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1 Notation

We consider a randomized placebo-controlled vaccine efficacy trial that measures the first occurrence
of a clinical endpoint event (e.g., a protocol-specified dengue disease endpoint) during a pre-specified
follow-up period. Let Y denote the indicator of the first occurrence of the clinical endpoint. Let
S be a continuous biomarker that measures, at a fixed time t0 after randomization (e.g., at Month
13), an immune response to prevent the clinical endpoint event. It is of interest to evaluate S as a
correlate of protection against the clinical endpoint; therefore, we restrict the analysis to subjects
who are endpoint-free at t0 and denote this status as V = 1. The biomarker S is observable only
in subjects with V = 1; otherwise S is unobserved. In placebo recipients with V = 1, S is allowed
to vary at t0. We consider a two-phase outcome-dependent case-cohort sampling design with a
vector of continuous and/or discrete baseline covariate(s) X measured in everyone (phase 1) and
the biomarker S only measured in all cases with V = 1 and an unstratified random subcohort of
controls (phase 2). We assume that baseline values, Sb, of the biomarker are measured in a subset
of those with S measured. Let Z be the vaccine group indicator (Z = 1, vaccine; Z = 0, placebo).

2 Estimand of Interest

Let Y (z), S(z) and V (z) be the observations of Y , S and V under assignment to treatment group
Z = z. Define

risk(i)(s1, s0, x) = P (Y (i) = 1|S(1) = s1, S(0) = s0, X = x, V (1) = 1), i = 0, 1. (1)

For simplicity of exposition, henceforth all probability statements involving S(Z) implicitly condi-
tion on V (Z) = 1. Under the assumption that P (Y (1) 6= Y (0)) = 0, the causal estimand of interest
is

V E(s1) = 1− risk(1)(s1)
/

risk(0)(s1).

We assume that
risk(0)(s1, s0, x) = risk(0)(s0, x) ∀(s0, x), (2)
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i.e., for placebo recipients, the risk of registering the study endpoint is assumed to be conditionally
independent of the value of S under assignment to vaccine given the values of S and X under
assignment to placebo. Assumption (2) and the Bayes Theorem yield

risk(0)(s1) =

∫∫
risk(0)(s1, s0, x)

f(s1|S(0) = s0, X = x)g(s0|X = x)h(x)

p(s1)
ds0dx

=

∫∫
risk(0)(s0, x)f(s1|S(0) = s0, X = x)g(s0|X = x)h(x) ds0dx∫∫

f(s1|S(0) = s0, X = x)g(s0|X = x)h(x) ds0dx
. (3)

3 Vaccine Efficacy Curve Estimation Method

To estimate V E(s1), we first estimate separately the probabilities risk(1)(s1) and risk(0)(s1). To
estimate risk(1)(s1), we fit an inverse probability weighted (IPW) logistic regression model for
two-phase designs to group Z = 1 data (implemented, e.g., in the R osDesign package). Under
assumption (2), we estimate risk(0)(s1) by estimating each component in (3). Analogously to
risk(1)(s1) estimation, we estimate the probability risk(0)(s0, x) by fitting an IPW logistic regression
model for two-phase designs to group Z = 0 data.

Further, to estimate the conditional density f(s1|S(0) = s0, X = x), we adopt the assumption that

f(s1|S(0) = s0, X = x) = f(s1|Sb = s0, X = x) ∀(s0, x). (4)

Assumption (4) may be plausible as both S(0) and Sb measure the pre-existing/natural immunity
level, only S(0) is measured t0 time units later. If diagnostics indicate that assumption (4) is
plausible, we will directly assess f(s1|Sb = s0, X = x) based on group Z = 1 data. If diagnostics
indicate that assumption (4) might be violated, we will first examine the association of S(0) and
Sb in group Z = 0, and, if there is a noticeable trend, an offset will be used to calibrate f(s1|Sb =
s0, X = x). To estimate f(s1|Sb = s0, X = x), we use a nonparametric kernel density estimator
based on a a subset of data in group Z = 1 with an available Sb measurement (using the generalized
product kernel method as described by Hall, Racine, and Li (2004) and implemented in the R np

package). To obtain unbiased kernel density estimates, the two-phase sampling design needs to
be accounted for. One approach, considered in the CYD14/15 analyses and yielding unbiased
estimates, is to randomly delete a subset of cases in the immunogenicity set to attain the same
case:control ratio as is present in the target population (in CYD14/15, the ITT set at-risk at
month 13 and with no observed dengue endpoint between Month 0 and Month 13). Another, more
powerful, approach would use weighting, however, we conjecture that, in the CYD14/15 analyses,
minimal efficiency gain would be achieved given that most of the data originate from the controls.

