the mean

squared error (MSE), the estimator's statistical power to detect a true single-SNP association, and its false

discovery rate (FDR). We begin by deriving a closed-form solution for the MSE of MTAG that is valid

regardless of whether the homogeneous-Ω assumption holds, and we prove that the MTAG estimates always

have (weakly) lower MSE than the corresponding single-trait GWAS estimates. For the special case of T = 2,

we also illustrate how the MSE depends in intuitive ways on model parameters. Next, under the assumption
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that the SNPs' e�ect-size distribution is a mixture of mean-zero multivariate normal distributions, we derive

closed-form solutions for MTAG's statistical power and FDR.

1.4.1 Mean Squared Error (MSE)

The mean squared error (MSE) of an estimator β̃j,t is de�ned as

MSE
(
β̃j,t

)
≡ E

[(
β̃j,t − βj,t

)2]
. (15)

In deriving the genome-wide mean squared error (MSE) of the MTAG estimator, we will not impose the

homogeneous-Ω assumption. In a slight abuse of notation, we let Ω denote the genome-wide (i.e., across-

SNP) variance-covariance matrix of e�ect sizes. No assumptions are required about this variance-covariance

matrix for any particular SNP because the genome-wide MSE is an expectation across all the SNPs.

In this calculation, however, we will make the simplifying assumption that Σj is the same for all SNPs j.

This will be true if within the GWAS for each trait, each SNP e�ect size is estimated in a sample of the same

size. Our simplifying assumption is often approximately true in practice (especially because among its SNP

�lters, MTAG drops SNPs that are estimated in a sample that is smaller than 75% of the 90th percentile of

the sample size distribution for each trait).

Given the de�nition of MSE above, MTAG's MSE is the same quantity that we calculated in the derivation

of the MTAG standard error in section 1.2.4:

MSE
(
β̂MTAG, j,t

)
=

1

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

. (16)

Below, we show that MTAG always leads to an MSE that is weakly smaller than the MSE of the GWAS

coe�cients. Because both the GWAS and MTAG estimators have mean zero across SNPs, this result implies

that MTAG will always lead to more precise estimates on average across the genome than a standard GWAS,

regardless of the joint genetic architecture of the traits included.

To compare the MSEs, we �rst need to calculate the MSE of the GWAS coe�cients for trait t. The GWAS

MSE is simply:

MSE
(
β̂j,t

)
= E

[(
β̂j,t − βj,t

)2]
= E

[
(βj,t + ej,t − βj,t)2

]
= E

(
e2j,t
)

= σj,tt,

where σj,tt is the (t, t) th element of Σj . Hence we need to show that:

σj,tt ≥
1

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

. (17)
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We will prove that this inequality holds by induction. Without loss of generality, order the traits so that

the trait of interest is trait 1. We will show that (17) holds when only one trait is used in MTAG (i.e., when

T = 1). We will then show that if (17) holds for T = T0, then it must hold for T = T0 + 1.

We start by establishing some notation. Ω(T ) denotes the variance-covariance matrix of the e�ects sizes for

the �rst T traits. ω
(T )
t is a column vector of the covariance of the e�ect size of trait t with the �rst T traits.

(If t ≤ T , then this will be the tth column of Ω(T ).) As a reminder, ωtt is the variance of the e�ect sizes for

trait t. We de�ne Σ
(T )
j , σ

(T )
j,t , and σj,tt in a parallel way. Lastly, we use β̂

(T )

MTAG, j,t
to denote the MTAG

estimate of the e�ect of SNP j on phenotype t based on the GWAS estimates for the �rst T traits.

For the T = 1 case, the MTAG estimate is simply equal to the GWAS estimate and thus has the same MSE.

Formally, Ω(1) = ω
(1)
1 = ω11 and Σ

(1)
j = σj,11, and so

MSE
(
β̂
(1)

MTAG, j,t

)
=

1

ω
(1)′
1

ω11

(
Ω(1) − ω

(1)
1 ω

(1)′
1

ω11
+ Σ

(1)
j

)−1
ω

(1)
1

ωtt

=
1

ωtt
ωtt

(
ωtt − ω2

tt

ωtt
+ σj,tt

)−1
ωtt
ωtt

=
1

(σj,tt)
−1

= σj,tt

= MSE
(
β̂GWAS, j,t

)
.

Thus, (17) holds (with equality) when T = 1. Next, assume that (17) holds when T = T0:

1

ω
(T0)′
1

ω11

(
Ω(T0) − ω

(T0)
1 ω

(T0)′
1

ω11
+ Σ(T0)

)−1
ω

(T0)
1

ω11

≤ σj,tt. (18)

For the T = T0 + 1 case, we have

MSE
(
β̂
(T0+1)

MTAG, j,t

)
=

1

ω
(T0+1)′
1

ω11

(
Ω(T0+1) − ω

(T0+1)
1 ω

(T0+1)′
1

ω11
+ Σ

(T0+1)
j

)−1
ω

(T0+1)
1

ωtt

.

In block matrix notation, we have that:

MSE
(
β̂
(T0+1)

MTAG, j,t

)
=

1[
ω

(T0)′
1

ω11

ω1T0+1

ω11

] Ω(T0) − ω
(T0)
1 ω

(T0)′
1

ω11
+ Σ(T0) ω

(T0)
T0+1 −

ω
(T0)
1 ω1T0+1

ω11
+ σ

(T0)
T0+1

ω
(T0)′
T0+1 −

ω1T0+1ω
(T0)′
1

ω11
+ σ

(T0)′
T0+1 ωT0+1,T0+1 −

ω2
1T0+1

ω11
+ σT0+1,T0+1

−1 [ ω
(T0)
1

ω11
ω1T0+1

ω11

]

=
1[

X ′ y
] [ A B

B′ C

]−1 [
X

y

] ,
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where

X ≡ ω
(T0)
1

ω11

y ≡ ω1T0+1

ω11

A ≡ Ω(T0) − ω
(T0)
1 ω

(T0)′
1

ω11
+ Σ(T0)

B ≡ ω
(T0)
T0+1 −

ω
(T0)
1 ω1T0+1

ω11
+ σ

(T0)
T0+1

C ≡ ωT0+1,T0+1 −
ω2
1T0+1

ω11
+ σT0+1,T0+1.

By the properties of block matrices, we have

MSE
(
β̂
(T0+1)

MTAG, j,t

)
=

[ X ′ y
] [ A B

B′ C

]−1 [
X

y

]−1

=

([
X ′ y

] [ A−1 +A−1B
(
C −B′A−1B

)−1
B′A−1 −A−1B

(
C −B′A−1B

)−1
−
(
C −B′A−1B

)−1
B′A−1

(
C −B′A−1B

)−1
][

X

y

])−1
=

(
X ′A−1X

+
[
X ′ y

] [ A−1B (C −B′A−1B)−1B′A−1 −A−1B
(
C −B′A−1B

)−1
−
(
C −B′A−1B

)−1
B′A−1

(
C −B′A−1B

)−1
][

X

y

])−1
.

Since
(
C −B′A−1B

)
is a scalar, we have

MSE
(
β̂
(T0+1)

MTAG, j,t

)
=

(
X ′A−1X +

(
C −B′A−1B

)−1 [
X ′ y

] [ A−1BB′A−1 −A−1B
−B′A−1 1

][
X

y

])−1

=

(
X ′A−1X +

(
C −B′A−1B

)−1 [
X ′ y

] [ A−1B
−1

] [
B′A−1 −1

] [ X
y

])−1
=

[
X ′A−1X +

(
C −B′A−1B

)−1 (
X ′A−1B − y

)2]−1
.
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Next, note that by (18),

X ′A−1X =
ω

(T0)′
1

ω11

(
Ω(T0) − ω

(T0)
1 ω

(T0)′
1

ω11
+ Σ(T0)

)−1
ω

(T0)
1

ω11

=


ω(T0)′

1

ω11

(
Ω(T0) − ω

(T0)
1 ω

(T0)′
1

ω11
+ Σ(T0)

)−1
ω

(T0)
1

ω11

−1

−1

=
[
MSE

(
β̂
(T0)

MTAG, j,t

)]−1
≥ 1

σj,11
.

Therefore,

MSE
(
β̂
(T0+1)

MTAG, j,t

)
≤
(

1

σj,11
+
(
C −B′A−1B

)−1 (
X ′A−1B − y

)2)−1
.

Furthermore, since [
A B

B′ C

]

is the variance-covariance matrix of
(
β̂j − ωt

ωtt
βj,t

)
(see section 1.2.4), it must be positive de�nite. Therefore,

[
A B

B′ C

]−1

must be positive de�nite, and therefore all of the diagonal elements of[
A B

B′ C

]−1

must be positive, including the bottom-right element, which we have shown to be
(
C −B′A−1B

)−1
. There-

fore, (
C −B′A−1B

)−1 (
X ′A−1B − y

)2 ≥ 0,

implying that

MSE
(
β̂
(T0+1)

MTAG, j,t

)
≤

(
1

σj,11
+
(
C −B′A−1B

)−1 (
X ′A−1B − y

)2)−1
≤

(
1

σj,11

)−1
= σj,11

= MSE
(
β̂GWAS, j,t

)
.

Since (17) holds for T = 1, and since (17) holds for T = T0 + 1 whenever it holds for T = T0, by induction

(17) must hold for all natural numbers T . We have shown for any joint distribution of e�ect sizes, MTAG

will produce estimates that, on average across SNPs, reduce the MSE relative to the MSE of the initial

GWAS results.
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1.4.2 Properties of MSE with Two Traits

In this section, to help build intuition about how the parameters Ω and Σj interact, we prove some additional

properties of the MSE in a bivariate MTAG analysis and then plot some illustrative calculations.

In the two-trait case, it is helpful for intuition to reparameterize Ω and Σj (without loss of generality) as

follows:

Ω ≡

[
1 rβ

rβ 1

]
and

Σj ≡

[
σ11 σ12

σ12 σ22

]
.

We will prove two claims under this parameterization which we make in the main text of this paper. Namely,

(a) when rβ = 1, MSE is decreasing in the sample size of each trait, and (b) when the mean χ2-statistic of the

GWAS summary statistics for each trait is the same, MSE is decreasing in the absolute di�erence between

rβ and rε ≡ σ12√
σ11σ22

.

To prove each of these, we �rst express the MSE in terms of the above parameterization. We have:

MSE =
1

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

=
1[

1 rβ

]([ 1 rβ

rβ 1

]
−

[
1 rβ

rβ r2β

]
+

[
σ11 σ12

σ12 σ22

])−1 [
1

rβ

]

=
1[

1 rβ

] [ σ11 σ12

σ12 1− r2β + σ22

]−1 [
1

rβ

]

=
1

1

σ11(1−r2β+σ22)−σ2
12

[
1 rβ

] [ 1− r2β + σ22 −σ12
−σ12 σ11

][
1

rβ

]

=
1

1

σ11(1−r2β+σ22)−σ2
12

(
1− r2β + σ22 − 2rβσ12 + r2βσ11

)
=

σ11 − r2βσ11 + σ11σ22 − σ2
12

1− r2β + σ22 − 2rβσ12 + r2βσ11

Claim (a): When rβ = 1, MSE is decreasing in the sample size of each trait. First, consider the case where

rβ = 1. Then

MSE =
σ11σ22 − σ2

12

σ22 − 2σ12 + σ11
.

Increasing the sample size for Trait 1 corresponds to decreasing σ11. (It also corresponds to increasing

the mean χ2-statistic, which is 1+σ11

σ11
). To evaluate the e�ect of increasing the sample size for Trait 1, we
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di�erentiate

∂MSE

∂σ11
=

∂

∂σ11

(
σ11σ22 − σ2

12

σ11 − 2σ12 + σ22

)
=

(σ11 − 2σ12 + σ22)σ22 −
(
σ11σ22 − σ2

12

)
(σ11 − 2σ12 + σ22)

2

=
σ2
22 − 2σ12σ22 + σ2

12

(σ11 − 2σ12 + σ22)
2

=
(σ22 − σ12)

2

(σ11 − 2σ12 + σ22)
2

> 0.

This positive derivative implies that as σ11 decreases (or rather as the sample size for the GWAS of Trait 1

increases), MSE decreases. By symmetry, the same will hold when we increase the sample size for Trait 2.

Therefore, whenever we increase the sample size for either trait, MSE will decrease if rβ = 1.

Claim (b): When the mean χ2-statistic of the GWAS summary statistics for each trait is the same, MSE

is decreasing in the absolute di�erence between rβ and rε. Next, suppose the power of the GWASs for each

trait is equal. That is, σ11 = σ22. Then σ12 = rε
√
σ11σ22 = rεσ11, giving us

MSE =
σ11 − r2βσ11 + σ2

11 − r2εσ2
11

1− r2β + σ11 − 2rβrεσ11 + r2βσ11

= σ11
1− r2β + σ11

(
1− r2ε

)
1− r2β + σ11

(
1− 2rβrε + r2β

) .
We will show that MSE is decreasing in |rβ − rε| by �rst showing that MSE rises with rβ when rβ < rε and

falls with rβ when rβ > rε. We therefore di�erentiate

∂MSE

∂rβ
=

∂

∂rβ

σ11 1− r2β + σ11
(
1− r2ε

)
1− r2β + σ11

(
1− 2rβrε + r2β

)


= σ11

[
1− r2β + σ11

(
1− 2rβrε + r2β

)]
(−2rβ)−

[
1− r2β + σ11

(
1− r2ε

)]
(−2rβ − 2rεσ11 + 2rβσ11)[

1− r2β + σ11

(
1− 2rβrε + r2β

)]2
= 2σ11

(rεσ11) r2β +
(
r2εσ

2
11 − r2εσ11 − σ2

11 − σ11
)
rβ +

(
−r3εσ2

11 + rεσ
2
11 + rεσ11

)[
1− r2β + σ11

(
1− 2rβrε + r2β

)]2 .

Note that the numerator is quadratic in rβ , with strictly positive expressions outside the fraction and in the

denominator. Thus, the sign of this derivative is the same as the sign of

(rεσ11) r2β +
(
r2εσ

2
11 − r2εσ11 − σ2

11 − σ11
)
rβ +

(
−r3εσ2

11 + rεσ
2
11 + rεσ11

)
.
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We therefore use the quadratic equation to �nd the roots of this expression:

rβ =
−r2εσ2

11 + r2εσ11 + σ2
11 + σ11 ±

√
(r2εσ

2
11 − r2εσ11 − σ2

11 − σ11)
2 − 4rεσ11 (−r3εσ2

11 + rεσ2
11 + rεσ11)

2rεσ11

=
−r2εσ2

11 + r2εσ11 + σ2
11 + σ11 ±

√
(σ2

11 + σ11 − r2εσ2
11 − r2εσ11)

2

2rεσ11

=
r2εσ

2
11 − r2εσ11 − σ2

11 − σ11 ±
(
σ2
11 + σ11 − r2εσ2

11 − r2εσ11
)

−2rεσ11

For the positive root, we have

rβ =
r2εσ

2
11 − r2εσ11 − σ2

11 − σ11 +
(
σ2
11 + σ11 − r2εσ2

11 − r2εσ11
)

−2rεσ11

=
2r2εσ11
2rεσ11

= rε.

For the negative root, we have

rβ =
r2εσ

2
11 − r2εσ11 − σ2

11 − σ11 −
(
σ2
11 + σ11 − r2εσ2

11 − r2εσ11
)

−2rεσ11

=

(
1− r2ε

)
σ11 + 1

rε
.

This term will be smallest when σ11 → 0, but note that in such a case, |rβ | ≥ 1. This implies that the sign

of the derivative changes only once for the feasible values of rβ . When rβ = −1, the sign of the derivative is

sign

(
∂MSE

∂rβ

)
= sign

[
(rεσ11) r2β +

(
r2εσ

2
11 − r2εσ11 − σ2

11 − σ11
)
rβ +

(
−r3εσ2

11 + rεσ
2
11 + rεσ11

)]
= sign

(
−r3εσ2

11 − r2εσ2
11 + r2εσ11 + rεσ

2
11 + 2rεσ11 + σ2

11 + σ11
)

= sign
(
σ11

(
1− r2

)
(rε + 1) + (rε + 1)

2
)
,

which is positive. Therefore, MSE rises with rβ when rβ < rε and falls with rβ when rβ > rε. It follows that

MSE is decreasing in |rβ − rε|.

We illustrate calculation of the MSE formula in Supplementary Figure 1a. Holding the traits' estimation-

error correlation rε and Trait 1's expected χ2-statistic �xed, the �gure plots Trait 1's MSE as a function

of the e�ect-size correlation rβ and the expected χ2-statistic of Trait 2. For Trait 2's GWAS, we consider

expected χ2-statistics of 1.1 (low power), 1.4 (medium power), or 2.0 (high power). (For comparison, our

GWAS of DEP (h2 = 0.064) would have these expected χ2-statistics if estimated in e�ective sample sizes of

81,189, 324,758, and 568,326 individuals, respectively.) Both of the claims we have proven are evident in the

�gure.

1.4.3 Power and False Discovery Rate (FDR)

There is no general formula for MTAG's statistical power or FDR that holds for all joint distributions of e�ect

sizes across traits. We can derive formulas, however, when the e�ect-size distribution can be characterized
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as a mixture of mean-zero normals. This class of distributions includes a large number of thick-tailed

distributions, including non-in�nitesimal models where some fraction of SNPs are null for a subset of traits.

Speci�cally, we assume that the joint distribution of βj is

βj ∼


N (0, Ω1) with probability p1
...

...

N (0, ΩC) with probability pC ,

where Ωc is the variance-covariance matrix for the c
th component (out of C) making up the mixture distribu-

tion and the pc's are the mixture weights (which sum to one). Whenever there is more than one component

in the mixture distribution, the homogeneous-Ω assumption is violated.

The z -statistic of the MTAG estimator is

Zj,t =
β̂MTAG,j,t

SE
(
β̂MTAG,j,t

)
=

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
β̂j√

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

.

Since the vector of GWAS estimates for a SNP that is drawn from the cth component of the mixture

distribution is distributed

β̂j | c ∼ N (0, Ωc + Σj) ,

the z-statistics for those SNPs will be normally distributed with mean zero and variance

Var (Zj,t | c) = Var


ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
β̂j√

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

| c



=

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
Var

(
β̂j | c

)(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt
ωtt

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

=

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
(Ωc + Σj)

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt
ωtt

ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

. (19)

To calculate power and FDR, �rst de�ne the subset of components, D, in which βj,t follows a degenerate

distribution with full mass on zero (i.e., SNP j is null for trait t), or equivalently the set of components

where all elements of the tth row and the tth column of Ωc are zero. Power is de�ned as the probability of

genome-wide signi�cance conditional on the SNP e�ect size being drawn from a component not in D (i.e.,

components where SNP j is non-null for trait t). Therefore, letting z0 denote the z-statistic that corresponds
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to genome-wide signi�cance in our data, we can calculate

Power ≡ P (Zj,t > z0 |βj,t 6= 0)

=
∑
c6∈D

P (Zj,t > z0 | c)
pc∑
c6∈D pc

=

∑
c6∈D P (Zj,t > z0 | c) pc∑

c6∈D pc
. (20)

Since we know the distribution of (Zj,t | c), we can directly calculate P (|Zj,t| > z0 | c) and therefore power.

To illustrate results from calculating the power formula, Supplementary Figure 1b plots power for the

same parameter values as Supplementary Figure 1a for the special case of a multivariate normal distri-

bution. We use this special case to illustrate the power formula for two reasons: it is fully parameterized by

Ω, and it generates a lower bound for power relative to any mixture distribution. Not surprisingly, MTAG's

power is greater precisely when its MSE is smaller.

