
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

The authors seek to identify how temporally-oriented attention alters neural representations of visual 
stimuli that are relevant to behavior (targets) and those that are irrelevant (distractors). They apply a 
rigorous EEG-based decoding approach to quantify the fidelity of neural representations at a 
millisecond timescale, and through several clever analyses, establish not only that target 
representations are enhanced when a cue is presented, but also that the interfering effects of 
irrelevant distractor stimuli on EEG decoding are delayed. Furthermore, the authors evaluated whether 
anticipatory alpha oscillations are related to the fidelity of neural representations. Indeed, on trials 
with attenuated alpha power at posterior recording sites, target representations were enhanced and 
distractor interference was reduced. The authors conclude that anticipatory state, either altered via a 
temporal attention cue or via endogenous changes in posterior alpha power, can alter processing of 
relevant visual targets, even when distracting visual stimuli are presented. 

Altogether, I think this manuscript will make a really excellent contribution to Nature Communications. 
I suggest several additional analyses that would further expand its reach, especially by evaluating the 
relationship between neural representations and behavioral performance. While I encourage the 
authors to attempt these analyses and report results whichever way they turn out, the manuscript 
stands quite strongly as-is, and negative results from such analyses will not adversely alter my 
enthusiasm for this report. I also have several questions about the analyses & results, which the 
authors may be able to address via minor revisions of the text and figures. 

Major 
1. Can the authors relate aspects of neural target/distractor processing/representation to behavioral
performance on the task?

2. Related to (1), behavioral performance should be more comprehensively analyzed/reported. This
appears to be an orientation recall task, like is commonly used with visual WM experiments. There is a
recent literature on effects of visual distraction on visual WM representations and behavioral
performance (see Rademaker et al, 2015; Bettencourt & Xu, 2015, for examples). What kinds of
effect(s) does the visual distractor stimulus have on the behavioral report? Are response error
distributions biased in the direction of the distractor? Are they less precise? In general, I encourage
the authors to report parameters of a mixture model (e.g., Bays, Zhang & Luck, or similar model) fit
to error histograms, and discuss whether or not they see evidence for distractor-induced biases and/or
broadening of response distributions. This will also help clarify the source of the increased errors with
distractors presently plotted in Fig. 1b. Perhaps one or another of these mixture model parameters will
be related to neural measures of target/distractor representations (point 1 above).

3. For all decoding analyses, it seems as though alpha-filtered data were used (after removing all
signal from the 8-14 Hz alpha band). Is it possible to decode orientation representations during the
post-target/distractor period using this alpha signal alone? I’m mainly thinking of the recent work of
Joshua Foster & Ed Awh. While they use spatial tasks, it could be that subjects are using a spatial
strategy here for the delayed response task, which is quite similar to the WM tasks they use. It would
be especially interesting to see whether the distractor alters the fidelity of the alpha-band
representation in a similar manner to how it alters the broad-band (minus alpha) representation, as
reported in Fig. 3. In any case, some discussion of how these results fit into that literature may be
useful.
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4. The alpha range chosen for the analyses reported in Fig. 4 is quite broad – is it possible to limit this 
analysis to each individual participant’s peak alpha frequency (if available)? Or, instead, discuss the 
potential advantages/limitations of using a larger frequency band.  
 
5. Is there a latency difference in the distractor interference effect (as in Fig. 3b) as a function of pre-
trial alpha (perhaps within uncued trials)? It appears as though there is in Fig 4c, but a similar plot to 
Fig. 3b may be useful to readers.  
 
6. Is it possible to demonstrate whether the ‘protective window’ (distractor interference latency) is 
utilized by participants? Perhaps the authors could find a way to split trials based on long vs short-
latency distractor interference effects and compare behavioral performance? Such a scheme may be 
challenging, and perhaps this remains a question best addressed by future experiments. But I would 
be interested to hear the authors thoughts on this (related to points 1 & 2 above)  
 
7. On pg 14, the methods which describe trial binning are somewhat confusing. Specifically, this 
sentence is challenging to interpret: “For each bin, we included training trials whose angular difference 
from the test trial were within ± 22.5 degrees of the bin’s center”. First, what does the angular 
difference from the test trial have to do with the training bins? Second (and perhaps I’ve 
misinterpreted), does this mean that, for each bin used for training, all trials within a 45-deg wide 
feature wedge (1/4 of feature space) were used? If so, does this mean a given training trial counted 
multiple times (as the bins were spaced by 10 deg it seems)? That seems odd to me – some 
justification of this choice, or a demonstration that using exclusive/non-overlapping boundaries for 
each bin would help clarify, if this is a correct interpretation.  
 