Similarly, we use a nonparametric kernel density estimator for the conditional density g(s0|X = x)
based on data in group Z = 0 after adjustment of the case:control ratio by random deletion of
a subset of cases. We estimate the multivariate density h(x) by a nonparametric kernel density
estimator using all available data in the target population. In CYD14/15, all components of X are
discrete, and therefore we estimate P (X = x) for each level of x by a sample proportion in the
target population.

Confidence intervals (CI) are obtained by assessing V E(s1) based on 103 bootstrap samples from
the ITT set at-risk at Month 13 and with no prior infection, where cases and controls were sampled
separately yielding a fixed number of cases and controls in each bootstrap sample. Throughout the

2



bootstrap procedure, the kernel conditional density estimates use optimal bandwidths estimated
based on the original data-set. Wald bootstrap 95% pointwise and simultaneous CI for V E(s1) are
reported.

3.1 Simultaneous Confidence Interval for the Vaccine Efficacy Curve

To obtain the Wald simultaneous CI for the V E(s1) curve, we denote RR(s1) = 1− V E(s1),

U = sup
s1

∣∣{log R̂R(s1)− logRR(s1)}/SE(log R̂R(s1))
∣∣ ,

and, for a fixed α ∈ (0, 1), we define cα as the solution to the equation

P (U ≤ cα) = 1− α.

Further, we denote R̂R
(b)

(s1) as the estimator for RR(s1) based on the b-th bootstrap sample,

b = 1, . . . , B, and SE∗(log R̂R(s1)) as the sample standard deviation of the bootstrap estimates

log R̂R
(1)

(s1), . . . , log R̂R
(B)

(s1). Let U (b) = sups1
∣∣{log R̂R

(b)
(s1)−log R̂R(s1)}/SE∗(log R̂R(s1))

∣∣.
Because the distributions of U and U (b) are asymptotically equivalent, we estimate cα by c∗α defined
as the empirical quantile in the bootstrap sample U (1), . . . , U (B) at the probability level 1 − α.
Finally, the Wald bootstrap (1 − α)× 100% simultaneous CI for the V E(s1) curve is obtained by
transformation of the bounds

(lα(s1), uα(s1)) = log R̂R(s1)∓ c∗αSE∗(log R̂R(s1)).

Note that the width of the simultaneous CI depends on the range of marker values s1.

4 Vaccine Efficacy Curve Inferential Methods

It is of interest to evaluate, separately, the following three null hypotheses, each against a general
alternative hypothesis:

(i) H0 : V E(s1) = V E for all s1 ∈ [smin, smax] =: S,

(ii) H0 : V Ex(s1) = V Ey(s1) for s1 ∈ [sl, su] ⊆ S, where, for serotypes x and y, V Ex and V Ey
denote serotype-specific vaccine efficacies as functions of homologous titers, and

(iii) H0 : V ECYD14(s1) = V ECYD15(s1) for s1 ∈ [sl, su] ⊆ S.

We employ the method of inverting simultaneous confidence intervals to obtain p-values for tests
of the null hypotheses (i)–(iii).

For testing (i), we obtain the two-sided p-value as the value α solving the equation

inf
s1∈S

uα(s1) = sup
s1∈S

lα(s1).

For testing (ii), denote RRx(s1) = 1− V Ex(s1) and RRy(s1) = 1− V Ey(s1). Analogously to Sec-
tion 3.1, we first construct the Wald bootstrap simultaneous CI for the logRRx(s1)− logRRy(s1)
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curve, and then invert the simultaneous CI to obtain the p-value. Let SE∗(log R̂Rx(s1)−log R̂Ry(s1))

denote the sample standard deviation of the bootstrap estimates log R̂R
(1)

x (s1)− log R̂R
(1)

y (s1), . . . ,

log R̂R
(B)

x (s1)− log R̂R
(B)

y (s1). Let

U
(b)
d = sup

s1∈[sl,su]

∣∣∣ log R̂R
(b)

x (s1)− log R̂R
(b)

y (s1)−
(

log R̂Rx(s1)− log R̂Ry(s1)
) ∣∣∣

SE∗(log R̂Rx(s1)− log R̂Ry(s1))
.

We define c∗dα as the empirical quantile in the bootstrap sample U
(1)
d , . . . , U

(B)
d at the probability

level 1−α. Subsequently, the Wald bootstrap (1−α)×100% simultaneous CI for the logRRx(s1)−
logRRy(s1) curve is(

ldα(s1), u
d
α(s1)

)
= log R̂Rx(s1)− log R̂Ry(s1)∓ c∗dα SE∗(log R̂Rx(s1)− log R̂Ry(s1)).