FDR is de�ned as the probability that a SNP is null for the trait of interest conditional on the SNP being

genome-wide signi�cant. To calculate FDR, we �rst need to know that probability that any arbitrary SNP

is genome-wide signi�cant:

phit ≡ P (|Zj,t| > z0)

=
∑
c

P (|Zj,t| > z0 | c) pc.

Using the calculation, the false discovery rate is de�ned as

FDR ≡ P (null | |Zj,t| > z0)

=
P (|Zj,t| > z0 | null)P (null)

P (|Zj,t| > z0)

=
[
∑
c P (|Zj,t| > z0 | null, c)P (c | null)]

(∑
c∈D pc

)
phit

=

[∑
c∈D P (|Zj,t| > z0 | c) pc∑

c∈D pc

] (∑
c∈D pc

)
phit

=

∑
c∈D P (|Zj,t| > z0 | c) pc

phit
. (21)

Since each term in equation 21 is known analytically, the FDR can be calculated directly as a function of

{Ωc} and Σj .

The formula holds for any number of traits, but to illustrate calculation of the formula, we consider a simple

setting with two traits, A and B, and four classes of SNPs: those which are non-null for both A and B,

those that are null for both A and B, those that are null only for A, and those that are null only for B. We

denote these states as TT , FF , FT , and TF , respectively.

We assume the following variance-covariance matrices for the distribution of SNP e�ects in each state:

ΩTT =

[
1 0.7

0.7 1

]
, ΩFF =

[
0 0

0 0

]
, ΩFT =

[
0 0

0 1

]
, ΩTF =

[
1 0

0 0

]
,
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and we set the variance-covariance matrix of the estimation error to be

Σj =

[
1 0.35

0.35 1

]
.

for all SNPs j. Lastly, we set the mixing probabilities to

p =


pTT

pFF

pFT

pTF

 =


0.5

0.2

0.2

0.1

 .

Under this parameterization, it is straightforward to calculate the average value of Ω:

Ω = Var
(
βj
)

= E
(
βjβ

′
j

)
=
∑
c

E
(
βjβ

′
j | c
)
pc

= ΩTT pTT + ΩFF pFF + ΩFT pFT + ΩTF pTF

=

[
1 0.7

0.7 1

]
0.5 +

[
0 0

0 0

]
0.2 +

[
0 0

0 1

]
0.2 +

[
1 0

0 0

]
0.1

=

[
.6 0.35

0.35 .7

]
.

Substituting this matrix into (19) for trait A, we have for each of the four states:

Var (Zj,A |TT ) = 2.08, Var (Zj,A |FF ) = 0.99, Var (Zj,A |FT ) = 1.01, Var (Zj,A |TF ) = 1.83.

In our power calculations, we use the conventional P value threshold of 5 × 10−8, which corresponds to a

z -statistic threshold of

z0 = Φ−1
(
1− 5× 10−8/2

)
= 5.45.

Using this threshold we see that

P (|Zj,t| > z0 |TT ) = 1.57× 10−4

P (|Zj,t| > z0 |FF ) = 4.04× 10−8

P (|Zj,t| > z0 |FT ) = 6.18× 10−8

P (|Zj,t| > z0 |TF ) = 5.77× 10−5.

Finally, plugging these values into (20) and (21) give us

Power = 1.40× 10−4,

FDR = 2.42× 10−4.

26 
 

  



1.4.4 Bounding the FDR (maxFDR)

For any joint distribution of e�ect sizes that can be written as a mixture of normals, Equation (21) gives the

FDR. Even if the exact mixing parameters are not known, the equation may yield an informative upper bound

on the FDR. Here, we describe a framework for calculating this upper bound, which we refer to as maxFDR.

The maxFDR calculations we propose are intended to supplement, not replace, other follow-up analyses,

such as replication and prediction analyses in independent samples, that may be used by investigators to

probe the credibility of any MTAG-identi�ed loci.

The calculations that follow require two additional assumptions. First, we assume that the e�ect-size dis-

tribution is a mixture of 2T multivariate normals, where T is the number of traits. These components

correspond to the complete set of states in which the SNP is null for some subset of traits and non-null for

the others.5 Second, we assume that the variance of e�ect sizes for each trait is equal across all states in

which the SNP is non-null for the trait, and that the covariance of e�ect sizes for each pair of traits is equal

across all states in which the SNP is non-null for both traits. We use Ω̃ to denote the variance-covariance

matrix of e�ect sizes in the state that the SNP is non-null for all traits. Under our assumptions, the variance-

covariance matrix of e�ects sizes for component c, denoted Ωc, is equal to Ω̃ with the rows and columns

zeroed out that correspond to null traits in component c. We do not make any assumptions about the mixing

probabilities of the mixture distribution (i.e., the frequencies of SNPs corresponding to each state).

As shown in section 1.4.3, the FDR is a function of {Ωc}, Σj , and the vector of mixing probabilities p.

There are simple relationships between Ω, {Ωc}, and Ω̃. To relate Ω and {Ωc}, observe that:

Ω = Var
(
βj
)

= E
(
βjβ

′
j

)
=
∑
c

E
(
βjβ

′
j | c
)
pc

=
∑
c

Ωcpc.

Next, we relate Ω and Ω̃. Considering each element separately, we see that the (t, s)
th

element of Ω̃ is

ω̃t,s =
ωt,s
qt,s

, (22)

where qt,s is the sum of the elements of p that correspond to states where the SNP is non-null for both

trait t and s.6 Note that sometimes putting together the elements of Ω̃ from this formula will generate a

non-positive-semi-de�nite matrix Ω̃. If so, the assumed mixing probabilities make it impossible to attain the

correlations in true e�ect sizes described by Ω.

Under the above assumptions, we can use (21), (22), and our estimates Ω̂ and Σ̂j to calculate the FDR for

any vector of probabilities p. This allows us to assess the credibility of single-SNP associations identi�ed by

MTAG in two ways. First and most simply, we can evaluate the FDR under a wide range of assumptions about

the vector p. If such sensitivity analyses yield low values of FDR even under very pessimistic assumptions,

then we may conclude that the MTAG �ndings are robust. As a rule of thumb, the FDR tends to be highest

5For example, in the T = 2 case, there will be four components: one for the SNP being null for both traits, one for the SNP
being non-null for both traits, and two more for the cases where the SNP is null for one trait and not the other.

6If qt,s = 0, then any value of ω̃t,s is equivalent, so we arbitrarily pick ω̃t,s = 1 if t = s and ω̃t,s = 0 if t 6= s in those cases.

27 
 

  



when a moderate fraction of the probability mass is on states where the SNP is null for the trait of interest

but non-null for the other traits in the analysis.

Second, in cases with a small number of traits, it is possible to calculate the value of p that maximizes

the FDR, possibly subject to some constraints on the vector p. Such calculations can be used to generate

worst-case-scenario values of each trait's FDR, which we call maxFDR. Without any constraints on p, other

than that its elements must sum to one, the p that maximizes the FDR is usually one where almost all SNPs

(>99%) are null for all traits. In practice, the maxFDR may therefore fail to yield an informative upper

bound in settings where the investigator has no prior information about the genetic architecture of the traits

that can be used to constrain the search space. But in many realistic applications, it may be possible to

incorporate information about the fraction of non-null SNPs. To illustrate, Supplementary Figure 2a

and 2b illustrate the maxFDR in a two-trait MTAG analysis of non-overlapping samples where the trait

of interest is assumed to be Trait 1. The calculations are based on the assumption that at least 10% of

SNPs are non-null for both traits. We consider this a conservative bound for many polygenic traits, but in

applications of MTAG to less polygenic traits, the calculation would of course need to be conducted allowing

for fewer than 10% of SNPs to be causal for both traits.

Supplementary Figure 2a plots maxFDR for a spectrum of e�ect-size correlations when one trait is low-

powered (E
(
χ2
)

= 1.1) and the other has di�erent levels of power (E
(
χ2
)
∈ {1.1, 1.4, 2.0}). This �gure

highlights two important points. First, as the correlation of the e�ect sizes goes to one, maxFDR falls toward

zero. This is because the in�ation of FDR arises as a result of SNPs that are null for the trait of interest and

non-null for other traits. If rβ = 1, such SNPs do not exist. Second, as expected, the FDR is moderate (less

than 8%) when the secondary trait has limited power, but the maximum FDR can explode to concerning

levels (greater than 15%) at certain levels of rβ when the mean χ2-statistic is 2.0.

Supplementary Figure 2b shows values from MTAG applied to summary statistics from two equally-

powered GWASs. When both traits are low-powered, maxFDR never exceeds 8% and decreases monoton-

ically in rβ . In the moderate- and high-powered cases considered, however, the FDR is much smaller than

1% for all values of rβ .

1.5 Computational Run-time.

MTAG is computationally quick because all its steps have closed-form solutions. In the real-data application

described in this paper�with three traits and 6.1M SNPs�the median run time across �ve identical runs

using one core of a 2.20 GHz Intel(R) Xeon(R) CPU E5-2650 v4 processor was approximately 28 minutes.

Of course, run time may vary as a function of the computing environment.
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2 Simulations

2.1 Background

In this section we provide additional evidence, from simulations and real data, on MTAG's performance. We

begin (section 2.2) with a general description of the data-generating process used throughout our simulations.

Next, we verify that the analytic formulas for MSE, statistical power, and FDR derived in section 1.4 hold in

our simulated data (as of course they must). Our remaining analyses test for biases in MTAG standard errors.

Our theoretical derivation of the feasible MTAG estimator and its standard error (sections 1.2.4-1.2.5) did

not account for the sampling variance in Ω̂ and Σ̂j . Theoretically, the size of the bias should increase with

the number of traits included in the MTAG analysis. In section 2.4.1, we therefore explore quantitatively

the biases resulting from unaccounted-for sampling variance as MTAG is progressively applied to a larger

number (up to 20) of traits. Finally, we used individual-level data from UK Biobank to create �synthetic�

cohorts with known overlap. We apply MTAG to summary statistics from genome-wide association analyses

conducted in these cohorts and test for biases by comparing MTAG standard errors to those from a single

GWAS conducted in the full sample.

2.2 Data-Generating Process in Simulations

The analyses in sections 2.3 and 2.4.1 were based on GWAS summary statistics simulated using the following

procedure.

1. Generate 100,000 length-two �true� e�ect size vectors,
{
βj
}
, corresponding to the e�ects of 100,000

independent SNPs on two traits.

2. For each SNP, generate z-statistics, {Zj}. To do so, for each SNP j, we generate e�ect-size estimates

by adding estimation error to the true e�ect size vectors βj , and then we divide the resulting e�ect-

size estimate by the standard deviation of the estimation error. The estimation error is drawn from a

bivariate normal distribution with mean zero and variance-covariance matrix Σ.

3. Generate an �estimate� of Σ, Σ̂, by adding independent, normally distributed noise to Σ.

4. Using {Zj} and Σ̂, generate an estimate of Ω̂ using the method of moments procedure described in

section (9.1.2) .

5. Using {Zj}, Σ̂, and Ω̂, generate MTAG estimates and standard errors for each SNP and each trait.

These summary statistics are then used to conduct the intended test, and these steps are replicated many

times for each simulation scenario. The number of replications varies across tests, depending on how much

precision is needed.

Across our simulation scenarios, e�ect sizes can be distributed as multivariate normal or multivariate spike-

and-slab. Here we describe how we generate the true e�ect sizes from each of these distributions. In all

cases, we generate the e�ect-size distribution such that it has variance one (so that the e�ect sizes are all on

a comparable scale) and correlation rβ (a parameter that we �x to di�erent values in di�erent scenarios).

29 
 

  



For scenarios with normally distributed e�ect sizes, we simply draw bivariate normally distributed e�ect

sizes with mean zero and variance-covariance matrix

Ωnormal =

[
1 rβ

rβ 1

]
.

To simulate a scenario in which some fraction of SNPs has no association with each trait, we generate data

from a multivariate spike-and-slab distribution. To do so, we �rst draw potential e�ect sizes from a bivariate

normal distribution with mean zero and variance-covariance matrix ΩSS. Then for each SNP, we set the

e�ect of both SNPs to exactly zero with probability pFF , we set the e�ect of just the �rst trait to zero with

probability pFT , and we set the e�ect of just the second SNP to exactly zero with probability pTF . This

means that there is probability pTT = 1− pFF − pFT − pTF that the SNP is non-null for both traits.

We let p to denote the vector

p ≡


pFF

pFT

pTF

pTT

 .
Setting

ΩSS =

[
1

pTT+pTF

rβ
pTT

rβ
pTT

1
pTT+pFT

]
,

ensures that the e�ect sizes will have variance one and correlation rβ .
7

To speed up computations, we directly generate a GWAS estimate vector β̂j in each replication rather than

simulate data and estimate the e�ect sizes. Since standard GWAS estimators are asymptotically normally

distributed conditional on the true e�ect size, we assume that
(
β̂j |βj

)
is bivariate normally distributed.

Assuming that the estimator that produced β̂j is unbiased, the distribution of the estimation error has mean

zero. De�ning the correlation matrix of the estimation error to be8

ΣLD ≡

[
1 rε

rε 1

]
,

the variance-covariance matrix of the estimation error will be Σ = CΣLDC, where

C =

 √ 1
χ2
1−1

0

0
√

1
χ2
2−1

 ,
using χ2

t to denote the expected χ2-statistic for trait t. This parameterization allows us to model the

correlation of the estimation error and the power of the GWAS separately. Higher heritability and larger

estimation sample size for trait t, and therefore greater power, are modeled by a larger value for the parameter

χ2
t . Greater phenotypic correlation (either positive or negative) and greater sample overlap are modeled by

a value for rε ∈ [−1, 1] further from zero.9

7For certain values of rβ and p, the matrix ΩSS will not be positive de�nite, in which case it is not a valid variance-covariance
matrix. In such cases, it is impossible to achieve a correlation of true genetic e�ects equal to rβ given the probabilities p, so
we will not able to perform simulations corresponding to those parameters.

8The notation ΣLD is used because this matrix is equivalent to the matrix ΣLD described in section (1.3.1).
9In principle, the value of rε would also capture the degree to which the biases in the estimated e�ect on one trait covary
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After simulating the e�ect-size estimates for each trait, β̂j , we calculate z-statistics. To do so, we divide the

estimated e�ect sizes by the standard deviation of the sampling variance:

Zj,t ≡
β̂j,t√
σtt

.

When we apply MTAG to real data, we would use LD score regression to estimate Σ̂. In our simulations,

however, all of the SNPs are independent, so there is no variation in the LD scores of each simulated SNP.

Nonetheless, we would like our simulation to capture the e�ects of estimation error on Σ̂. To do so, we add

independent noise to each element of the matrix Σ, drawn from a normal distribution with mean zero and

variance proportional to the sample size implied by the noncentrality parameter of the expected χ2-statistic.

In the empirical data in this paper, the traits have a mean χ2-statistic of about 1.4, and the sampling variance

of each of the elements of Σj is roughly 10−4. Using these values to calibrate our simulations, we set the

variance of the noise term added to the (t, s)
th

element (where t may be equal to s) of the true value of Σj

to 10−4 × 0.4√
E(χ2

t−1)E(χ2
s−1)

.

2.3 Veri�cation of Analytic Approximations for MSE, Power, and FDR

In section 1.4, we derived analytic formulas for MSE, statistical power, and FDR. The formulas are approxi-

mations when evaluated using Ω̂ and Σ̂j instead of the true matrices Ω and Σj . Our �rst set of simulations

examined the accuracy of the approximations across a set of two-trait simulation scenarios; we examine

multi-trait simulations in section 2.4.1 below.

In all simulations, we considered a two-trait MTAG analysis under varying assumptions about the following

parameters: χ2
1, χ

2
2, rβ , rε, and p (where p is relevant for the statistical power and FDR calculation but

not the MSE formula). For the expected χ2-statistics, we consider both a �low power� (χ2
t = 1.1) and �high

power� (χ2
t = 2.0) setting. For rβ , we consider �high-correlation cases� where rβ = 0.7, such as what we

observe in the empirical data in this paper for DEP, NEUR, and SWB, and �zero-correlation cases,� where

rβ = 0. We similarly use these values for rε. The high-correlation case for rε could correspond to a setting

in which a pair of traits has a phenotypic correlation of 0.7 and the GWAS summary statistics are estimated

in a perfectly overlapping sample. The no-correlation case would occur if the GWAS summary statistics are

estimated from non-overlapping samples.

We consider three cases for p. First,

p =


pFF

pFT

pTF

pTT

 =


0

0

0

1

 .
This is the in�nitesimal case where all SNPs are drawn from the same bivariate normal distribution. Note

with the biases in the estimated e�ect on the other trait. We ignore this source of covariance because we assume that the e�orts
to reduce the biases (e.g., quality control, inclusion of PCs as controls in the GWAS) render it negligible relative to the impact
of phenotypic correlation and sample overlap.
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that in this case, the FDR is always zero by de�nition because every SNP is non-null. Second,

p =


pFF

pFT

pTF

pTT

 =


0.3

0

0

0.7

 .

In this setting, 30% of SNPs are null for both traits, but there are no SNPs that are null for one trait and

non-null for the other. The value of 0.7 was chosen because [8] �nd that approximately 30% of SNPs are

null for each trait DEP, NEUR, and SWB. The �nal case is

p =


pFF

pFT

pTF

pTT

 =


0.09

0.21

0.21

0.49

 .

Note that these are the mixing probabilities that correspond to 30% of SNPs being null for each trait, but

the event that a SNP is null for one trait is independent of the event that the SNP is null for the other.

In our simulations, we compare the true MSE, power, and FDR (i.e., calculated using Ω and Σ) to the

simulated MSE, power, and FDR (i.e., calculated using Ω̂ and Σ̂) for every combination of these parameters

over 1,000 replications, each including 100,000 SNPs. This gives us 2 × 2 × 2 × 2 × 3 = 48 simulations.

The results are reported in Supplementary Table 1 and show a close correspondence between the true

and simulated values. Since the non-centrality parameter of the χ2-statistic scales linearly with sample size

and heritability, we can use the mean χ2-statistics to calibrate what these values correspond to in real-data

applications. For example, an expected χ2-statistic of 1.1 corresponds to a GWAS of height conducted in

a sample of approximately 40,000 individuals, and an expected χ2 statistic of 2.0 corresponds to the same

analysis conducted in a discovery sample approximately ten times larger.

2.4 MTAG Standard Errors

2.4.1 Sampling variance in Ω̂ and Σ̂j for T ∈ [1, 20] traits

As described in section 1.2.4, the MTAG estimator and standard errors do not account for sampling variance

in the estimates Ω̂ and Σ̂j . This can lead to in�ation of MTAG test statistics. Since adding more traits

increases the number of estimated elements in Ω̂ and Σ̂j (with the number of elements increasing at the rate

T 2), the bias is expected to be larger as the number of traits T increases. The simulations in this section

assess the magnitude of this bias.

In these simulations, for each replication, we �x some value rβ ∈ {0.0, 0.7}, expected χ2
t -statistic in

{1.1, 1.4, 2.0} for all traits t, and some total number of traits T ∈ {1, 2, 3, 5, 7, 10, 15, 20}.10 We draw ef-

fects sizes for 100,000 SNPs from a multivariate normal distribution with mean zero and variance-covariance

matrix Ω, where each diagonal element of Ω is equal to one and each o�-diagonal element of Ω is equal to

10We restrict rβ to be positive because for any negative value of rβ , there is a T0 such that Ω is non-positive de�nite for any
T > T0.
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rβ . We then simulate z -statistics, Ω̂, and Σ̂j based on the procedure described in section 2.2. For each set

of simulation parameters, we conduct 10,000 replications.