8. How will the data/code be shared?  
 
Minor  
1. In the abstract, there’s a small typo: “but, instead, delay[s] it”  
 
2. Fig. 1c – is it possible to break out the overlaid ‘fidelity’ plot (which is on top of the pattern 
similarity image) into a separate panel? This panel is especially dense at present, and readers may 
benefit from smaller chunks of digestible data. Additionally, adding a color bar for panel 1c would also 
help readers interpret the data.  
 
3. Fig. 1c – can this analysis be shown separately for target representations (on no-distractor trials) 
and distractor representations (on distractor+ trials)?  
 
4. Fig. 4a-b – again, very dense figure panels. If possible, separating the topographies and scatterplot 
from the TFR would make these figures easier to digest, and features of the data easier to see. This 
would also avoid the problem of covering up portions of panel a with the topographies.  
 
5. Are trials culled based on eye movements? The methods only describe removing trails with 
identified blink artifacts  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
Using EEG decoding methods in a visual orientation reproduction task with preparatory auditory cues 
and visual distractors, the manuscript shows that the representations of target and distractor 
orientations in broad-band time-domain EEG signals (ERPs) are affected by the preparatory cue in two 



specific ways: (1) enhancing the representation of the target stimulus; and (2) delaying the 
interference of distractors with target representations. These two changes in EEG target decoding by 
the auditory cue are then related to the attenuation of posterior alpha oscillations. The authors 
conclude that anticipation is mediated by alpha oscillations through target representation 
enhancement and delayed distractor interference.  
 
In my view, the data provided in this manuscript is insufficient to advance this conclusion. I have 
three main objections:  
 
1) The preparatory cue is shown to improve behavioral performance in this task, but none of the brain 
signal analyses are then shown to be directly related to this behavioral effect. The EEG differences 
observed between cued and uncued trials could be related to multisensory processing, divided 
attention, and not specifically to anticipating visual perception. This is particularly disappointing given 
the fact that the decoding methods used can power single-trial analyses (see Fig. 4d) and thus relate 
to behavioral errors even on a trial-by-trial basis (see for instance Kok et al. 2012). Such approaches 
could be used at several points in the manuscript to validate the interpretations on the relation of EEG 
signals with behavior. For instance, the 2 mechanisms identified in Fig. 3 could be specifically linked to 
reproduction error by restricting the analysis to uncued trials and checking correlation between cue 
decoding and reproduction error, and distractor interference latency and reproduction error. Similarly, 
the relationship of alpha power with decoding identified in Fig. 4 should also correlate with 
reproduction error to validate the current interpretation of the manuscript. The behavioral impact of 
the visual mask is also known to be different depending on the similarity of target and distractor 
(Magnussen et al. 1991; Magnussen and Greenlee 1992, 1999; Rademaker et al. 2015), this could 
also be validated in their behavioral data and then used to test if distractor orientation difference 
affects target decoding in a direction consistent with the behavioral effects. Also the ISI dependence of 
the behavioral effect in Fig. 1b could be used to test the relationship of target decoding effects and 
behavior. An additional component of their task that could provide behavioral parameters to relate 
with the subjects' anticipatory state is the ITI. Despite the flat hazard rate defined for the ITI, it is 
likely that there is a subjective urgency that can have behavioral impact (Janssen and Shadlen, 2005) 
and impact correspondingly ERP decoder modulations.  
 
2) The association of alpha-band activity with the two EEG mechanisms (ERP target decoding accuracy 
and distractor interference latency) is sketchy and not consistent. Figure 4c-d show nicely how pre-
stim alpha power acts very similarly to the anticipatory cue, in relation to the distractor interference 
effect of Fig. 3. However, these same panels show that pre-stim alpha does not reproduce the main 
effect of the auditory cue (main effect of cue in Fig. 3c). This is in contrast with the message of Fig. 
4b. Are there 2 alphas? A cue-induced alpha that is responsible for the main effect of cue, and a 
spontaneous alpha that accounts for the interaction effect (distractor interference)? While the 
spontaneous alpha analysis in Fig. 4c-d is very suggestive, the interaction effect reported in Fig. 3 is 
triggered by the cue presentation, so it should also be present in the analysis of cue-induced alpha. 
Does the cue-induced alpha correlate in an interindividual analysis with the magnitude of the 
interaction effect? In Discussion it is suggested that both spontaneous and cue-induced alpha correlate 
with the main effect and the interaction effect ("This was the case both for the task-related 
modulation..."), but this is currently not supported by Fig. 4. An additional aspect of alpha-band 
activity that is not addressed in this analysis is the role of alpha phase. Recent studies are showing 
that alpha paces the sequence of perceptual cycles (VanRullen 2016) and that auditory stimuly reset 
the posterior alpha rhythm, with perceptual consequences (Romei et al., 2012). The timings and 
intervals of interest in the current task are within one alpha cycle, possibly making the effects 
sensitive to alpha phase. Could a sizable part of the behavior and target decoding results be explained 
by the alpha phase-resetting of the auditory cue?  
 