The two-sided p-value for the test of (ii) is defined as the minimum of α1 and α2 that satisfy

inf
s1∈[sl,su]

udα1
(s1) = 0, sup

s1∈[sl,su]
ldα1

(s1) ≤ 0,

sup
s1∈[sl,su]

ldα2
(s1) = 0, inf

s1∈[sl,su]
udα2

(s1) ≥ 0.

Note that at least one of α1 and α2 always exists.

For testing (iii), we replace RRx(s1) and RRy(s1) in the test of (ii) with RRCYD14(s1) and

RRCYD15(s1) and, due to independence, we obtain SE∗(log R̂RCYD14(s1)− log R̂RCYD15(s1)) as[
SE∗

2
(log R̂RCYD14(s1)) + SE∗

2
(log R̂RCYD15(s1))

]1/2
.

The Wald bootstrap (1 − α) × 100% simultaneous CI for the logRRCYD14(s1) − logRRCYD15(s1)
curve is(
lDα (s1), u

D
α (s1)

)
= log R̂RCYD14(s1)−log R̂RCYD15(s1)∓c∗Dα SE∗(log R̂RCYD14(s1)−log R̂RCYD15(s1)).

The two-sided p-value for the test of (iii) is defined as the minimum of α1 and α2 that satisfy

inf
s1∈[sl,su]

uDα1
(s1) = 0, sup

s1∈[sl,su]
lDα1

(s1) ≤ 0,

sup
s1∈[sl,su]

lDα2
(s1) = 0, inf

s1∈[sl,su]
uDα2

(s1) ≥ 0.

5 Vaccine Efficacy Curve Estimation and Inference in the Dengue
CYD Vaccine Trials

The analysis of the combined CYD14/15 trial data is restricted to the age range of 9–16 years.
The probabilities risk(1)(s1) and risk(0)(s1) are assessed using logistic change point models (with
a ‘hinge’) if supported by goodness-of-fit assessments, and using logistic linear models otherwise.
The threshold in the hinge point model is estimated using a grid search method (Fong, Huang,
and Gilbert, 2015) using the R chngpt package, which is hosted by the Comprehensive R Archive
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Network. The combined CYD14/15 VE curve analyses in 9–16 year olds control for the categorical
baseline covariates sex, age category (9–11 vs. 12–16 years), and country. The ITT set at-risk
at Month 13 and without a prior dengue endpoint is treated as the Phase I cohort of interest
in the two-phase sampling design framework. In the overall (serotype-specific) analyses, controls
are defined as participants who never registered the overall (serotype-specific) endpoint between
Months 0–25 and who were at-risk at Month 13, and cases are defined as participants who did not
register the overall (serotype-specific) endpoint between Months 0–13 but did so between Months
13–25.

To assess the validity of assumption (4) in V E(s1) estimation, we examine the association of S(0)
and Sb in arm Z = 0 for each of the six biomarkers by fitting a robust linear regression model of
Yohai (1987) and a locally-weighted polynomial regression model, and by estimating Spearman’s
correlation coefficient, r.

To test the null hypotheses (ii) and (iii) in Section 4, we need to specify the interval [sl, su] of marker
values. In the combined CYD14/15 analysis of 9–16 year olds, it is of interest to test whether
serotype-specific V E(s1) curves in (ii) and trial-specific V E(s1) curves in (iii) vary in the tails of
the Month 13 titer distribution. For consistency with the definition of the neutralization response
categories, we define the [sl, su] intervals by using percentiles of the titer readout distribution
pooling over the vaccine and placebo groups in both trials and the four serotypes, whose unbiased
estimation requires accounting for the case-cohort marker sampling design. More specifically, we
use the first tertile estimate, 2.1, as a cut-off for defining the left tail (identical to the ‘low’ response
category), i.e., [sl, su] = [log10(5), 2.1], and the 80th percentile estimate, 3.1, as a cut-off for defining
the right tail, i.e., [sl, su] = [3.1, 5.0].

We will conduct 5 tests of (i) (i.e., for AUC-MB and the four serotypes pooling over both trials), 12
tests of (ii) (i.e., for 6 serotype pairs and 2 marker intervals pooling over both trials), and 10 tests
of (iii) (i.e., for AUC-MB and the four serotypes, and 2 marker intervals comparing the two trials).
All tests involving the four serotypes are treated as multiple comparison, i.e., 4 tests of (i), 12 tests
of (ii), and 8 tests of (iii). For each set of multiple comparisons, we will report unadjusted p-values
as well as Holm-adjusted p-values controlling the familywise error rate and q-values controlling the
false discovery rate. We define statistical significance as a q-value ≤ 0.2 for all multiply compared
serotypes, and as an unadjusted p-value ≤ 0.05 for AUC-MB.
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