To measure the in�ation of the MTAG test statistics, we �rst calculate the MTAG estimates in the standard

way, using the estimated values Ω̂ and Σ̂j . We also calculate a set of �oracle� MTAG estimates, denoted

β̂oracle,j,t, which implement the MTAG formula but using the true, known values of Ω and Σj . We then

calculate the mean χ2-statistic of β̂MTAG,j,t and of β̂oracle,j,t across all SNPs and replications. Since under

the null, the expected χ2-statistic is 1, we compare these two estimates by taking the ratio

Rt =
χ2
MTAG,t − 1

χ2
oracle,j,t − 1

− 1,

where χ2
MTAG,t and χ

2
oracle,t are the mean χ

2-statistics for the MTAG and oracle results, respective. This

value is a measure of the fraction of in�ation of the MTAG summary statistics due to over-�tting that results

from treating the estimates Ω̂ and Σ̂j as the true values.

Figs 1a-1b shows the results when the data are simulated without overlap (with rε = 0), but we veri�ed

that the �ndings are very similar if the data are simulated with moderate overlap (rε = 0.35). The in�ation

of the MTAG test statistics increases approximately linearly in the number of traits, but in most scenarios,

the bias is quantitatively small. In well-powered MTAG analyses of �ve or fewer traits, the in�ation never

exceeds 0.5% across all the scenarios we considered. We observe the greatest in�ation (up to 3%) when each

GWAS has low power and the number of traits is large.

2.4.2 MTAG Standard Errors with Sample Overlap

For reasons of computational speed, the simulation evidence shown so far was based on simulations in which

we directly drew SNPs' true e�ect sizes and z -statistics, rather than using real data. Among other things,

this approach allows us to avoid estimating LD score regressions in each simulation run. A limitation of

the approach, however, is that we cannot use it to test how well MTAG corrects for overlapping GWAS

samples because MTAG's correction relies on LD score regression�and by extension, the assumptions about

genotype and phenotype data that underlie LD score regression. In practice, it is important to know whether

violations of these assumptions introduce biases in applications of MTAG to real data.

To address that question, we conducted analyses using real genotypic and phenotypic data from the initial

release of the UK Biobank (UKB). We created synthetic UKB subcohorts with known overlap by drawing

three equally sized subsamples, chosen so that the pairwise overlap is always equal to 50%. More precisely,

we divided the data into thirds, and each cohort was made up of two of the thirds. In each cohort, we

conducted genome-wide association analyses of six traits. We then applied MTAG to the summary statistics

for each trait and compared MTAG z-statistics to z -statistics from a conventional GWAS of the complete

UKB sample (from which the synthetic subcohorts were drawn).

All genome-wide association analyses were conducted in �White-British ancestry� subjects in the interim

release of the UK Biobank11 using association models described in section 3. We considered six typical

GWAS traits: height (N = 112, 151), body mass index (BMI, N = 112, 031), educational attainment

11Marchini, J. et al. Genotype Imputation and Genetic Association Studies of UK Biobank: Interim Data Release. Tech.
Rep. (2015).
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(EA, N = 111, 349), depressive symptoms (DEP, N = 101, 615), neuroticism (NEUR, N = 104, 439), and

subjective well-being (SWB, N = 40, 603). We constructed our DEP, NEUR and SWB phenotypes using the

same procedures as in the single-trait GWASs described in section 3, and our measure of EA was constructed

exactly as in [9].

If MTAG standard errors accurately correct for the sample overlap, the MTAG e�ect size estimates, their

standard errors, and the z -statistics should be approximately equal to those from a conventional GWAS

conducted in the original UKB sample from which the synthetic cohorts were drawn. And indeed, for all

six trait considered, we found that the correlation between MTAG and GWAS z-statistics was very high

(R2's are in the range 0.964 to 0.999). Figs 2a-b show results for height and DEP. Analogous �gures for

the remaining four traits are shown in Supplementary Figure 3. Each �gure also reports the slope of

the regression line from a regression of the MTAG z-statistics on the GWAS z-statistics. As expected, the

estimated slopes are consistently close to 1 (range 0.982 to 1.021). We also veri�ed that MTAG correctly

recovers the degree of overlap. In each MTAG analysis, the estimated values of the o�-diagonal elements of

Σ̂j are always approximately 0.5.
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3 GWAS Meta-Analyses of Depression, Neuroticism and Subjec-

tive Well-Being

3.1 Background

We jointly analyze three traits: depression (DEP), neuroticism (NEUR), and subjective well-being (SWB).

We selected these three traits because previous work has found them to be highly genetically correlated [8]

and because summary statistics from published GWA studies with large discovery samples were available

for all three traits when we launched the study [8, 10]. The traits' high genetic correlations with each other

imply that the bene�ts from joint analyses may be substantial.

MTAG requires one input �le for each trait included in the analysis. Each input �le contains association

results from conventional (single-trait) association analyses. Each row in an input �le contains results from a

test of association between a speci�c genetic variant and the trait in question. In our setting, the three �les

contain results from GWAS meta-analysis. In this section, we describe the meta-analyses used to generate

the three input �les and summarize key �ndings.

3.2 Summary Overview of Single-Trait Analyses

Our single-trait input �les are the results of GWAS meta-analyses based on association analyses of 1000G-

imputed variants from the 22 autosomal chromosomes. For a given meta-analysis, each �le that enters into

the meta-analysis is either obtained from previously published GWASs or from new genome-wide analyses.

Fig. 3 gives a schematic overview of the three meta-analyses (see also Supplementary Table 2):

• Depression (DEP; N = 465, 337; Ne� = 354, 862)

• Neuroticism (NEUR; N = 168, 105)

• Subjective Well-Being (SWB; N = 388, 538).

All of our analyses rely heavily on the summary statistics from [8], a previous GWAS conducted by the

Social Science Genetic Association Consortium (SSGAC). The SSGAC study analyzed subjective well-being,

depressive symptoms, and neuroticism from association results in a large number of cohorts. In the SSGAC

study, cohort-level association results from the UK Biobank contributed to the meta-analyses of all three

phenotypes, and cohort-level results from 23andMe contributed to the meta-analysis of SWB.

For the purposes of this study, we reran all three original SSGAC meta-analyses with updated association

results from the UK Biobank (interim release)12. The new UK Biobank results are based on a slightly revised

analysis protocol. The revisions include changes to phenotype de�nition and, in the association analyses, a

more comprehensive set of controls for the genotype-measurement batch. The revisions are all minor, and it

is hence unsurprising that they yield substantively (but not numerically) identical results. Most importantly,

we expanded the meta-analysis of [8] of SWB using updated association results from a substantially increased

discovery sample from the 23andMe cohort (N = 93, 454 in the earlier sample versus N = 252, 053 in the new

12Marchini, J. et al. Genotype Imputation and Genetic Association Studies of UK Biobank: Interim Data Release. Tech.
Rep. (2015).
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sample), and we expanded Okbay et al.'s meta-analysis of DEP by adding results from a recently published

study of self-diagnosed major depression conducted in a sample composed primarily of 23andMe research

participants[10].

To summarize, our DEP meta-analysis combines summary statistics from three sources: (i) a recent study of

major depressive disorder in a large sample of 23andMe research participants[10] (N = 307, 354 in total, with

75,607 cases), (ii) the SSGAC analysis of major depression in the Genetic Epidemiology Research on Adult

Health and Aging (GERA) cohort13 (N = 56, 368 in total, with 7,231 cases), and (iii) an analysis of an index

of depressive symptoms in the interim release of the UK Biobank (N = 101, 615) that is revised relative to

the previous SSGAC analysis of the same data. Each of these are population-based samples and are therefore

not recruited based on depression status. Details on the phenotypes used in the �nal analysis are shown in

Supplementary Table 3 Panel A.14 Despite the heterogeneity in the measures used, estimates of genetic

overlap derived from linkage disequilibrium (LD) score regression [6] suggest that the genetic overlap between

the measures of depression is high: r̂g = 0.99 (s.e. = 0.19) for 23andMe/GERA, r̂g = 0.73 (s.e. = 0.04) for

23andMe/UKB, and r̂g = 0.94 (s.e. = 0.19) for GERA/UKB.

In our NEUR meta-analysis, we closely follow [8] and meta-analyze association results obtained from a

genome-wide analysis of neuroticism in the UK Biobank (N = 104, 439) with results from the published

GWAS on neuroticism conducted by the Genetics of Personality Consortium (GPC) (N = 63, 666) [11].

The neuroticism measures in each study are described in Supplementary Table 3 Panel B. LD score

regression estimates suggest that the genetic correlation between the GPC and UKB neuroticism measures

is very high: r̂g = 1.12 (s.e. = 0.14).

In our meta-analysis of SWB (N = 388, 542), we use results from the �post hoc� GWAS of SWB reported

by the SSGAC (the main analysis of SWB was based on HapMap2-imputed variants, but the study also

reported results from a �post hoc� meta-analysis conducted in the subset of cohorts with 1000G-imputed

data). Omitting the UKB and 23andMe cohorts from this meta-analysis leaves 21 cohorts with a combined

sample size of 95,886. Adding association results from the UK Biobank based on the revised analysis protocol

(resulting in an addition of N = 40, 603 individuals) and association results from the substantially increased

23andMe sample (N = 93, 454 in the earlier sample versus N = 252, 053 in the new sample) gives a combined

sample size of 388,542 individuals.

To maximize statistical power, the analysis of SWB in [8] included cohorts with association results for

life satisfaction (LS) and cohorts with association results for positive a�ect (PA), two facets of SWB that

are typically distinguished in the literature.15 Following [8], we use association results from analyses of a

combined measure of LS and PA (generally constructed by averaging LS and PA phenotypes) when available,

LS if both LS and PA association results are available in separate �les, and PA otherwise. The phenotype

measures used in our SWB analysis are summarized in Supplementary Table 3 Panel C.

13GERA. Resource for Genetic Epidemiology Research on Adult Health and Aging (2015).
14Note that in [8], the GWAS of DEP included summary statistics from the Psychiatric Genetics Consortium. In this paper,

however, we restricted ourselves only to cohorts that have been imputed to the 1000 Genome Reference panel. As a results,
these data were omitted.

15PA refers to the frequency and intensity of positive emotions and feeling happy. Typical survey questions used to gauge
PA include �During the past week, I was happy?� and �How would you rate your emotional well-being at present?� LS refers to
a longer-term evaluation of one's life. A typical survey question would be �How satis�ed are you with your life as a whole?�.
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3.2.1 Genotyping and Imputation

Details on the genotyping and imputation procedures applied by the cohorts in the SSGAC study have

previously been reported in Supplementary Table 4 of a previously published study [8]. Our new analyses

of UK Biobank and 23andMe, as well as the analysis in [10] of depression in a sample of 23andMe research

participants, were also conducted using the cohort-speci�c �lters listed there.

3.2.2 Association Analyses

In our new analyses of UK Biobank and 23andMe samples, we used the following regression equation for

each SNP:

Y = β0 + β1SNP + PC γ +Bα+X θ + ε,

where Y is an unstandardized outcome variable; SNP is the allele dose of the SNP; PC is a vector of

principal components of the variance-covariance matrix of the genotypic data, estimated after the removal

of genetic outliers; B is a vector of standardized controls, including sex, age and their interactions; and X

is a set of cohort-speci�c controls.

In the new UK Biobank analyses, we control for 15 principal components and indicator variables for all

year-of-birth and sex category combinations. We also control for indicators for the genotype-measurement

batch.

In our new updated analyses of SWB in the 23andMe cohort, we control for ten principal components, sex,

a cubic polynomial of age, and interactions between sex and the age variables. We also control for indicator

variables for the genotyping platform used by 23andMe.

3.2.3 Reference Panel

Our description of our quality control and pruning procedures makes frequent reference to a reference �le,

whose construction we de�ne here (for a detailed account, see Supplementary Note section 1.I in [8]).

Brie�y, our reference �le is constructed by processing publicly available data on CEU (Utah Residents

(CEPH) with Northern and Western European Ancestry), TSI (Toscani in Italia), or GBR (British in

England and Scotland) individuals in two releases (Phase 1 and Phase 3) of data from the 1000 Genomes

Project. The �nal reference sample is restricted to 294 approximately unrelated individuals of European

ancestry (as de�ned above). We impose the restrictions described in [8], giving us a reference �le with

14,680,555 autosomal and biallelic SNPs. In the reference �le, each variant has an rsID that maps to

a unique ChrPosID (a concatenation of a SNP's chromosome number, a colon, and the SNP's base pair

position). We do not include any variants for which, between Phases 1 and 3, the alleles are not consistent

or the base pair coordinates changed.

3.3 Quality-Control Protocol

Our three meta-analyses are based on results �les that have been cleaned using the exact same set of quality-

control �lters and diagnostic checks used in cleaning the �les from cohorts with 1000 Genomes imputed data

in the post hoc meta-analysis of subjective well-being in [8]. In this section, we provide a summary overview
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of these checks and describe how they were implemented in the new results �les not used in the analyses of

[8]. For a detailed account, we refer readers to Supplementary Note 1 in the SSGAC study

3.3.1 SNP-Level Quality Control

Using EasyQC [12], we �ltered out SNPs from each of the uploaded results �les in the following order (see

Supplementary Table 4 for the exact parameter thresholds used in some steps):

Misalignment. In cohorts with genotype data imputed against the September or December 2013 releases of

the 1000 Genomes Phase 1 haplotypes provided by the software IMPUTE2, we dropped the 929 SNPs whose

strands are known to have been incorrectly aligned in these releases.16

Indels and Structural Variants. We dropped a SNP if neither an e�ect nor other allele was supplied, or if

either of them takes values other than �A�, �C�, �G�, or �T�.

Missing from Reference File. We dropped the SNP if its rsID was not available in the reference �le.

Variable Quality. We dropped a SNP if any of the following variables were missing: P value, a coe�cient

estimate (beta) and its standard error, e�ect allele frequency, sample size (N ), or imputation accuracy (for

imputed SNPs). We also dropped SNPs if any of the variables reported for the SNP were outside the

permissible range of the variable (for example, P values greater than 1 or negative standard errors).

Minor Allele Count. We dropped SNPs with minor allele count below 30 (as speci�ed in Supplementary

Table 4).

Imputation Accuracy. We �ltered out SNPs with low imputation accuracy. The de�nition of the imputation

accuracy metric varies by imputation software. If the cohort supplied us with the �Rsq� variable generated by

MaCH [13], we dropped SNPs with Rsq < 0.6. If they uploaded the �INFO� variable generated by IMPUTE

[14], we applied a threshold of 0.7. If PLINK's �info� variable was supplied, we applied a threshold of 0.8.

Hardy-Weinberg Equilibrium. We dropped genotyped SNPs with low Hardy-Weinberg equilibrium (HWE)

P value (see Supplementary Table 4 for exact cuto�s used).

Call Rate. We dropped SNPs with call rate below 95%.

Duplication or Allele Mismatch. If multiple SNPs in a results �le were mapped to an identical ChrPosIDs

in the reference �le, we dropped the SNPs. We also dropped SNPs that could not be successfully aligned

because the reference and other allele in the results �le did not match those in the reference �le.

Supplementary Table 5 shows, separately for every results �le contributing to each our three meta-

analyses, the number of SNPs dropped in each of the �ltering steps. The table also lists the estimated

genomic control factors from each cohort. All cleaned results �les except those from the new analyses of UK

Biobank (DEP, NEUR and SWB) and the 23andMe cohorts (DEP and LS) are identical to those used by the

SSGAC. For previously used �les, the �ltering numbers are identical to those reported in the previous SSGAC

study. For the new cohorts�DEP, NEUR, and SWB in UK Biobank and DEP and SWB in 23andMe�none

of the �ltering steps result in an unusual number of SNPs being dropped. Across cohorts, the estimated

genomic control factors exhibit a strong relationship with sample size, as expected under polygenicity [15].

In small cohorts, the estimated in�ation factors are all close to one.

16730 SNP were corrected in the December 2013 release and 199 were corrected in the June 2014 release. The announcement
is available on https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#whats_new.
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3.3.2 Other Diagnostics

Having processed the data through these �lters, we prepared and inspected several diagnostic plots.

1. Allele Frequency Plots (AF Plots): We looked for errors in allele frequencies and strand orientations

by inspecting a plot of sample allele frequencies against the allele frequency in a European reference

sample.

2. P-Z Plots: We checked that reported P values are consistent with the reported coe�cient estimates

and their standard errors (SE's).

3. Q-Q Plots: We visually inspected the cohort-level Q-Q plots to look for evidence of unaccounted-for

strati�cation.

We also veri�ed that the SE's predicted from the N 's and SD's supplied in the descriptive statistics matched

the SE's in the results �les. [12] proposes a similar diagnostic (the SE-N Plots), which is based on following

approximation to the standard error of a coe�cient estimated by OLS:

SEj ≈
σ̂Y√
N
· 1√

MAFj (1−MAFj)
, (23)

where σ̂Y is the standard deviation of the dependent variable (equal to 1 in cohorts that reported standardized

regression coe�cients), MAFj is the minor allele frequency of SNP j, and N is the sample size. We used

Equation (23) to generate a predicted standard error for the 50K SNP set, and we then plotted these

predicted standard errors against the reported standard errors. We used an analogous equation for cohorts

with binary dependent variables that ran logistic regressions. These plots, which we refer to as 50K plots in

what follows, were used to check for systematic discrepancies between the predicted and reported standard

errors and for outlier SE's.

3.4 Meta-Analyses

All meta-analyses were conducted in the software Metal [16] and are based exclusively on results �les that

have passed the diagnostic tests described in the previous sections. We do not apply cohort-level genomic

control [17] to adjust the standard errors for non-independence. Instead, we meta-analyze the unadjusted

cohort-level summary statistics, and we subsequently in�ate the standard errors from the meta-analysis by

the square root of the estimated intercept from an LD score regression [1].

In the meta-analysis of depression, we weight the UKB results (of a continuous index of depressive symptoms)

by the size of the estimation sample. We weight the two case-control studies by e�ective sample size, de�ned

as

Ne� =
4

N−1cases +N−1controls

, (24)

as recommended by [16].

In our meta-analysis of neuroticism in UK Biobank and GPC, we elected against sample-size weighting. The

reason is that even though the genetic correlation between UK Biobank and GPC is very high, the SNP-

based heritability in GPC is substantially lower. Under such conditions, sample-size weighting is ine�cient.
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Intuitively, that is because association results from a sample with a noisier phenotype measure are less

informative, implying that it is appropriate to weight GPC results less than proportionately to their sample

size.

To generate the optimal weights, we proceeded in two steps. We �rst used a standard approximation to

calculate the estimated e�ect (and associated standard error) of an additional copy of the reference allele on

the dependent variable measured in standard-deviation units. The approximation is:

β̂j ≈ zj
1√

2NjMAFj (1−MAFj)
. (25)

In the second step, we transformed the standardized coe�cients and SE's of [11] (but not the UKB) by the

factor
√
h2UKB/h

2
GPC ≈

√
0.131/0.035 = 1.93. The resulting coe�cients and SE's (transformed in GPC and

untransformed in UKB) were then meta-analyzed using inverse-variance weighting. It can be shown that

this weighting scheme is equivalent to the MTAG estimator for the special case where the samples do not

overlap, the traits are perfectly correlated genetically, and the two traits have di�erent heritabilities.

3.5 Results

The QQ plots from the three analyses are shown in Supplementary Figures 4a, b, and c. All show

strong evidence of in�ation: λGC = 1.36 for DEP, λGC = 1.24 for NEUR, and λGC = 1.28 for SWB.

The estimated LD score regression intercepts are 1.013 (DEP), 0.990 (NEUR) and 1.016 (SWB), suggesting

that nearly all of the observed in�ation is due to polygenicity; see Supplementary Figures 5a, b, and c

and Supplementary Table 6. Bivariate LD score estimates of genetic correlation and bivariate LD score

intercept estimates can be found in Supplementary Tables 7 and 8, respectively.

Supplementary Table 9 reports the set of approximately independent SNPs that reached nominal signif-

icance (P < 10−5) in each of our three meta-analyses. To de�ne independent loci, we used the following

algorithm (the same as that described in the Online Methods). First, the SNP with the smallest P value is

identi�ed in the pooled meta-analysis results. This SNP is the lead SNP of clump 1. Second, we identi�ed all

SNPs on that chromosome whose LD with the lead SNP exceeds R2 = 0.1 and assigned them to the clump.

We calculate LD using the reference �le whose construction was described in section 3.2.3. To generate

the second clump, the SNP with lowest P value among the SNPs that remain after removal of clump 1 is

identi�ed, and the same steps are applied to identify the set of SNPs comprising clump 2. The process is

repeated until no SNPs remain with P values below 10−5 (or whatever is the desired P value threshold).

Supplementary Table 9 reports the number of loci identi�ed in our genome-wide analyses at a P value

threshold of 5× 10−8 (�lead SNPs�). Our pruning algorithm yields 32 lead SNPs in the DEP meta-analysis

(248 SNPs at P < 10−5), 12 lead SNPs in the NEUR meta-analysis (165 SNPs at P < 10−5), and 13 lead

SNPs in the SWB meta-analysis (165 SNPs at P < 10−5). Since 3 of the lead SNPs in the NEUR GWAS

are located in the inversion region identi�ed by [8], we collapse them into a single locus, giving us a total of

10 lead SNPs. (Note that when we estimate MTAG,we drop all SNPs in the inversion region. As a result,

when we compare the number of hits between the GWAS and MTAG results, we only report 9 lead SNPs in

the GWAS of NEUR.) Since our NEUR meta-analysis is very similar to the SSGAC study, it is unsurprising

that the �ndings are nearly identical to those reported in the SSGAC GWAS (10 lead SNPs in our analyses,

all of which reached genome-wide signi�cance in the previous study).
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Our meta-analyses of DEP and NEUR are based on substantially larger discovery samples than previously

published GWAS of these traits [8, 10, 18, 19]. Consistent with what has been found for other complex

traits as discovery samples have increased [20], the number of genetic associations identi�ed at genome-wide

signi�cance in our analyses is larger than in previous studies. In our DEP meta-analyses, we identify 32 lead

SNPs (Ne� = 354, 862), compared to 4 in the discovery-stage analysis of [10] (Ne� = 228, 032). In our SWB

meta-analysis, increasing the sample size from N = 229, 883 to N = 388, 538 increases the number of lead

SNPs from 2 to 13.

Manhattan plots with each of the approximately independent genome-wide signi�cant hits colored in yellow

are shown in Supplementary Figures 6a, b, and c.
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4 MTAG Analysis of DEP, NEUR and SWB

4.1 Analyses

Using the procedures in Online Methods, we applied MTAG to the three sets of summary statistics from

the single-trait GWASs described in section 3 and Fig. 3. See Panels A in Supplementary Tables 10-13

for details on our main MTAG analyses, which were restricted to a set of ∼ 6M SNPs that passed MTAG

SNP �lters in each of the single-trait GWASs (panels B-D contain analogous results for MTAG analyses used

in the validation replication analyses summarized in sections 5 and 6).

4.2 Results

We applied our clumping algorithm (Online Methods) to each set of MTAG association statistics, using

a P value threshold of 10−5. Q-Q plots comparing the GWAS and MTAG results for each trait are in

Supplementary Figure 7. The association results are shown in Supplementary Table 14, with the set

of approximately independent genome-wide signi�cant loci marked in boldface.

To probe the robustness of the single-SNP �ndings, we used the procedures in section 1.4.3 to calculate the

maxFDR of each trait. In these calculations, we assumed that at least 10% of SNPs are non-null for each

of the three traits (a much lower degree of polygenicity than is implied by the results in Online Methods,

where we report maximum-likelihood estimates above 50% for all three traits). Procedurally, we used a

grid-search procedure that evaluated every feasible vector of mixing probabilities p in 0.1 unit increments.

We found that in our application the maxFDR bound is very low for all three traits: 0.0014 for DEP, 0.0080

for NEUR, and 0.0044 for SWB. For all three traits, the FDR is maximized at

p =



pFFF

pFFT

pFTF

pFTT

pTFF

pTFT

pTTF

pTTT


=



0

0

0

0.2

0

0.2

0.2

0.4


.
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5 Replication of MTAG-Identi�ed Loci

Following procedures described in Online Methods, we sought to replicate the loci identi�ed at genome-

wide signi�cance in our empirical application of MTAG to DEP, NEUR, and SWB summary statistics.

Below, we provide details regarding these replication analyses.

5.1 MTAG-identi�ed Loci Included in Replication Analysis

Our replication analyses were conducted in two samples: the Health and Retirement Study (HRS, [21])

and the National Longitudinal Study of Adolescent to Adult Health (Add Health).17 Because the HRS was

included in the main analysis of section 3we reran the main MTAG analysis omitting HRS. Panels B of

Supplementary Tables 10-13 contain some summary information about this auxiliary MTAG analysis.

5.2 Phenotype Measures

5.2.1 HRS

The HRS contains high-quality measures of subjective well-being (SWB), depressive symptoms (DEP), and

neuroticism (NEUR). We constructed the �nal phenotypes analyzed in our prediction analyses using data

from the survey waves of 2006, 2008, 2010 and 2012. If a phenotype was not always measured consistently

across waves (e.g., using the same psychometric measurement scale), we used the measurement scale available

in the largest number of waves.

DEP. In the 2006, 2008, 2010 and 2012 waves, the HRS administered a mental health screening battery

known as the World Health Organization Composite International Diagnostic Interview Short Form (CIDI-

SF) scale [22] to a subset of respondents. The CIDI-SF begins with three screening questions designed

to identify participants who are statistically more likely to satisfy diagnostic criteria for major depression.

Respondents selected for additional surveying based on their responses to the screening questions are asked

seven more follow-up questions about speci�c symptoms.

Responses to these seven follow-up questions can be mapped to a summary score equal to the number

of symptoms that a respondent endorses. Sometimes, researchers use a cuto� of the summary score to

determine whether or not a respondent meets clinical requirements for major depression. Rather than

pursue this strategy, we instead use the methodology introduced by Nelson (1998)18 to assign a probability

of �caseness� to each subject based on their pro�le of symptoms. Conceptually, the probability is an estimate

of the probability that the respondent would be categorized as having the disorder if they were administered

the full CIDI. Respondents who, on the basis of their responses to the screening questions, are not selected for

follow-up questions are assigned a probability of zero. Our �nal measure of DEP is calculated by averaging

17We had special permission to use the latest release of the Add Health data, which at the time we ran the analyses in this
paper was in a �Freeze 1� hold. In Freeze 1, 7,598 individuals were genotyped using the Illumina Human Omni 1 chip, and
2,098 individuals were genotyped on the Illumina Human Omni 2.5 chip. Because nearly 85% of subjects genotyped using the
Omni 2.5 chip were of non-European ancestry, we excluded individuals on this chip both to reduce bias introduced by batch
e�ects and to avoid an unnecessary loss of SNPs when taking the intersection of SNPs common to both chips. (Harris, K. M.
The Add Health Study : Design and Accomplishments. Chapel Hill: Carolina Population Center, University of North Carolina
at Chapel Hill 122 (2013).)

18Nelson, C. B., Kessler, R. C. & Mroczek, D. Scoring the World Health Organization's Composite International Diagnostic
Interview Short Form (CIDI-SF; v1.0 NOV98) (1998).

43 
 

  



the subject's inferred probability of depression from all waves with non-missing data. This phenotype is

available for N = 8, 307 subjects.

NEUR. Personality was measured in the four waves between 2006 and 2012 using the Midlife Development

Inventory personality scales [23]. An individual's neuroticism score in a wave is calculated from their level of

agreement with four claims about themselves (�Moody,� �Worrying,� �Nervous,� and �Calm�). For each claim,

the respondent is asked to choose one of our response categories, ranging from �A lot� to �Not at all.� We

use the numerical coding in the HRS variable documentation [24] to map the four categorical responses into

a single neuroticism score. We set the variable to missing whenever at least one of the four items is missing.

Our �nal measure of NEUR is de�ned as the average neuroticism score across waves with non-missing data.

The �nal NEUR variable is available for N = 8, 197 subjects.

SWB. We obtain the SWB phenotype by combining measures of life satisfaction (LS) and positive a�ect (PA).

The HRS does not contain a measure of PA that was consistently administered across all four waves between

2006 and 2012. In 2008, 2010 and 2012, however, PA and LS were measured consistently, and we therefore

construct our SWB variable using data from these three waves. Our PA variable is derived from responses

to thirteen items, eleven of which are from the Positive and Negative A�ect Schedule�Expanded Form

(PANAS-X; [25]). The remaining two are from other studies [26, 27]. LS was measured using the Satisfaction

with Life Scale [28], which asks respondents to indicate their level of agreement with �ve statements (e.g.,

�In most ways my life is close to ideal�).

We construct our wave-level measure of LS by mapping the subject's response to each LS item to a numerical

value as described in the HRS manual. The wave-level measure of LS is constructed by averaging the scores

across the �ve items [29]. We similarly construct our wave-level measure of PA by mapping responses to

the 13 PA items to numerical values and averaging the numerical values across the items. In each wave, we

create a SWB score by standardizing the LS and PA measures and taking a simple average of them. Our

�nal SWB variable is the mean SWB score across waves with non-missing data. This �nal SWB phenotype

is available for N = 6, 857 subjects.

5.2.2 Add Health

Add Health also contains comparable measures of DEP, NEUR, and SWB, this time measured in a nationally-

representative group of US adolescents and young adults. We constructed the �nal phenotypes analyzed in

our prediction analyses using data from questions asked in survey Waves III and IV, which were conducted

in 2001-2002 and 2008, respectively.

DEP. In Wave IV, Add Health created a constructed variable made up of questions related to depressive

symptoms. This variable is an additive, shortened version of the CES-D scale, which is a self-report scale

designed to measure depressive symptomatology in the general population [30]. Using the question prompt

�How often was the following true during the past seven days?� respondents were asked to report on: (1)

being bothered by things that usually don't bother them; (2) feeling unable to �shake o� the blues�, even

with help from family and friends; (3) having trouble keeping their minds on what they were doing; (4)

feeling depressed; and (5) feeling sad. Response options for each of the �ve questions included �never or

rarely�, �sometimes�, �a lot of the time�, and �most of the time or all of the time�, and were coded 0, 1, 2,

and 3, respectively. The �nal measure of DEP was obtained by adding responses for these �ve questions,

giving a total range of 0-15 for N = 4, 334 subjects.
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NEUR. Also in Wave IV, Add Health created a constructed variable, this time made up of questions related

to neuroticism. This variable is an additive, shortened version of the Mini-International Personality Item

Pool (Mini-IPIP; [31]), which is itself a shortened version of the full International Personality Item Pool

developed by Goldberg et al. ([32]) to measure the Big Five personality traits. Using the question prompt

�How much do you agree with each statement about you as you generally are now, not as you wish to be

in the future?� respondents were asked to report on: (1) having frequent mood swings; (2) being relaxed

most of the time; (3) getting upset easily; and (4) seldom feeling blue. Response options for each of the four

questions included �strongly agree�, �agree�, �neither agree nor disagree�, �disagree�, and �strongly disagree�,

and were coded 1, 2, 3, 4, and 5, respectively. Add Health reverse coded the �rst three questions, and the

�nal measure of NEUR was obtained by adding responses for these four questions, giving a total range of

4-20 for N = 4, 332 subjects.

SWB. In Add Health, the SWB phenotype is a measure of life satisfaction (LS), assessed in Wave III.

Respondents were asked �How satis�ed are you with your life as a whole?� Response options included �very

satis�ed�, �satis�ed�, �neither satis�ed nor dissatis�ed�, �dissatis�ed�, and �very dissatis�ed�, and were coded

1, 2, 3, 4, and 5, respectively. To obtain the �nal measure of SWB, we reverse coded this variable, giving a

total range of 1-5 for N = 3, 673 subjects.

5.3 Winner's Curse Correction

MTAG estimates are corrected for winner's curse following procedures previously described [8]. Brie�y, for

each trait, we use maximum likelihood to �t the MTAG results to a (univariate) spike-and-slab distribution

such that

βj ∼

0 with probability π

N
(
0, τ2

)
otherwise.

For DEP, NEUR, and SWB, we estimate π̂to be 0.598, 0.652, and 0.633 and τ̂2 to be 3.12×10−6, 5.05×10−6,

and 2.15 × 10−6, respectively. We then use these estimates as the parameters of the prior distribution and

calculate the posterior distribution of the e�ect size βj given the estimate β̂MTAG,j for each SNP as

β̂adj,j = (1− πpost,j)
τ̂2

τ̂2 + ŝ2j
β̂MTAG,j ,

where πpost,j is the posterior probability that βj = 0 and ŝ2j is the squared standard error of the MTAG

estimate.

5.4 Results

Supplementary Table 15 reports the bivariate LD score regression intercept estimates for each discovery

and replication cohort. In each case, the intercept is insigni�cant with a standard error of approximately

0.005 (with all point estimates smaller than 0.007 in absolute value), consistent with there being no overlap

(or minimal overlap) between any discovery and replication cohort. By the properties of LD score regression,

the intercept for a pair of GWAS summary statistics for the same trait is equal to Ns√
N1N2

, where Ns is the

overlapping sample size, N1 is the sample size of the �rst GWAS and N2 is the sample size of the second. So

for each trait, substituting the sample size of the discovery and replication GWAS, this intercept test would
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be signi�cant if it implied that more than 5.2%, 3.7%, or 6.1% of the replication sample were found in the

cohorts used in the discovery sample for DEP, NEUR, and SWB, respectively. We therefore believe that

what follows may be interpreted as out-of-sample predictive power.

Using procedures described above, we calculated winner's-curse-adjusted estimates of the e�ect size of each

lead SNP in an MTAG analysis (with the HRS omitted). Then, in each validation cohort and for each

trait, for the set of lead SNPs, we regressed the e�ect sizes estimated in the validation cohort on the MTAG

winner's-curse-adjusted e�ect sizes. In these regressions, we constrain the intercept to equal zero. The

estimated slope coe�cients are shown in Supplementary Table 16. The table separately reports the

results for Add Health, HRS, and a sample-size weighted average of the two estimates. Fig. 5 plots the

pooled estimates. If the loci replicate successfully, then we expect to see a slope of one. In all cases, we

cannot reject the null hypothesis that the slope is one (and we strongly reject the null hypothesis that the

slope is zero), indicating that the lead SNPs taken as a whole replicate well for each trait.

46 
 

  



6 Prediction

6.1 Introduction

This section provides additional details on the prediction analyses described in Online Methods. A ma-

jor goal of our prediction analyses was to compare the predictive power of MTAG-based polygenic scores

(PGSs), relative to conventional GWAS PGSs, to the theoretically expected gains (Online Methods). A

secondary goal was to examine whether, in the context of our application, MTAG PGSs based on trait-

speci�c association statistics (e.g., using MTAG association statistics for DEP to predict DEP) have greater

predictive power than PGSs based on trait-speci�c associations for one of the other traits (e.g., using the

MTAG association statistics for either NEUR or SWB to predict DEP). Below, we provide additional details

on the analyses that underlie the results reported in the main text. We also describe the results from some

additional robustness analyses.

6.2 SNP Selection for Polygenic-Score Construction

All comparisons of predictive power reported in this section and in the main text are based on PGSs con-

structed using an identical set of SNPs (but weighted using either GWAS-based or MTAG-based association

statistics). Our main analyses are based on a subset of HapMap3 SNPs selected according to procedures

described in Online Methods. See Panel C of Supplementary Tables 10-13 for additional information

about the process by which we arrived at the �nal list of SNPs. As in our replication analyses, the PGSs

are constructed using weights from analyses that omit HRS from the discovery-stage analysis.

To probe robustness, we also analyzed PGSs based on a subset of the HapMap3 SNPs selected using an

algorithm that ensures the �nal SNP list does not contain any two SNPs whose pairwise linkage disequilibrium

exceeds R2 = 1. Procedurally, we selected these SNPs using Plink's pruning algorithm [33]. We used the

reference �le described in section 3.2.3 to estimate linkage disequilibrium. In our application, the algorithm

leaves 54,238 SNPs (see Panel D in Supplementary Tables 10-13 for further details).

6.3 Phenotypes

Our prediction analyses are based on phenotypes de�ned using exactly as in our replication analyses in

section 5.2.

6.4 Results

6.4.1 GWAS vs MTAG Polygenic Scores

Supplementary Tables 17 and 18 summarize the �ndings from our analyses of the predictive power of

MTAG and GWAS PGSs based, respectively, on the full and pruned sets of HapMap3 SNPs (see Online

Methods and the table captions for additional details). We report both cohort-level estimates and a

combined estimate calculated by sample-size weighting the two cohort-level estimates. The numbers reported

in Supplementary Table 17 are the data underlying Figs. 6a and 6b. Fig. 6c compares the observed

MTAG gains (relative to GWAS) to the theoretically predicted ones.
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For DEP and SWB, the observed gains in predictive power are very close to the theoretical projections

(Online Methods). For NEUR, the observed gain is smaller than predicted, but not signi�cantly so. The

theoretical projections are based on several simplifying assumptions, one of which is that the heritability of

each trait is the same in the discovery and validation samples. In practice, this assumption is unlikely to

hold exactly for NEUR, which is measured with a 4-item battery in our two validation cohorts and a 12-item

battery in the UKB discovery sample (which makes up the bulk of the NEUR GWAS). The coarser measure of

NEUR in the validation samples is likely to have lower re-test reliability and therefore also lower heritability.

To quantify this potential bias, we constructed a 4-item measure of NEUR in UKB and calculated its re-test

reliability. We selected the four items most similar to those included in the validation sample batteries. We

found that the re-test reliability of the 12-item score is 0.822, compared to 0.734 for the 4-item score. A

post hoc modi�cation of the theoretical framework that assumes the NEUR measures used in our validation

samples have 11% lower re-test reliability leads to a predicted gain that is very close to what we observe

empirically.

6.4.2 Trait-Speci�c Association Statistics

Supplementary Table 19 reports estimates of the predictive power of MTAG PGSs based on either own-

trait association statistics (e.g., MTAG-DEP weights are used to construct the PGS when the dependent

variable is DEP) or other-trait association statistics (e.g., MTAG-NEUR or MTAG-SWB weights are used

to construct the PGS). The results for the full set of HapMap3 SNPs are reported in Supplementary

Table 19. Despite the very high genetic correlation between the traits considered in our application, own-

trait PGSs always do better than either of the other-trait PGSs. When we meta-analyze the two cohort-level

estimates, the increase is statistically signi�cant in �ve out of six cases; the exception is that we cannot reject

the null that the MTAG-SWB and MTAG-NEUR PGSs are equally predictive of NEUR. These results are

displayed in Figs. 6c and 6d.

Based on our theoretical and empirical results, it is tempting to interpret the PGS for a trait based on

MTAG summary statistics as uncontaminated by the traits with which it was analyzed. And indeed,

if the homogeneous-Ω assumption holds, such an interpretation would be appropriate. However, if the

homogeneous-Ω assumption is violated, then the resulting biases in the MTAG e�ect estimates can in�uence

the interpretation of the PGS. Suppose, for example, that an investigator applies MTAG to GWAS summary

statistics for two traits, A and B and would like to use the PGS for trait A to predict trait C is some other

sample. Suppose�in violation of the homogeneous-Ω assumption for the traits A and B being analyzed by

MTAG�that there are a set of SNPs that are null for trait A but not for traits B and C. Then even if traits

A and C are genetically uncorrelated, the PGS for trait A will in general be associated with trait C due

to the bias in the MTAG e�ect-size estimates for those SNPs that are truly null for trait A. However, we

conjecture that the biases in a trait's PGS become small when the GWAS for the trait is either well powered

or comparably powered to the GWASs for the other traits in the MTAG analysis (just as the FDR is low in

these cases).

6.4.3 MTAG vs. Naïve Meta-Analysis

The analyses in section 6.4.1 benchmarked the predictive power of MTAG-based PGSs against PGSs con-

structed using weights from a single-trait GWAS. In many realistic empirical settings, we believe the GWAS
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benchmark is the most relevant one. Here we performed additional comparisons against alternative bench-

marks that shed light on which features of MTAG are driving its gains relative to the GWAS-based PGSs.

To motivate the additional analyses, note that relative to simply meta-analyzing the various GWAS results

together, MTAG di�ers by (i) adjusting for sample overlap and (ii) leveraging information about correlation

in the SNPs' e�ects to optimally weight the GWAS results from di�erent traits. Our primary goal in this

section is to examine quantitatively the importance of each channel in the context of our speci�c application

of MTAG to the three well-being phenotypes.

In some settings, it may be straightforward to conduct a meta-analysis of GWAS results from di�erent

phenotypes with weights derived under the simplifying assumption that rβ = 1. If the true rβ 's are close to

one, then a predictor based on such weights may perform comparably to an MTAG predictor. The analyses

we report here thus serve the auxiliary purpose of allowing us to explore this conjecture.

As a preliminary, we reran our three single�trait GWAS meta-analyses in a set of non-overlapping cohorts.

We �stacked the deck� against MTAG by retaining cohort-level summary statistics for the trait with higher

SNP heritability whenever a cohort contributed to more than one of the single-trait GWASs. Applying this

criterion left us with three GWAS meta-analyses.

1. DEP (N = 354,862; Neff = 253, 247 ) [Omitted cohort: UKB]

2. NEUR (N = 104,439 ) [Omitted cohort: GPC]

3. SWB (N = 85,944 ) [Omitted cohorts: UKB, 23andMe, HRS (which is omitted anyway due to being

a validation cohort)]

Below, we refer to these as our �restricted� meta-analyses. We refer to the original meta-analyses as our

�unrestricted� meta-analyses. As before, our two validation cohorts, HRS and Add Health, are excluded from

all of the restricted and unrestricted meta-analyses to ensure that the prediction analyses are conducted in

cohorts whose overlap with the discovery cohorts is minimal.

We subsequently compared the results of four MTAG analyses:

1. No Overlap (rβ = 1)

2. No Overlap (rβ = r̂β)

3. Overlap (rβ = 1)

4. Overlap (rβ = r̂β)

Analyses (1) and (2) are conducted using the restricted meta-analyses. Since (by construction) there is no

known overlap between the cohorts included in the three underlying meta-analyses, we label these our �No

Overlap� analyses. Analyses (3) and (4) are instead conducted using the unrestricted single-trait GWASs,

which are conducted in overlapping samples.

In our �rβ = 1� analyses, we �x all pairwise genetic correlations to equal one; that is, we �x the o�-diagonal

terms in the Ω̂ matrix such that the correlation of e�ect sizes between pairs of traits is one (i.e., the covariance

between a pair of traits u and v, ωuv, is set equal to
√
ωuuωvv). However, we do not impose the restriction
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that all traits have identical heritabilities. (Imposing that restriction would yield greater MTAG gains than

those reported below.) In our �rβ = r̂β� analyses, we instead treat all elements of Ω̂ as free parameters

that are estimated, as is the default for MTAG. Analysis (4) is simply our standard MTAG analysis. In our

�No Overlap� analyses, we use the restricted meta-analyses and restrict the o�-diagonal entries of the Σ̂j

matrix to equal zero for all SNPs. �Overlap� analyses were conducted on the full data with no restrictions

on Σ̂j . With the exception of the restrictions on Ω̂ and Σ̂j listed above, MTAG analyses (1) through (3)

were conducted following procedures identical to those in our full MTAG analyses.

As we explain below, di�erences between the results of these four MTAG analyses are informative about

what factors generate MTAG gains in our speci�c application (and whether a naïve rβ = 1 analysis performs

comparably to a full-�edged MTAG analysis in terms of prediction accuracy). To illustrate the logic, suppose

that the predictive power of an MTAG-generated PGS based on the �Overlap (rβ = 1)� analysis was found

to be near-identical to that of an MTAG-generated PGS constructed with weights from the �No Overlap

(rβ = 1)� analysis. Suppose further that MTAG-generated PGSs from the remaining two analyses��No

Overlap (rβ = r̂β)� and �Overlap (rβ = r̂β)��were also found to have similar predictive power to each

other. Under these conditions, the appropriate inference would be that most of the observed MTAG gains

are driven by channel (ii) and that the return to exploiting information about sample overlap is minimal.

Of course, the relative importance of the two channels will vary across applications.

In our empirical application, we generated PGSs using the output from each of the four MTAG analyses.

For MTAG analyses with rβ = 1, all weights are the same, and we generated a single PGS. For analyses

with rβ = r̂β , we generate three PGSs: one based on each set of trait-speci�c association statistics. To

maximize comparability, each PGS was based on an identical set of SNPs, de�ned as the intersection of

HapMap3 SNPs and the set of SNPs passing recommended MTAG �lters in each unrestricted and restricted

meta-analysis. In total, there were 1,015,895 SNPs satisfying these conditions. We subsequently compared

the predictive power of the four PGSs.

The results are summarized in Supplementary Tables 20. As in our main prediction analyses, we report

the incremental R2's of each PGS when it is added to a speci�cation with baseline controls of age, sex,

their interactions, and 10 principal components. Each reported R2 is calculated as the sample-size weighted

average in the two validation cohorts. We obtain 95% con�dence intervals using the bootstrap with 1,000

iterations. For each trait, the gains from using the estimated rβ are always small relative to the apparent

gains of allowing sample overlap. This �nding is not surprising given the high pairwise genetic correlations

between the traits in our application.

Nevertheless, MTAG PGSs from analyses with rβ = r̂β are typically more predictive than analogous MTAG

analyses with rβ = 1. Supplementary Figure 8a compares the predictive power of PGSs based on each of

the four MTAG analyses. In �ve out of six cases, the rβ = r̂β PGSs perform better than rβ = 1 PGSs, holding

constant the set of cohorts included in the underlying single-trait GWASs used as input. Supplementary

Figure 8b shows the di�erences in the predictive power of the PGSs rather than absolute level of predictive

power. Overall, the results suggest that in our application, most observed MTAG gains appear to be come

from the estimator's ability to accommodate summary statistics from (larger but) overlapping samples.

50 
 

  



6.5 Concluding Discussion

We draw two main conclusions from the results reported in this section. First, the observed gains in prediction

accuracy are consistent with our theoretical expectation based on the observed increase in the mean χ2-

statistic for each trait. Second, most MTAG gains observed in our speci�c application are explained by

MTAG's ability to e�ciently incorporate summary statistics from overlapping samples. Nevertheless, despite

the very high pairwise genetic correlations in our speci�c application, the trait-speci�c association statistics

are informative and contribute modestly to improving prediction accuracy.
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7 Biological Annotation

7.1 Background

We used the bioinformatics tool DEPICT [34] (downloaded February 2016) to prioritize likely causal genes

within loci de�ned by lead SNPs, to detect enrichment of gene sets (e.g., pathways), and to pinpoint the

tissues of action. To determine the extent of additional biological information a�orded by MTAG, we applied

DEPICT twice to each trait, using as inputs both the single-trait GWAS results and the corresponding MTAG

results. In both cases, we applied the default DEPICT P value threshold, 10−5, for including SNPs. We

identify the prioritized genes, enriched gene sets, and enriched tissues at the false discovery rate (FDR)

threshold of 5%.

A gene is missing from the DEPICT inventory if it lacks high-quality A�ymetrix expression data in the Gene

Expression Omnibus. To obtain some coverage of these genes, we added any non-DEPICT protein-coding

gene with a status of 'known' in GENCODE (downloaded February 26, 2015) to our results if it either

encompasses one of the lead SNPs in a DEPICT-de�ned locus or has the transcription start site closest to

such a SNP.

7.2 Results

The complete set of �ndings for each trait can be found in Supplementary Tables 21 to 29. Re-

sults based on MTAG coe�cients are substantially more informative than results based on GWAS coef-

�cients�identifying more prioritized genes, enriched gene sets, and enriched tissues�as summarized in

Table 1, Fig. 7, and Supplementary Figures 9 and 10.

Some of this improved signal may be a result of using many more SNPs in the MTAG analyses, since many

more SNPs pass the P value threshold of 10−5. To verify that our results are not driven by this e�ect,

for each trait, we �nd the P value threshold such that there are an equal number of clumped SNPs in the

GWAS results below the threshold as there are clumped SNPs below the P value threshold of 10−5 in the

MTAG results. We then run DEPICT on the GWAS results using the relaxed threshold corresponding to

each trait. We �nd that even by this procedure, we still see an increase in signal of the MTAG-based results

over the constant-number-of-SNPs GWAS results for DEP and SWB. For NEUR, the MTAG results �nd

nearly identical amounts of enrichment to the GWAS results with a relaxed P value. This comparison can

be found in Supplementary Table 30.

Because the DEPICT results from the three traits are overlapping (and correlated with each other), we focus

our discussion on the results for just one of the traits, DEP. Although we identify 347 enriched gene sets for

DEP, many of the signi�cantly enriched gene sets are highly correlated and thus do not represent independent

biology. To facilitate the interpretation of the gene-set results, we applied the A�nity Propagation Algorithm

[35] to segregate the gene sets into clusters. The algorithm names each cluster after an exemplary member.

The input to the algorithm consists of the correlations between gene sets. We include in the gene sets only

those genes prioritized by DEPICT (i.e., genes with FDR < 0.05). These results can be found in Fig. 7b.

Genes whose products are involved in synaptic signaling between neurons are strongly over-represented in

our results, as can be seen in many of the clusters: 'synapse,' 'synapse assembly,' 'regulation of synaptic

transmission,' and 'regulation of postsynaptic membrane potential' (Fig 7b). The genes PCLO (piccolo),
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BSN (bassoon), and SNAP25 encode components of the presynaptic matrix that docks neurotransmitter-

loaded vesicles close to voltage-gated calcium channels and to the release machinery [36]. The subunit of the

voltage-gated calcium channel encoded by CACNA1E can trigger the release of neurotransmitter, although

its role is still not well understood [37, 38]. Once the neurotransmitter glutamate is released into the synaptic

cleft, it may bind to a variety of ionotropic and metabotropic receptors that are also encoded by prioritized

genes (GRIA1, GRIK3, GRM1, GRM5, GRM8 ). Whereas GRIA1 is a subunit of an AMPA-type receptor

responsible for the immediate response of the postsynaptic neuron to arriving input, the other receptors

a�ect the release rates and spiking dynamics of pre- and postsynaptic neurons on a longer timescale. This

longer timescale may suggest the importance of learning mechanisms in some of the genetic factors underlying

DEP. That hypothesis is reinforced by some of the enriched gene set results, which are de�ned by altered

reactions to stress and novelty in mice: 'decreased exploration in a new environment,' 'abnormal contextual

conditioning behavior,' 'increased anxiety-related response,' and 'behavioral fear response' (Supplementary

Table 22).

7.3 Relationship to Earlier Work

It is interesting that our results implicate glutamate-based transmission so prominently (e.g., the gene

set 'extracellular-glutamate-gated ion channel activity'), since hypotheses regarding major depression and

related traits have tended to focus on modulatory monoamine transmitters [39, 40]. We do identify one gene

encoding a subtype of the dopamine receptor, DRD2, which previous studies have linked to the genetically

correlated trait of schizophrenia [41].

A small study found lower levels of the receptor GRM5 in the brains of patients diagnosed with major

depression [42]. At least three of our other DEPICT-prioritized genes�SLCA6A15 [43, 10], NEGR1 [10],

and SORCS3 [10]�have also been implicated in previous genetic studies of major depression, although our

data overlaps that of [10].
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8 Comparison to Other Multi-trait Methods

8.1 Introduction

This section compares MTAG to several other multi-trait methods. We limit the comparison to methods

that can be applied in the speci�c setting for which MTAG was developed: the only available inputs are

summary statistics from an arbitrary number of genome-wide analyses conducted in samples with unknown

overlap. We identi�ed three methods satisfying these criteria: a multi-trait method proposed by Bolormaa

et al. [44] and the two CPASSOC (�cross-phenotype association by using summary statistic�) methods, SHom

and SHet, proposed by Zhu et al. [45]. In what follows, we refer to the three methods as Bolormaa, SHom

and SHet.

MTAG produces trait-speci�c e�ect estimates for each SNP, whereas the alternative methods all test the

joint null hypothesis that a SNP is not associated with any of the traits. Thus, in settings where the

purpose of the multi-trait analysis is to test for association between a SNP and a single trait or to improve

the prediction accuracy of a polygenic score, the alternative methods are not readily applicable. In such

settings, a more natural benchmark for the MTAG results are the single-trait GWASs in section 3. For

comparability with the other multi-trait methods, all comparative analyses reported here focus on testing

the joint null hypothesis that a SNP is not associated with any of the traits.

The section is organized as follows. We begin in section 8.2 with a summary overview of the three methods,

highlighting some key distinguishing theoretical features of each estimator. An important upshot from this

discussion is that, unlike the other methods, MTAG distinguishes between the genetic and estimation-error

sources of correlation between test statistics from the single-trait GWASs. Failure to draw this distinction

can cause the other estimators to lose power relative to MTAG. section 8.3 corroborates this prediction in

simulated data.

In section 8.2, we compare MTAG to the other estimators using summary statistics from published GWAS

results. In our �rst such empirical application, we performed Bolormaa, SHom, and SHet analyses on sum-

mary statistics from the three single-trait GWASs (DEP, NEUR, and SWB) described in section 8.3 and

contrasted the results to those produced by MTAG. In our second application, we applied MTAG and each

of the three alternative methods to summary statistics from sex-strati�ed genome-wide analyses of height,

body mass index (BMI), and waste-to-hip-ratio adjusted for BMI (WHRadjBMI) conducted by the GIANT

consortium[46]. In both the application to SSGAC and GIANT summary statistics, we found that MTAG

compares favorably to the other methods in terms of the number of loci identi�ed.

8.2 Theoretical Discussion

8.2.1 Bolormaa's Approach

Bolormaa et al. [44] motivate their method with a modi�ed version of what they ultimately propose. In this

modi�ed version, for each SNP, they consider calculating t′D−1t, where t is the length-T vector of GWAS

z -statistics (one per trait) andD is the variance-covariance matrix of these test statistics across traits, which

equals D = Ω + Σj in our notation. D is assumed to be homogeneous across SNPs, which is analogous to

the MTAG assumption that Ω is homogeneous across SNPs (formally, it would follow from both Ω and Σj
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being homogeneous). The null hypothesis is that the SNP has no genetic e�ect on any of the traits, i.e.,

Ω = 0. Under that null hypothesis, t′D−1t is asymptotically distributed χ2 with T degrees of freedom. In

the derivation of this hypothesis test, there is no need to distinguish between Ω and Σj because under the

null hypothesis, D = Σj only.

However, in order to apply this method, D would need to be estimated. If the observed variance-covariance

matrix of the GWAS test statistics is used, however, then D̂ is an estimate of Ω + Σj . Consequently, under

the alternative hypothesis that Ω > 0, the hypothesis test based on t′D̂
−1
t would be too conservative. This

can be seen most straightforwardly in the case of a single trait, where the test statistic is simply t2/d. Here d

should equal the scalar 1, which is the variance of the z -statistic under the null hypothesis of no association.

However, it is instead estimated to be the observed variance of the z -statistics across SNPs, d̂. If the null

is false�i.e., there is true genetic signal�then d̂ > 1, and the test statistic t2/d̂ will always be smaller

than the correct test statistic, t2. Thus, in the case of a single trait, the test statistic is biased downward

and hence the test is too conservative.19 (This is analogous to applying genomic control to adjust GWAS

results. Doing so de�ates the GWAS test statistics by a measure of the total amount of in�ation in the test

statistics, which is an over-correction if true genetic signal contributes to the in�ation. Instead, adjusting

GWAS results using the LD score intercept aims to adjust only for the component of the in�ation in the

GWAS test statistics that is due to bias, rather than the component that is due to true genetic signal.)

Recognizing this issue, Bolormaa et al. [44] conduct a hypothesis test based on t′V̂
−1
t, where V̂ is the

observed correlation matrix between the GWAS test statistics (rather than the observed variance-covariance

matrix D̂). Doing so ensures that the diagonal elements of V̂ are equal to 1, as the diagonal elements of

D would be under the null hypothesis. However, the o�-diagonal elements of V̂ are biased estimates of the

o�-diagonal elements of D under the null hypothesis, and therefore t′V̂
−1
t does not follow a χ2 distribution

under the null hypothesis. For these reasons, [44] refer to their method as an �approximate analysis.�20

8.2.2 CPASSOC

For brevity and simplicity, we focus most of the discussion here on SHom, but the same conclusions carry

over to SHet. While SHom is a more complicated test statistic than the Bolormaa test statistic, the basic

issues are the same. Indeed, as Zhu et al. [45] point out, SHom is in the same family of tests as Bolormaa,

but it is the most powerful test when it is assumed that, under the alternative hypothesis, the e�ects of

the SNP on each trait is equal. Using the notation from Bolormaa, t is the length-T vector of GWAS test

statistics and D is the variance-covariance matrix of these test statistics across traits. D is assumed to be

homogeneous across SNPs. For each SNP, the test statistic is

1′ (DW )
−1
t
[
1′ (DW )

−1
t
]′

1′ (WDW )
−1

1

19For a general proof for an arbitrary number of traits, we use the fact that if A, B and A − B are all positive de�nite
matrices, then B−1 −A−1 is also positive de�nite (see fact 9(a) on p. 8.10 in [47]). De�ne A = D̂ = Ω + Σj and B = Σj .

Then, A, B and A−B = Ω are all positive de�nite. Therefore Σ−1
j − D̂−1

is positive de�nite. By the properties of positive

de�nite matrices, for any vector t, t′
(
Σ−1
j − D̂

−1
)
t > 0 and therefore t′Σ−1

j t > t′D̂
−1
t. Therefore, the test statistic is

ine�cient under the alternative hypothesis that Ω is non-zero.
20An alternative way to pursue the t′D−1t test statistic (or the CPASSOC test statistics discussed below) would be to

estimate Σ̂j using LD score regressions (as in MTAG) and then conduct the χ2-test with Σ̂j in place of D. Developing this
idea is beyond the scope of this paper.

55 
 

  



where 1 is a matrix of ones and W is a diagonal matrix whose elements are the square root of the sample

size of each single-trait GWAS included in the multivariate analysis. Under the null hypothesis that Ω = 0,

this test statistic is asymptotically distributed χ2 with 1 degree of freedom.

Just like with the Bolormaa test statistic, the SHom test statistic is implemented by replacingD by V̂ , where

V̂ is the observed correlation matrix of the GWAS test statistics. The potential problems are the same as

in Bolormaa: the o�-diagonal elements of V̂ are biased estimates of what the o�-diagonal elements of D

would be under the null and therefore, the test statistic no longer follows a χ2 distribution under the null.

In an attempt to reduce the impact of true genetic variance and covariance (i.e., Ω) on V̂ , when applying

SHom to real data from the GIANT consortium, Park et al.[48] estimated V̂ in a subset of approximately

independent SNPs for which the absolute value of the test statistic does not exceed 1.96 for any of the SNPs.

This adjustment eliminates any in�uence of true genetic variance and covariance if among the SNPs with

test statistic less than or equal to 1.96, there is no true genetic signal.

SHet builds on SHom in two ways. First, each element ofW is multiplied by the sign of the test statistic from

the single-trait GWAS. An alternative, equivalent implementation is to switch t from being the vector of

GWAS test statistics to the vector of their absolute values. Second, the multi-trait test statistic is evaluated

many times, each time restricting the set of SNPs used to those with (absolute value of) GWAS test statistics

exceeding some threshold τ . The value of the SHet test statistic equals the maximum value over all τ > 0.

The SHet test is computationally intensive, largely because the distribution of SHet under the null hypothesis

must be simulated. SHet inherits from SHom the potential problems from using the correlation matrix rather

than the variance-covariance matrix and using the observed correlation matrix of the test statistics rather

than just the component due to estimation error. However, because SHet uses the absolute values of the test

statistics, it can be better powered than SHom or MTAG to detect SNPs that have e�ects on the traits that

are opposite in direction.

8.2.3 Comparison to MTAG

MTAG produces trait-speci�c association statistics, whereas the other multi-trait methods are tests of the

null hypothesis of no association with any trait. In order to adapt MTAG to test this null hypothesis, we use

the trait-speci�c MTAG P values to construct a classical Bonferroni test of the joint null hypothesis. For

example, in the case of three traits, we use P = 3×min {p1, p2, p3}, where p1, p2, and p3 are the P values

of the MTAG output for each trait. Since the MTAG-generated P values are correlated across traits, this

Bonferroni test is a conservative test that disadvantages MTAG relative to the other methods (each of which

produce a single P value based on an omnibus test statistic). For all of the methods, we test the joint null

hypothesis at the genome-wide signi�cance P value threshold.

8.2.4 Other Related Methods

Two other multi-trait methods are closely related to MTAG, MTGBLUP [49] and PleioPred [50], but we did

not include them in the comparative analyses that follow, for reasons we explain here. The three methods all

use a similar random-e�ects framework to boost the power to estimate SNP e�ects on each of the traits. In

contrast to MTAG's GMM framework, however, MTGBLUP and PleioPred use Bayesian frameworks that
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rely on distributional assumptions. MTGBLUP is built on a normally distributed prior distribution for e�ect

sizes, and PleioPred is built on a spike-and-slab prior.

An important di�erence from MTAG is that MTGBLUP and PleioPred are designed primarily to improve

polygenic prediction, and therefore neither report SNP-level e�ect sizes or P values. Since neither method

produces P values, we are unable to compare MTAG to these other methods using the same approach

described below.

Additionally, MTGBLUP requires individual-level data, which is not the setting for which MTAG was

designed. Although PleioPred operates on GWAS summary statistics, it only can analyze two traits at a time

and is too computationally burdensome (approximately 2 hours per replication) to compare its performance

to MTAG in a simulation setting. [50] compare MTAG to PleioPred in terms of polygenic prediction in three

two-trait empirical settings: Crohn's disease and Ulcerative Colitis; celiac disease and Ulcerative Colitis; and

type-II diabetes with coronary artery disease. They �nd that PleioPred outperforms MTAG as measured

by AUC, presumably because in those settings, the true e�ect-size distribution is well approximated by the

spike-and-slab distribution assumed by PleioPred.

8.3 Comparative Analysis: Simulation Evidence

The theoretical discussion in section 8.2 highlighted that Bolormaa, SHom, and SHet do not distinguish as

cleanly as MTAG does between the component of the variance-covariance matrix of GWAS test statistics that

is due to true genetic e�ects versus the component that is due to estimation error. This e�ect may reduce

the power of these multi-trait methods relative to MTAG when the genetic component is non-negligible. On

the other hand, the Bonferroni adjustment that we apply to the trait-speci�c MTAG results reduces the

power of MTAG relative to the other methods. Moreover, as noted above, SHet can have more power than

MTAG in cases where a SNP has opposite e�ects on the traits. To assess the net result of the combination

of these e�ects, we conduct simulations that compare MTAG with Bolormaa, SHom, and SHet.

We perform 1000 replications each of the following set of simulations. Following the data-generating pro-

cedure outlined in section 2.2, we produce summary statistics for two traits where either (1) there is no

e�ect-size nor estimation-error correlation (rβ = rε = 0), (2) there is high estimation-error correlation but

no e�ect-size correlation (rβ = 0, rε = 0.7), or (3) there is high e�ect-size correlation but no estimation-error

correlation (rβ = 0.7, rε = 0). To vary the strength of the true genetic e�ects, for each of these correlation

pro�les, we produce summary statistics allowing the mean χ2-statistic be some value in χ2
t ∈ {1.1, 1.4, 2.0}

for each trait t. This gives us nine simulations for each correlation pro�le.

Because the potential ine�ciency of the other methods relative to MTAG comes from implicitly assuming

that Ω = 0, we might expect the relative performance of MTAG over the alternatives to be better as χ2
1 = χ2

2

increases. However, the degree of conservativeness of the MTAG Bonferroni test depends on the e�ective

number of traits. The e�ective number of traits varies with rβ , and it also varies with χ2
t whenever rε 6= 0.

Therefore, the cleanest test of this claim is in the setting where rβ = 0.7 and rε = 0 since in that setting,

the e�ective number of tests is held constant as the mean χ2-statistic varies.

The results of these simulations are found in Supplementary Figure 11. In the scenarios where rβ 6= 0 or

rε 6= 0, MTAG almost always �nds more hits than the alternative methods. This is especially striking given

the conservativeness of the Bonferroni adjustment used to obtain the MTAG P value. In the simulations
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with rβ = 0.7 and rε = 0, as expected, the relative improvement from MTAG over the other methods is

increasing as the power of each GWAS grows.

8.4 Comparative Analysis: Real Summary Statistics

We next to turn to empirical applications that use real genotype and phenotype data. In our �rst application,

we performed Bolormaa, SHom, and SHet analyses on summary statistics from the three single-trait GWASs

(DEP, NEUR, and SWB) described in Supplementary Note section 3 and contrasted the results to those

produced by MTAG. In our second comparison, we applied MTAG and each of the three alternative methods

to summary statistics from sex-strati�ed genome-wide analyses of height, body mass index (BMI), and waste-

to-hip-ratio adjusted for BMI (WHRadjBMI) from the GIANT consortium. The six �les with the GIANT

summary statistics (three phenotypes; two sexes) were examined in a previous study using the CPASSOC

estimators to identify new loci for anthropometric traits [48].

Our CPASSOC analyses were conducted using publicly available software accessed on May 10, 2017, from

http://hal.case.edu/zhu-web/. As described in section 8.2.2, the SHom and SHet test statistics for a given

SNP can be calculated from two inputs: a vector of z -statistics for the SNP's association with each trait

and a variance-covariance matrix of z -statistics. As recommended by Park et al. and Zhu et al. [45, 48], we

estimated the variance-covariance matrix V using a subset of approximately independent SNPs and omitting

SNPs whose z -statistics exceeded (in absolute value) 1.96. To identify the set of approximately independent

SNPs, we used the reference sample described in section 3.2.3 to estimate linkage disequilibrium between

SNPs. We subsequently applied our standard clumping algorithm with no P value threshold, but to avoid

selecting the most signi�cant SNP in each clump, we clumped our results after falsely setting the P values

of all SNPs to be the same value (we arbitrarily picked the value 0.5).

For comparability with MTAG results, we un-did the genomic control adjustment that had been applied

to the anthropometric summary statistics before applying any CPASSOC analyses (failure to do so would

complicate the comparison to MTAG). Procedurally, we do this by estimating a LD score regression [1]

for each trait and subsequently calculating adjusted z -statistics. Each adjusted z -statistic is de�ned as the

original z -statistic multiplied by the inverse of the square root of the estimated intercept. As expected, the

LD score intercepts for the GWAS results from all GIANT traits are substantially below 1, so the adjustment

increases the power of the alternative methods relative to MTAG.

For each of our two classes of traits�anthropometric or well-being�we used our standard locus de�nition

and clumping algorithm to identify the number of genome-wide signi�cant loci identi�ed by each method.

As described in section 8.2.3, since MTAG outputs trait-speci�c P values for each SNP, we conservatively

de�ned the MTAG P value for SNP j as the Bonferroni-corrected minimum P value produced by MTAG

across the T traits for SNP j.

Below, we describe these analyses and summarize the key �ndings.

8.4.1 Well-Being Traits

For purposes of comparability, we restricted the Bolormaa, SHom, and SHet analyses to the same ~6.1M

SNPs that passed recommended �lters applied in our main MTAG analysis. Applying our standard locus

de�nition, SHom identi�ed 2 jointly associated loci at genome-wide signi�cance (5× 10−8), SHet identi�ed 34
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loci, and Bolormaa identi�ed 43 loci. By comparison, MTAG yielded 67 independent loci(using the P value

that Bonferroni-adjusts for 3 traits).

8.4.2 Anthropometric Traits

In our second application, we instead considered a setting in which the SHom and SHet estimators have been

shown in prior work to deliver gains relative to single-trait GWAS results. Park et al. [48] used CPASSOC

on publicly available summary statistics from the GIANT consortium's sex-strati�ed analyses of height,

BMI, and WHRadjBMI. Park et al.'s [48] SHom and SHet analyses of six publicly available results �les with

summary statistics (3 phenotypes; 2 sexes) yielded seven loci that had not previously reached genome-wide

signi�cance in either sex-strati�ed or pooled meta-analysis of any of the three traits (see their Table 3).

For our comparative analyses, we applied our recommended MTAG �lters to all cohort-level results �les.

These restrictions left us with ~2.29M SNPs. We subsequently applied the Bolormaa, SHom, and SHet

methods to this set of SNPs, and we compared the results to MTAG. Applying our clumping algorithm,

we found that SHom identi�ed 86 loci at genome-wide signi�cance, SHet identi�ed 240 loci, and Bolormaa

identi�ed 161 loci. By comparison, our MTAG analysis identi�ed 264 approximately independent loci (using

the P value that Bonferroni-adjusts for 6 traits).

(The number of loci we report for SHom and SHet (86 and 240) exceeds the numbers reported in the Park et

al. [48] analysis of these data (55 and 129). Our analysis di�ers from that of Park et al. [48] in three ways.

First, we used our recommended MTAG SNP �lters to select the set of SNPs. Second, our reference panel

(see section 3.2.3) is di�erent than that of Park et al. [48] (who use the ARIC sample), and we therefore do

not use the same set of approximately independent SNPs to estimate V̂ . We do, however, follow the same

procedures to select the set of approximately independent SNPs. Third, we use estimated intercepts from

LD score regressions to �undo� the genomic control applied to the original GIANT summary statistics before

applying any of the mult-trait methods. In practice, the fact that we identify more loci than Park et al. [48]

using SHom and SHet is driven entirely by this third di�erence. We veri�ed that without the adjustment, our

results are nearly identical to those reported by Park et al. [48].)

8.4.3 Comparative Results for Well-Being and Anthropometric Traits

Overall, MTAG appears to be better powered to detect associations in these two applications, despite our

use of what is e�ectively a more stringent signi�cance threshold for the MTAG analyses.

Supplementary Figures 12 show �inverted Manhattan plots� with pairwise comparisons of MTAG to

alternative estimators applied to the anthropometric summary statistics; see Supplementary Figures 13

for analogous comparisons for the well-being analyses. In each �gure, MTAG P values (on a −log10 scale)

are plotted below the x -axis and P values from the other estimator (Bolormaa, SHom, or SHet) above the

x -axis. Lead SNPs identi�ed by one method but not the other are labeled. For example, if a SNP reaches

genome-wide signi�cance in the MTAG analysis, it is only labeled in the pairwise comparison with Bolormaa

if no SNP from the locus (as de�ned in Online Methods) reached genome-wide signi�cance in the Bolormaa

analysis. Conversely, above the x -axis, we only mark lead SNPs that are in loci that evaded detection by

MTAG but were detected by the alternative method.
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In the anthropometric application, MTAG identi�ed 264 loci. Of these, 102 went undetected by Bolormaa,

43 went undetected by SHet, and 181 went undetected by SHom, respectively. By contrast, MTAG missed

9 loci identi�ed by Bolormaa, 20 loci identi�ed by SHet, and 12 identi�ed by SHom. In the application to

well-being traits, analogous comparisons appear to favor MTAG even more strongly. Of the 67 loci identi�ed

by MTAG, 29 evaded detection by Bolormaa, 19 evaded detection by SHet and 66 evaded detection by SHom.

In the other direction, MTAG missed only 8 of 43 signi�cant hits found by Bolormaa, 1 of 2 found by SHom,

and 14 of 68 found by SHet.

We note that in these comparative analyses, we took several steps to ensure that any observed increase in

the number of MTAG-associated loci, relative to the number of loci identi�ed by the other methods, is likely

to re�ect real gains in statistical power. For example, we analyzed a �xed set of SNPs in each comparative

analysis, and we used a conservative multiple-hypothesis adjustment to obtain an omnibus MTAG P value

for each SNP.

8.4.4 Replication for Anthropometric Results

As an additional robustness test, we assessed replication rates of the loci identi�ed by each estimator in our

analyses of the GIANT phenotypes. These analyses exploit the fact that following the publication of the

Park et al. [48], the GIANT consortium has published follow-up analyses of all three anthropometric traits

based on substantially increased samples[51, 52, 53].

In these analyses, we use the summary statistics that have been corrected using the intercepts from LD

score regressions as described in section 8.4.2 above. We then meta-analyzed the sex-strati�ed results �les

for each trait, without applying genomic control, to obtain three �les with summary statistics: one for each

trait. We similarly calculated adjusted z -statistics for each trait using publicly available summary statistics

of the follow-up studies that have subsequently been published by the GIANT consortium[51, 52, 53]. We

calculated an �incremental z -statistic� for each SNP and obtained a replication P value for each SNP using

this incremental z -statistic. Omitting SNP and phenotype subscripts, the incremental z -statistic is de�ned

[16] implicitly by zpooled =

(√
N1

N Z1 +
√

N2

N Zincr

)
, where N1 is the size of the (meta-analyzed) discovery

sample in the �rst-stage analysis andN2 is the size of the (meta-analyzed) discovery sample in the augmented,

follow-up analysis. We used these incremental z -statistics and the P values associated with them to determine

whether each association replicated. We de�ned the replication P value as the minimum P value across the

three traits for each SNP multiplied by 3.

Results are presented in Supplementary Table 31. In the upper panel, we report the overall fraction

of loci that replicated at three di�erent signi�cance thresholds: genome-wide signi�cance (5 × 10−8), 10−4,

and 10−3. At genome-wide signi�cance, 41% of MTAG-associated loci satis�ed our replication criterion.

This rate is comparable to that observed for SHet (43%), though lower than those of Bolormaa (55%) and

SHom (63%). The lower overall replication rate for MTAG and SHet, relative to Bolormaa and SHom, is

not surprising. MTAG and SHet identi�ed substantially more genome-wide signi�cant loci (264 and 240,

respectively) than Bolormaa (161) and SHom (86). Since the incremental loci identi�ed by MTAG and/or

SHet are likely to have smaller e�ect sizes, the statistical power to replicate them should be lower. Indeed,

of the top 86 hits for each method (the number of hits found by SHom), 81% of them replicate for MTAG,

80% for SHet, and 79% for Bolormaa. Of the top 161 SNPs (the number found by Bolormaa), 57% of the

MTAG hits replicate and 56% of the SHet. Even among the 240 SNPs (the number found by SHet), 44%
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of the MTAG hits replicate. So in a fair comparison holding the number of SNPs constant, MTAG always

replicates at higher rates than that alternative methods, though only marginally so.

The second panel therefore compares replication rates (at genome-wide signi�cance) for the following subsets

of loci: (i) those identi�ed by MTAG and missed by the alternative method and (ii) loci detected by the

alternative method and missed by MTAG. Of the 102 loci identi�ed by MTAG but missed by Bolormaa,

17% replicated at genome-wide signi�cance; of the 43 loci identi�ed by MTAG but missed by SHet, 12%

replicated; and of the 181 loci identi�ed by MTAG but missed by SHom, 29% replicated. None of the loci

identi�ed by the other methods but missed by MTAG replicated at genome-wide signi�cance. A similar

pattern is evident at weaker signi�cance thresholds. From this panel, it appears that replication rates for

distinct loci identi�ed by MTAG are stronger than those for distinct loci identi�ed by any of the other three

methods. (We note that while the comparisons of replication rates is informative, it is di�cult to interpret

the replication-rate levels without a calculation of the expected replication rate, given the statistical power

to replicate each locus.)

8.5 Conclusion

Both the results of our simulations and of our empirical applications suggest that MTAG has greater power

to detect associations than the other multi-trait methods that we examine. Our theoretical analysis suggests

that the main reason is that relative to MTAG, the other methods lose e�ciency by not distinguishing between

variance and covariance in the GWAS test statistics that is due to true genetic signal versus estimation error.

We caution that our conclusions here almost surely do not generalize to all possible simulations and empirical

applications. For example, because SHet gains power in cases where SNPs have opposite e�ects on di�erent

traits, it is plausible that it would outperform MTAG in settings where such SNPs are common or where

the scienti�c objective is to identify SNPs with e�ects whose signs are opposite to the direction that would

be predicted from the overall genetic correlation.
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9 Alternative MTAG Frameworks

9.1 Maximum Marginal Likelihood

In the original version of this paper posted on bioRxiv21, the MTAG estimator was derived using a maximum

likelihood (ML) framework for both β̂MTAG,j,t and Ω̂. While the MTAG estimating equation for β̂MTAG,j,t is

identical across the two frameworks, the ML derivation assumes that the true genetic e�ects are drawn from

a normal distribution, while the GMM derivation does not require any particular distributional assumptions

and in that sense is more general. The method-of-moments estimator for Ω̂ is slightly di�erent than the ML-

based version, but the method-of-moments estimator again relies on weaker assumptions. Moreover, because

the method-of-moments estimator for Ω̂ has a closed-form solution, it is substantially faster to calculate than

the ML estimator, which requires numerical optimization. In this section, we present the ML framework as

a supplement to the GMM framework that is now emphasized in the paper.

9.1.1 The Model

The statistical model for the ML version of MTAG is identical to that described in section 1.2.1, except that

we assume that the e�ect sizes, βj , are drawn independently across j from a multivariate normal distribution,

such that

βj ∼ N (0, Ω)

for some variance-covariance matrix Ω that is the same for all SNPs j.

We would like to produce an estimate of the e�ect of each SNP j on each trait t. Using the distributional

assumption above, we construct a likelihood function that we can maximize to calculate an estimate of βj,t.

Since we only estimate the e�ect of the SNP on one trait at a time, e�ectively integrating out the e�ect

of the SNP on other traits, the likelihood function that we will construct is called a �marginal likelihood

function,� and therefore MTAG is a maximum-marginal-likelihood estimator [54].

To construct the marginal likelihood function, we begin with the distribution of the random e�ects βj given

the true e�ect of SNP j on trait t, denoted βj,t. By the properties of multivariate normal distributions [55]

we have: (
βj |βj,t

)
∼ N

(
ωt
ωtt

βj,t, Ω− ωtω
′
t

ωtt

)
,

where (consistent with the notation in section 1) ωt is a vector equal to the tth column of Ω and ωtt is a

scalar equal to the tth element of ωt (or equivalently, the t
th diagonal element of Ω). It follows that

(
β̂j |βj,t

)
=
(
βj + εj |βj,t

)
∼ N

(
ωt
ωtt

βj,t, Ω− ωtω
′
t

ωtt
+ Σj

)
. (26)

21Turley, P. et al. MTAG: Multi-Trait Analysis of GWAS. bioRxiv (2017).
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We can re-express the marginal likelihood function as

L
(
βj,t; β̂j

)
∝ exp

{
−1

2

(
β̂j −

ωt
ωtt

βj,t

)′(
Ω− ωtω

′
t

ωtt
+ Σj

)−1(
β̂j −

ωk
ωtt

βj,t

)}

∝ exp

{
−1

2

[
ω′t
ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt
ωtt

β2
j,t

−2
ω′t
ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
−1β̂jβj,t

]}
,

where the operator ∝ denotes that the next line is proportional to the previous line with respect to βj,k. For

notational convenience, we de�ne

θ ≡ ω′t
ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
β̂j

γ ≡ ω′t
ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ωt
ωtt

.

In terms of this notation,

L (βj,t; Zj) ∝ exp

{
−1

2

[
γβ2

j,t − 2θβj,t
]}

∝ exp

{
−1

2

[
γβ2

j,t − 2θβj,t +
θ2

γ

]}

∝ exp

−1

2

(
βj,t − θ

γ

)2
1
γ

 .

Note that this expression is the kernel for a normal distribution with mean

θ

γ
=

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

β̂j .

Since a normal pdf is maximized at its mean, the MTAG estimate of the e�ect of the SNP on trait t is

β̂MLE,j,t =

ω′
t

ωtt

(
Ω− ωtω

′
t

ωtt
+ Σj

)−1
ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

β̂j . (27)

Since this is the same estimator as the GMM version of MTAG, the standard error is the same:

SE
(
β̂MLE,j,t

)
=

1√
ω′
t

ωtt

(
Ω− ωtω′

t

ωtt
+ Σj

)−1
ωt
ωtt

. (28)

63 
 

  



9.1.2 Estimating Ω by Maximum Likelihood

Applying the method described in section 1.3.1 to estimate Σ̂j for each SNP, we can estimate Ω using ML.

As our likelihood function, we use the marginal density of the estimates,

β̂j ∼ N (0, Ω + Σj) .

This implies a log-likelihood function

L
(
Ω; β̂j , Σj

)
∝
∑
j

[
−T

2
log (2π)− 1

2
log |Ω + Σj | −

1

2
β̂
′
j (Ω + Σj)

−1
β̂j

]
, (29)

where the operator ∝ implies that the two expressions are proportional with respect to the matrix Ω. The

value Ω̂MLE that maximizes (29) does not have a closed form in general. Therefore we �nd it numerically.

Since Ω is symmetric, it has 1
2T (T + 1) elements. Therefore, �nding the maximum is not too computationally

burdensome as long as T is su�ciently small. For example, in the application of this paper (T = 3), using

one core of a 2.20 GHz Intel(R) Xeon(R) CPU E5-2650 v4 processor, this maximization problem took

approximately 3 hours. (By comparison, the method-of-moments estimation of Ω that we now use for the

results in the paper took 2 seconds. The two methods of estimation produce nearly identical Ω̂.)

There is an alternative approach that can be used when T is too large for numerical optimization to be

feasible. This alternative exploits the fact that when the estimation sample size is constant across SNPs,

equation (29) has a closed-form solution which can be implemented if we restrict the set of SNPs in the

analysis to those with a constant (or nearly constant) sample size. Of course, the downside of this faster ap-

proach is that the additional SNP �lters may remove SNPs that would otherwise be genome-wide signi�cant.

(By comparison, the GMM estimator for Ω has a closed-form solution that does not require the sample size

to be constant across SNPs.)

We end this section by deriving the closed-form solution in the special case of a constant sample size across

SNPs. It is clear that when W j is constant across SNPs j, Σj ≡ Σ is also constant across SNPs. Taking
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the derivative of L
(
Ω; β̂j , Σj

)
with respect to Ω, setting it equal to zero, and rearranging:

0 =
∂

∂Ω
L
(
Ω; β̂j , Σ

)
=

∂

∂Ω

∑
j

[
−T

2
log (2π)− 1

2
log |Ω + Σ| − 1

2
β̂
′
j (Ω + Σ)

−1
β̂j

]

= −1

2

∂

∂Ω

T log (2π) + log |Ω + Σ|+ 1

M

∑
j

β̂
′
j (Ω + Σ)

−1
β̂j


= −1

2

∂

∂Ω

T log (2π) + log |Ω + Σ|+ tr

 1

M

∑
j

β̂
′
j (Ω + Σ)

−1
β̂j


= −1

2

∂

∂Ω

T log (2π) + log |Ω + Σ|+ 1

M

∑
j

tr
[
β̂
′
j (Ω + Σ)

−1
β̂j

]
= −1

2

∂

∂Ω

T log (2π) + log |Ω + Σ|+ 1

M

∑
j

tr
[
(Ω + Σ)

−1
β̂jβ̂

′
j

]
= −1

2

∂

∂Ω

T log (2π) + log |Ω + Σ|+ tr

(Ω + Σ)
−1 1

M

∑
j

(
β̂jβ̂

′
j

)
= −1

2

 ∂

∂Ω
log |Ω + Σ|+ ∂

∂Ω
tr

(Ω + Σ)
−1 1

M

∑
j

(
β̂jβ̂

′
j

)
= −1

2
(Ω + Σ)

−1
+

1

2
(Ω + Σ)

−1

 1

M

∑
j

(
β̂jβ̂

′
j

) (Ω + Σ)
−1

(Ω + Σ)
−1

= (Ω + Σ)
−1

 1

M

∑
j

(
β̂jβ̂

′
j

) (Ω + Σ)
−1

Ω + Σ =
1

M

∑
j

(
β̂jβ̂

′
j

)
Ω =

1

M

∑
j

(
β̂jβ̂

′
j

)
−Σ,

where M is the number of SNPs in the MTAG analysis. Thus,

Ω̂MLE =
1

M

∑
j

(
β̂jβ̂

′
j

)
−Σ. (30)

Substituting in our estimate of Σ, equation (30) is the closed-form estimator for the case of a constant

sample size across SNPs. Note that the method of moments estimator presented in section 1.3.2, Ω̂ =
1
M

∑M
j=1

(
β̂jβ̂

′
j −Σj

)
, also specializes to equation (30) when the sample size is constant across SNPs.
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9.1.3 Non-Positive De�niteness

One problem that arises in the ML implementation of MTAG that does not occur in the GMM implemen-

tation is that the likelihood function (29) may not exist if Σj is not positive de�nite. There are many ways

that one may transform a non-positive de�nite matrix into a similar matrix that is positive-de�nite. We

describe two such options below.

De�ation of the o�-diagonal. For this approach, we proceed in two steps. First, a necessary condition for

the matrix to be positive de�nite is that the implied correlation between every pair of traits t and u, de�ned

as
ΣLD,t,u√

ΣLD,t,tΣLD,u,u
,

must be between -1 and 1. If |ΣLD,t,u| >
√

ΣLD,t,tΣLD,u,u for any pair, we shrink the two (symmetric)

elements of the matrix corresponding to that pair of traits by a constant multiple toward zero until |ΣLD,t,u| =√
ΣLD,t,tΣLD,u,u.

Second, since the �rst step only ensures that ΣLD satis�es a necessary condition of being positive de�nite,

the resulting transformed matrix may still not be positive de�nite. We therefore shrink all of the o�-diagonal

elements simultaneously by a constant multiple until the matrix is positive de�nite. This will with certainty

produce a positive de�nite matrix for some shrinkage factor (since in the limit this shrinkage will result in

a diagonal matrix with positive diagonal elements). We shrink the minimum amount necessary in order

to preserve as much similarity between the original matrix ΣLD and the transformed matrix used in the

analysis.

Diagonalization. A characteristic of positive de�nite matrices is that they have all strictly positive eigenval-

ues. Since Σj is symmetric, it is diagonalizable. That is, there exist T × T matrices P and A such that

Σj = P−1AP , where A is a diagonal matrix containing the eigenvalues of Σj . De�ne A
? as a matrix equal

to A except that each negative element is changed to a small positive number. Then Σ?
j = P−1A?P will

be a positive de�nite matrix similar to Σj .

9.2 Other Moment Conditions

We now return to the GMM framework for MTAG and discuss a possible extension. The MTAG moment

condition is based on one of the �rst-order conditions of the best-linear-predictor problem outlined in section

1.2.3:

E
(
β̂j,s −

ωts
ωtt

βj,t

)
= 0. (31)

Note, however, that we could have also used the other �rst-order condition of best-linear-predictor problem,

E
[
βj,t

(
β̂j,s −

ωts
ωtt

βj,t

)]
= 0, (32)

giving us an additional T moment conditions, one for each trait. The speci�cation we used in our analysis

can be thought of as a speci�cation that uses both (31) and (32) but with a weight matrix that has zeros

in every entry corresponding to a moment condition of the form (32). While this weighting will still give

consistent estimates, it is not the most e�cient estimator that uses both sets of moment equations since

some gain in e�ciency may be achieved by giving positive weight to the moment equations de�ned by (32).
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We do not pursue this extension of MTAG because it would be substantially more computationally intensive.

There are two reasons. First, to calculate the e�cient GMM weight matrix, we would need to calculate the

variance-covariance matrix of all moments. In this case, it would be a function of third and fourth moments

of the data, which would either need to be estimated or additional assumptions would been to be made about

the distribution of βj . Second, the GMM estimator based on (31) and (32) does not have a general, closed-

form solution, so the objective function would need to be maximized numerically for each SNP, making it

much more computationally intensive than the version of MTAG we focus on. If a method is developed that

overcomes these concerns, it may be of interest to evaluate the gains of such an estimator over the version

of MTAG developed here.
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Supplementary Figures and Tables 

 

Supplementary Figure 1. Two-trait illustration of MTAG’s theoretical mean 

squared error (MSE) and power. (a) The y-axis is the ratio of the MSE of the MTAG 

results to the MSE of the GWAS results of Trait 1. We set 𝑟𝜀 = 0.3 and expected 

𝜒1
2 = 1.1. (b) The y-axis is MTAG’s power to detect a SNP association with trait 1 under 

an infinitesimal model with normally distributed effect sizes. We set 𝑟𝜀 = 0.3 and 

expected 𝜒1
2 = 1.1. 

(a) (b) 
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Supplementary Figure 2. Two-trait illustration of MTAG’s maxFDR. (a) The y-axis is 

the maxFDR attainable under certain assumptions, including the assumption that the 

fraction of SNPs that are non-null for any individual trait is at least 10%, holding fixed 𝑟𝛽, 

𝑟𝜀, expected 𝜒1
2, and expected 𝜒2

2 (see Online Methods). In this panel, 𝑟𝜀 = 0 and 

expected 𝜒1
2 = 1.1. (b) The y-axis is maxFDR as in panel (a), but the expected 𝜒2-

statistic is constrained to be equal for the GWASs of the two traits.  

 (a)  (b) 
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Supplementary Figure 3. Evaluation of MTAG’s standard errors when there is 
sample overlap for additional phenotypes. The x-axis is a SNP’s z-statistic from a 
baseline GWAS conducted in UK Biobank. The y-axis is a SNP’s z-statistic from 
applying MTAG to three GWASs of each trait conducted on equally sized subsamples of 
the baseline sample, in which every pair of samples has 50% overlap. The figure 
illustrates near-perfect alignment across all phenotypes. See Supplementary Note for 
details. (a) body-mass index (BMI), (b) educational attainment (EA), (c) neuroticism 
(NEUR), (d) subjective well-being (SWB). 
 
(a) BMI (b) EA 

 
 
(c) NEUR (d) SWB 
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Supplementary Figure 4. Quantile-quantile (QQ) plots of GWAS results by allele 

frequency. (a) DEP, (b) NEUR, (c) SWB. Common variants (𝑀𝐴𝐹 ≥ 0.05), Low-
frequency variants (0.01 ≤ 𝑀𝐴𝐹 < 0.05), Rare Variants (𝑀𝐴𝐹 < 0.01). The estimated 
LD score regression intercept used to adjust the GWAS standard errors is 1.0129 for 
DEP and 1.0157 for SWB. The standard errors for NEUR were not adjusted because 
the estimated LD score regression intercept is less than one (0.9896). 
 
(a) DEP (b) NEUR 

  
 
 (c) SWB 
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Supplementary Figure 5. LD score regression plots of GWAS results. (a) DEP, (b) 
NEUR, (c) SWB. Each point represents an LD score quantile. The x and y coordinates 

of the point are the mean LD score and the mean 𝜒2-statistic of SNPs in that quantile, 

respectively. The facts that the intercepts are close to 1 and that the 𝜒2-statistics 
increase linearly with the LD scores for all three traits suggest that the bulk of the 

inflation in the 𝜒2-statistics for the three traits is due to true polygenic signal and not to 
population stratification. 
 
(a)  (b)  

  
 
 (c) 
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Supplementary Figure 6. Manhattan plots of GWAS results. (a) DEP, (b) NEUR, (c) 
SWB. The x-axis is chromosomal position, and the y-axis is the significance on a −log10 
scale. The upper dashed line marks the threshold for genome-wide significance 

(𝑃 = 5 × 10−8), and the lower line marks the threshold for nominal significance (𝑃 =
10−5). Each approximately independent genome-wide significant association (“lead 
SNP”) is marked by ×. In (b), the blue spike on chromosome 8 corresponds to SNPs in 
LD with an inversion polymorphism. These SNPs are dropped in the MTAG analyses. 
For these plots, we do not impose the MTAG filters described in Online Methods. 
 
(a) 

 
(b) 
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Supplementary Figure 7. Quantile-quantile (QQ) Plots for GWAS and MTAG 
results. (a) DEP, (b) NEUR, (c) SWB. To facilitate comparisons, the GWAS and MTAG 
results are shown for an identical set of SNPs. GWAS results are adjusted using the 
estimated LD score regression intercept. The standard errors of the MTAG results were 
not adjusted since MTAG adjusts using LD score regression as part of its estimation 
procedure. 
 
(a) DEP (b) NEUR 

  
 
 (c) SWB 
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Supplementary Figure 8. Comparison of polygenic scores based on restricted 

analyses. Incremental 𝑅2 is the increase in 𝑅2 from a linear regression of the trait on 
the polygenic score and covariates, relative a linear regression of the trait on only 

covariates. The plotted incremental 𝑅2’s are the sample-size-weighted means across 
the replication cohorts (HRS and Add Health, combined N = 12,641), with 95% 
confidence intervals. See Supplementary Note for details and cohort-level results. 
Scores labeled “No Overlap” correspond to MTAG analyses where the GWAS summary 
statistics are restricted such that there is no known overlap between estimation samples 
for each trait. Scores labeled “Overlap” use the full GWAS summary statistics. Scores 
labeled “𝑟𝛽 = 1” correspond to MTAG analyses where 𝛀 is constrained such that the 

effect-size correlation is set to one rather than estimated. Scores labeled “𝑟𝛽 = �̂�𝛽” 

correspond to MTAG analyses where 𝛀 is estimated, which is the default in MTAG. (a) 

Incremental 𝑅2 of MTAG-based polygenic scores. (b) Differences in incremental 𝑅2 of 
MTAG-based polygenic scores across analyses. 
 

 (a)  
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Supplementary Figure 9. Tissue enrichment estimated using the bioinformatics 
tool DEPICT for NEUR. (a) Results based on the GWAS summary statistics, (b) results 
based on the MTAG summary statistics. The x-axis lists the tissues tested for 
enrichment, grouped by the location of the tissue. The y-axis is statistical significance 

on a −log10 scale. The horizontal dashed line corresponds to a false discovery rate of 
0.05, which is the threshold used to identify prioritized tissues. There is no line in (a) 
since no tissue surpasses this threshold. 
 

(a)  

 
(b)  
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Supplementary Figure 10. Tissue enrichment estimated using the bioinformatics 
tool DEPICT for SWB. (a) Results based on the GWAS summary statistics, (b) results 
based on the MTAG summary statistics. The x-axis lists the tissues tested for 
enrichment, grouped by the location of the tissue. The y-axis is statistical significance 

on a −log10 scale. The horizontal dashed line corresponds to a false discovery rate of 
0.05, which is the threshold used to identify prioritized tissues. There is no line in (a) 
since no tissue surpasses this threshold. 
 

(a)  

 
(b)  
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Supplementary Figure 11. Results of comparison of MTAG to Bolormaa, SHom, and 
SHet in simulated data. We simulate effect sizes for 100,000 SNPs and two traits, with 

different values for the expected mean 𝜒2-statistics for each trait, 𝑟𝛽, and 𝑟𝜀. P values for 

MTAG are the Bonferroni-adjusted minimum P value for the SNP across all traits. The 

y-axis is the mean number of SNPs with a P value less than 5 × 10−7 (the Bonferroni-
adjusted P value for 100,000 SNPs) across 1000 replications. The GWAS for Trait 2 is 

(a) low powered (expected 𝜒2-statistic of 1.1), (b) medium powered (1.4), (c) high 
powered (2.0). 
  
(a) 
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Supplementary Figure 12. Results of comparison of MTAG to Bolormaa, Shom, and 
Shet in GIANT data. (a) MTAG vs. Bolormaa, (b) MTAG vs. Shom, (c) MTAG vs. SHet. For 
all multi-trait methods, the P value for each SNP tests the null hypothesis that the SNP 
is null for all six traits (height, BMI, and waist-hip ratio each in men and women 
separately). P values for MTAG are the Bonferroni-adjusted minimum P value for the 
SNP across all six traits. Below the x-axis in each figure is a Manhattan plot for the 
MTAG results; above the x-axis is a Manhattan plot for the alternative method. MTAG 
hits that are in LD with a hit identified by the alternative method (or hits from the 
alternative method that are in LD with a hit found by MTAG) are marked with black x’s. 
Significant SNPs identified by the alternative analysis that are not in LD with any 
significant MTAG SNPs are marked with red x’s. Significant MTAG SNPs not in LD with 
any significant SNP in the alternative analysis are marked with red dots. The GIANT 
summary statistics are from Randall et al. (2013). 
  
(a) 
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Supplementary Figure 13. Results of comparison of MTAG to Bolormaa, Shom, and 
Shet in DEP, NEUR and SWB data. (a) MTAG vs. Bolormaa, (b) MTAG vs. Shom, (c) 
MTAG vs. SHet. For all multi-trait methods, the P value for each SNP tests the null 
hypothesis that the SNP is null for all three traits. P values for MTAG are the Bonferroni-
adjusted minimum P value for the SNP across all six traits. Below the x-axis in each 
figure is a Manhattan plot for the MTAG results; above the x-axis is a Manhattan plot for 
the alternative method. MTAG hits that are in LD with a hit identified by the alternative 
method (or hits from the alternative method that are in LD with a hit found by MTAG) are 
marked with black x’s. Significant SNPs identified by the alternative analysis that are not 
in LD with any significant MTAG SNPs are marked with red x’s. Significant MTAG SNPs 
not in LD with any significant SNP in the alternative analysis are marked with red dots. 
 
(a) 
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MAC MaCH IMPUTE PLINK
HWE P -

value 
Call rate

N < 1000 30 0.6 0.7 0.8 10
-3 95%

1000 < N  < 2000 30 0.6 0.7 0.8 10
-4 95%

2000 < N  > 10000 30 0.6 0.7 0.8 10
-5 95%

N >10000 30 0.6 0.7 0.8 None 95%

Imputation Quality

Note:   N  is the sample size per SNP. HWE is Hardy Weinberg equilibrium. HWE p-value filter is 

applied only to genotyped SNPs. Call rate is the minimum fraction of subjects for which the association 

results for a SNP must be available in order for the SNP to be included. MAC is minor allele count.

Supplementary Table 4. Quality Control Filters
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DEP NEUR SWB SWB_excl_HRS SWB_HRS

DEP 1.000 0.7166 (0.0264) -0.6850 (0.0239) -0.6922 (0.0242) -0.5247 (0.2927)

NEUR 0.7166 (0.0264) 1.000 -0.6715 (0.0272) -0.6737 (0.0277)  -0.6974 (0.4662)

SWB -0.6850 (0.0239) -0.6715 (0.0272) 1.000 1.0025 (0.0004) 1.1482 (0.5730)

SWB_excl_HRS -0.6922 (0.0242) -0.6737 (0.0277) 1.0025 (0.0004) 1.000  1.1842 (0.6059)

SWB_HRS -0.5247 (0.2927)  -0.6974 (0.4662) 1.1482 (0.5730)  1.1842 (0.6059) 1.000

References

[1] Bulik-Sullivan, B. et al . An atlas of genetic correlations across human diseases and traits. Nat. Genet . 47, 1236–1241 

Note : Genetic correlation estimates from LD score regression [1] based on the meta-analyses used in this study. The 

"SWB_excl_HRS" meta-analysis corresponds to a meta-analysis of the SWB cohorts, omitting the Health and Retirement Study. 

"SWB_HRS" corresponds to the results from the Health and Retirement Study. Standard errors are in parentheses.

Supplementary Table 7. LDSC Estimates of Genetic Correlations
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DEP NEUR SWB SWB_excl_HRS SWB_HRS

DEP 1.0129 (0.0213) 0.2890 (0.0074) -0.1082 (0.0057) -0.1083 (0.0058) -0.0031 (0.0047)

NEUR 0.2890 (0.0074) 0.9896 (0.0117) -0.0905 (0.0067) -0.0903 (0.0066)  -0.0050 (0.0050)

SWB -0.1082 (0.0057) -0.0905 (0.0067) 1.0157 (0.0082) 1.0026 (0.0082) 0.0876 (0.0049)

SWB_excl_HRS -0.1083 (0.0058) -0.0903 (0.0066) 1.0026 (0.0082) 1.0173 (0.0082) -0.0063 (0.0048)

SWB_HRS -0.0031 (0.0047)  -0.0050 (0.0050) 0.0876 (0.0049) -0.0063 (0.0048) 1.0109 (0.0061)

References

Note : Intercepts estimates from bivariate LD score regression [1] based on the meta-analyses used in this study. Diagonal 

elements correspond to intercept estimated from univariate LD score regression. The "SWB_excl_HRS" meta-analysis 

corresponds to a meta-analysis of the SWB cohorts, omitting the Health and Retirement Study. "SWB_HRS" corresponds to the 

results from the Health and Retirement Study. Standard errors are in parentheses.

[1] Bulik-Sullivan, B. et al . An atlas of genetic correlations across human diseases and traits. Nat. Genet.  47, 1236–1241 

Supplementary Table 8. LDSC Estimates of Intercepts
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Supplementary Table 10. MTAG Filters Applied to Summary Statistics

A: Main
B: 

Replication
C: Prediction

D: Prediction 

Pruned

GWAS

filters

Excluding 

inversion
MAF > 0.01 N filter Hapmap3

Pruned 

Hapmap3

DEP 11,764,401 8,356,688 7,601,067 6,107,952 - - -

NEUR 9,428,194 9,409,403 8,348,642 6,238,079 6,107,952 6,107,941 1,080,892 54,068

SWB 10,849,064 8,585,637 7,606,986 6,107,952 6,107,941 1,080,892 54,068

SWB 

(no HRS)
10,765,546 8,587,763 7,606,149 - 6,107,941 1,080,892 54,068

5,168,052 5,168,050 1,080,892 54,068

Intersection of SNPs

 Ω and  ƩLD estimation:

Note:  Numbers indicate the number of SNPs (M ) remaining after applying the relevant MTAG filter to summary statistics. GWAS 

filters corresponds to the standard QC filters described in Supplementary Note. The inversion region excluded corresponds to the 

region on chromosome 8 between base-pair locations 7,962,590 and 11,962,591. The N filter removes SNPs that are estimated in a 

sample of less than 75% of the 90 percentile of the sample size distribution. Strand-ambiguous SNPs are additionally excluded for the 

Ω and ƩLD estimation steps. MAF is minor allele frequency.
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Phenotype N SNPs (M)
GWAS 

mean χ
2

MTAG

mean χ
2

GWAS

equiv. N

DEP 354,861 6,107,952 1.434 1.550 449,649

NEUR 168,105 6,107,952 1.287 1.446 260,897

SWB 388,538 6,107,952 1.302 1.466 600,834

Phenotype N SNPs (M)
GWAS 

mean χ
2

MTAG

mean χ
2

GWAS

equiv. N

DEP 354,861 6,107,941 1.434 1.549 449,250

NEUR 168,105 6,107,941 1.287 1.443 259,327

SWB_excl_HRS 378,596 6,107,941 1.291 1.460 598,352

Phenotype N SNPs (M)
GWAS 

mean χ
2

MTAG

mean χ
2

GWAS

equiv. N

DEP 354,861 1,080,893 1.456 1.572 445,460

NEUR 168,105 1,080,893 1.301 1.464 259,341

SWB_excl_HRS 378,596 1,080,893 1.299 1.475 601,670

Phenotype N SNPs (M)
GWAS 

mean χ
2

MTAG

mean χ
2

GWAS

equiv. N

DEP 354,861 54,069 1.219 1.285 462,038

NEUR 168,105 54,069 1.173 1.247 240,150

SWB_excl_HRS 378,596 54,069 1.870 1.268 542,054

Supplementary Table 11. Summary of GWAS and MTAG Results

Note: Comparison of mean χ2  statistics from GWAS and MTAG analyses. Panel A reports the results based on the 

main analysis. Panel B reports results based on GWAS summary statistics that omit the HRS. Panel C reports results 

based on GWAS summary statistics that omit the HRS and are restricted to SNPs that are genotyped in the HRS. 

Panel D reports results based on a pruned set of SNPs that are genotyped in the HRS. GWAS-equivalent sample size 

(GWAS equiv. N ) is computed as described in the Online Methods.

Panel A. Main Analysis

Panel B. Replication Analysis (HRS omitted)

Panel C. Prediction Analysis

Panel D. Prediction Analysis (Pruned)
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DEP NEUR SWB

DEP 1.016 0.291 -0.11

NEUR 0.291 0.998 -0.096

SWB -0.11 -0.096 1.021

DEP NEUR SWB

DEP 1.016 0.291 -0.109

NEUR 0.291 0.998 -0.096

SWB -0.109 -0.096 1.021

DEP NEUR SWB

DEP 1.016 0.291 -0.109

NEUR 0.291 0.998 -0.096

SWB -0.109 -0.096 1.021

DEP NEUR SWB

DEP 1.033 0.304 -0.112

NEUR 0.304 0.988 -0.096

SWB -0.112 -0.096 1.005

References

Note: The estimate of Ʃ LD used in the MTAG analysis for different samples. 

These matrices were estimated using bivariate LD score regression[1]. Panel A 

reports the results based on the main analysis. Panel B reports results based on 

GWAS summary statistics that omit the HRS. Panel C reports results based on 

GWAS summary statistics that omit the HRS and are restricted to SNPs that 

are genotyped in the HRS. Panel D reports results based on a pruned set of 

SNPs that are genotyped in the HRS.

[1] Bulik-Sullivan, B. et al . An atlas of genetic correlations across human 

diseases and traits. Nat. Genet.  47, 1236–1241 (2015).

Panel A. Main Analysis

Supplementary Table 12. Estimates of Ʃ LD

Panel B. Replication Analysis

Panel C. Prediction Analysis

Panel D. Prediction Analysis (Pruned)
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DEP NEUR SWB

DEP 1.26E-06 1.09E-06 -7.02E-07

NEUR 1.09E-06 1.76E-06 -7.84E-07

SWB -7.02E-07 -7.84E-07 7.99E-07

DEP NEUR SWB

DEP 1.26E-06 1.09E-06 -7.06E-07

NEUR 1.09E-06 1.76E-06 -7.80E-07

SWB -7.06E-07 -7.80E-07 7.92E-07

DEP NEUR SWB

DEP 1.32E-06 1.15E-06 -7.31E-07

NEUR 1.15E-06 1.84E-06 -8.20E-07

SWB -7.31E-07 -8.20E-07 8.14E-07

DEP NEUR SWB

DEP 6.54E-07 5.65E-07 -3.82E-07

NEUR 5.65E-07 1.06E-06 -4.55E-07

SWB -3.82E-07 -4.55E-07 5.07E-07

Note: The estimate of Ω from each MTAG analysis. Panel A reports the results 

based on the main analysis. Panel B reports results based on GWAS summary 

statistics that omit the HRS. Panel C reports results based on GWAS summary 

statistics that omit the HRS and are restricted to SNPs that are genotyped in the 

HRS. Panel D reports results based on a pruned set of SNPs that are genotyped 

in the HRS.

Panel B. Replication Analysis

Panel C. Prediction Analysis

Supplementary Table 13. Estimates of Ω

Panel A. Main analysis

Panel D. Prediction Analysis (Pruned)
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Discovery

DEP NEUR SWB

Replication DEP -0.0002 (0.0057) 0.0019 (0.0051) -0.0023 (0.0048)

NEUR 0.0009 (0.0048) 0.0028 (0.0053) -0.0066 (0.0049)

SWB 0.0057 (0.0054) 0.0034 (0.0049) -0.005 (0.0047)

References

Note : Intercepts estimates from bivariate LD score regression [1] based on the meta-analyses used 

in discovery and replication (or prediction) analyses in this study. A non-zero intercept implies 

some potential sample overlap. The repliction sample includes results from the Health and 

Retirement Study and Add Health cohorts. Discovery sample estimates for SWB omit HRS, which 

is the only GWAS that includes it in the main MTAG results reported. Standard errors are in 

parentheses.

[1] Bulik-Sullivan, B. et al . An atlas of genetic correlations across human diseases and traits. 

Nat. Genet.  47, 1236–1241 (2015).

Supplementary Table 15. LDSC Intercept Estimates between Discovery and Replication 

Summary Statistics
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HRS and Add 

Health
HRS Add Health

Beta 0.884 0.787 1.070

SE (0.216) (0.278) (0.352)

SNPs 59 59 59

HRS and Add 

Health
HRS Add Health

Beta 0.756 0.913 0.466

SE (0.213) (0.266) (0.409)

SNPs 37 37 37

HRS and Add 

Health
HRS Add Health

Beta 0.991 1.263 0.503

SE (0.335) (0.460) (0.460)

SNPs 43 43 43

Supplementary Table 16. Replication of Genome-Wide Significant MTAG Loci

Panel A: DEP

Panel B: NEUR

Panel C: SWB

Note : Slope (Beta) of regressing the replication effect size on winner's curse 

adjusted MTAG effect size estimates, constraining the intercept to 0. SNPs is the 

number of significant SNPs included in the regression. For the winner's curse 

adjustment, the effect sizes of each trait are fit to a spike-and-slab distribution 

through maximum likelihood estimation as described in the Online Methods. For 

DEP, NEUR, SWB we estimate the fraction of SNPs with null effects (pi_null) to 

be 0.598, 0.652, and 0.633 and the variance of standardized effect sizes (tau^2) to 

be 3.12e-06, 5.05e-6, and 2.15e-6. Standard errors (SE) are in parentheses.
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Panel A. Prediction in HRS

DEP (N =8,307) NEUR (N =8,197) SWB (N =6,857)

Incremental R
2

GWAS
0.873% 

(0.510% to 1.313%)

1.330% 

(0.868% to 1.871%)

1.482% 

(0.954% to 2.095%)

MTAG
 1.036% 

(0.653% to 1.486%)

1.603% 

(1.103% to 2.168%)

1.788% 

(1.226% to 2.396%)

Change in Incremental R
2

MTAG vs. GWAS
0.163% 

(0.022% to 0.315%)

0.273% 

(0.017% to 0.552%)

0.306% 

(-0.052% to 0.639%)

Expected Change 0.192% 0.581% 0.418%

Panel B. Prediction in Add Health

DEP (N =4,334) NEUR (N =4,332) SWB (N =3,673)

Incremental R
2

GWAS
1.233% 

(0.688% to 1.889%)

1.168% 

(0.586% to 1.887%)

0.658% 

(0.228% to 1.218%)

MTAG
1.430% 

(0.833% to 2.178%)

1.742% 

(1.006% to 2.566%)

1.170% 

(0.577% to 1.923%)

Change in Incremental R
2

MTAG vs. GWAS
0.197% 

(-0.069% to 0.465%)

0.575% 

(0.223% to 0.999%)

0.512% 

(0.177% to 0.946%)

Expected Change 0.251% 0.524% 0.267%

Panel C. Meta-analyzed Prediction Results in HRS and Add Health

DEP (N =12,641) NEUR (N =12,529) SWB (N =10,530)

Incremental R
2

GWAS
0.997% 

(0.693% to 1.359%)

1.274% 

(0.897% to 1.676%)

1.195% 

(0.812% to 1.636%)

MTAG
1.171% 

(0.843% to 1.564%)

1.651% 

(1.236% to 2.114%)

1.573% 

(1.151% to 2.069%)

Change in Incremental R
2

MTAG vs. GWAS
 0.175% 

(0.043% to 0.313%)

0.377% 

(0.156% to 0.610%)

0.378% 

(0.123% to 0.648%)

Expected Change 0.214% 0.562% 0.385%

Supplementary Table 17. Incremental R
2
 and Change in Incremental R

2 

Note:  Incremental R
2

 is the increase in R
2

 from adding the polygenic score as a covariate to a 

regression of the phenotype which includes covariates for year of birth, year of birth squared, sex, their 

interaction, and ten principal components. 95% confidence intervals for the incremental R
2

, computed 

from 1,000 bootstrap replicates as described in the Online Methods, are reported in parentheses. 

Expected Change is defined by the anticipated increase in incremental R
2

 given the observed increase 

in mean χ
2
-statistic and estimated heritability. All scores estimated in meta-analyses excluding HRS.
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Panel A. Prediction in HRS

DEP (N =8,307) NEUR (N =8,197) SWB (N =6,857)

Incremental R
2

GWAS
0.299% 

(0.109% to 0.523%)

 0.410% 

(0.171% to 0.694%)

0.410% 

(0.152% to 0.712%)

MTAG
0.336%

 (0.138% to 0.570%)

0.451%

 (0.197% to 0.735%)

0.539% 

(0.256% to 0.893%)

Change in Incremental R
2

MTAG vs. GWAS
0.037% 

(-0.068% to 0.142%)

0.041% 

(-0.108% to 0.204%)

0.130%

 (-0.050% to 0.319%)

Panel B. Prediction in Add Health

DEP (N =4,334) NEUR (N =4,332) SWB (N =3,673)

Incremental R
2

GWAS
0.544%

 (0.192% to 1.005%)

0.625%

 (0.229% to 1.094%)

0.358% 

(0.072% to 0.819%)

MTAG
0.663%

 (0.260% to 1.168%)

0.963%

 (0.459% to 1.572%)

0.512% 

(0.145% to 1.048%)

Change in Incremental R
2

MTAG vs. GWAS
0.119%

 (-0.102% to 0.350%)

0.338%

 (0.069% to 0.638%)

0.153%

 (-0.060% to 0.415%)

Panel C. Meta-analyzed Prediction Results in HRS and Add Health

DEP (N =12,641) NEUR (N =12,529) SWB (N =10,530)

Incremental R
2

GWAS
0.383%

 (0.188% to 0.605%)

0.484% 

(0.271% to 0.738%)

0.392%

 (0.189% to 0.655%)

MTAG
0.448%

 (0.233% to 0.697%)

0.628%

 (0.391% to 0.902%)

0.530%

 (0.268% to 0.846%)

Change in Incremental R
2

MTAG vs. GWAS
0.065%

 (-0.036% to 0.172%)

0.143%

 (-0.005% to 0.293%)

0.138%

 (-0.003% to 0.300%)

Note:  Incremental R
2

 is the increase in R
2

 from adding the polygenic score as a covariate to a 

regression of the phenotype which includes covariates for year of birth, year of birth squared, sex, their 

interaction, and ten principal components. 95% confidence intervals for the incremental R
2

, computed 

from 1,000 bootstrap replicates as described in the Online Methods, are reported in parentheses. 

Expected Change is defined by the anticipated increase in incremental R
2

 given the observed increase 

in mean χ
2
-statistic and estimated heritability. All scores estimated in meta-analyses excluding HRS.

Supplementary Table 18. Incremental R
2
 and Change in Incremental R

2
 (Pruned SNPs)
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N loci p < .01 p < .001 p < 5E-8

MTAG 264 234 206 108

88.64% 78.03% 40.91%

Bolormaa 161 151 137 88

93.79% 85.09% 54.66%

S_Het 240 218 194 102

90.83% 80.83% 42.50%

S_Hom 86 81 66 54

94.19% 76.74% 62.79%

N loci p < .01 p < .001 p < 5E-8

MTAG not Bolormaa 102 81 64 17

79.41% 62.75% 16.67%

Bolormaa not MTAG 9 6 5 0

66.67% 55.56% 0.00%

MTAG not S_Het 43 31 22 5

72.09% 51.16% 11.63%

S_Het not MTAG 20 13 8 0

65.00% 40.00% 0.00%

MTAG not S_Hom 181 154 128 52

85.08% 70.72% 28.73%

S_Hom not MTAG 12 8 4 0

66.67% 33.33% 0.00%

Panel 1: Replication rate with GIANT phenotypes across all hits

Supplementary Table 31. Replication of Loci Identified in Multitrait Analyses of 

GIANT Phenotypes

Panel 2: Replication rate with GIANT phenotypes across distinct hits

Notes : GIANT phenotypes include body mass index (BMI), height, and waist to hip ratio 

adjusted for BMI (WHRadjBMI). Discovery summary statistics are from Randall et al. 

2013. Replication summary statistics are calculated by comparing earlier summary statistics 

(Randall et al. 2013) to later summary statistics (Locke et al. 2015 [BMI]; Wood et al. 2014 

[height]; Shungin et al. 2015 [WHRadjBMI] ). Replication P  values for MTAG are defined 

as 3*minimum(p[BMI], p[height], p[WHRadjBMI]).

N loci replicated

N loci replicated
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