3) out of the 2 mechanisms identified in this manuscript, the main effect of the cue has already been 
reported before (Kok et al 2012). The manuscript does not discuss this influential, recent result at all.  
 
In addition I have a number of methodological concerns:  
 
1) “Participant-specific trial-averaged ERP and decoding time courses were subsequently smoothed 
with a Gaussian kernel with a 15 ms standard deviation”. I miss a strong argument to perform such 
operation in the final average. This looks like a “cosmetic” preprocessing step and “it obscures the 
ability to evaluate the physiological plausibility of an effect, and thereby hides relevant complementary 
information from readers” (Van Ede & Maris 2016).  
 
2) "Significant clusters". Wrong concept that appears repeatedly in the manuscript (Figure 3 and 
Figure S1 captions; “three significant clusters”, page 4, etc). The non-parametric cluster-based 
permutation test serves to test a null hypothesis: The data (not the parameters estimated from the 
data) in different experimental conditions came from the same probability distribution, so they are 
exchangeable. The alternative hypothesis consists that the data in different experimental condition do 
NOT come from the same probability distribution. Stating “there is a significant cluster” is simply 
wrong. The statistical significance indicates an informed decision about the uncertainty to accept or 
reject the null hypothesis but never about “when” (time) or “where” (topography, frequency) those 
differences take place. The correct statistical conclusion would be that the authors have found a 
significant difference between condition A v.s. condition B. I encourage the authors to revisit Maris & 
Oostenveld (2007) and Maris (2012). Check:  
 
http://www.fieldtriptoolbox.org/faq/how_not_to_interpret_results_ from_a_cluster-
based_permutation_test  
 
 
3) EEG orientation decoding (in Methods). The authors state that “a 250 ms pre-target baseline was 
subtracted”. Was it performed at a single-trial level? Such a short period will contain a lot of noise and 
a demeaning operation (mean subtraction of the entire epoch) would be way more efficient. If data is 
stationary, single-trial baseline correction would correspond to baseline correction averaging the data 
across trials. Please check the stationarity of your data: do you find significant differences in your ERP 
and decoding plot subtracting the single trial baseline estimates v.s. the grand-mean baseline 
subtraction? If the answer is positive, please consider a more careful data normalization (see 
Grandchamp & Delorme 2011).  
 
 
Minor comments:  
 
Please provide the number of trials per condition left after artifact rejection. This is important 
information to interpret the decoding results and to design future experiments based on your findings. 
As much as possible, authors should follow well-established guidelines (Keil et at., 2014).  
 
Figure 1c: There is no color bar associated. Please add the proper color bar to the figure or specify in 
the figure legend that Figure 1c and d share the same color bar.  
 
Figure 1c summary decoding statistic is not clear. The y-scale is difficult to read and this statistic is 
the one employed throughout the paper. I think it deserves a subfigure in its own right. Figure 2bc in 
Wolf et al., (2017) could be a good choice.  
 
Figure 3a: the legend is confusing and it is not well explained. For example, the black line “distr –“ 



never appears in the figure. Same goes to Figure S1a. Please clarify this because takes time to 
understand your key figures.  
 
Figure 4b,c inset plots are too small.  
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Dear Editors, Dear Reviewers, 
 
We were very pleased to receive such overall enthusiasm for our manuscript, as well as the large 
number of constructive comments and suggestions for further analyses. Having embraced this 
valuable feedback, we are now pleased to resubmit a considerably improved and much more thorough 
and comprehensive manuscript. 
 
For your convenience, we also summarise the most important revisions below: 

1. We have included a new complementary analysis that further strengthens our conclusion that 
preparatory cues facilitate target processing in the face of temporal distractors by reducing 
their immediate interference. We outline these results below, before turning to our point-by-
point replies.  

2. To better convey the key features of the behavioural data and of the applied decoding 
approach, we have separated previous Figure 1 (task, performance, and decoding) into two 
separate figures. For of the behavioral data (updated Figure 1), we have now added the results 
from a mixture-modelling analysis revealing widespread effects of the cues on performance. 
To better emphasize the utility of our decoding approach (updated Figure 2), we now first 
showcase that we can individuate and track in time both target and distractor representations, 
even when these are presented in close temporal proximity.  

3. We have now embedded several relevant references brought forward by both reviewers. 
4. We have modified how we report our cluster-based permutations statistics to adhere to 

recommended guidelines. 
5. We now explicitly address the correspondence between target decoding and behavioral 

performance. 
6. We have moved the previous the Supplementary Figure showing the corresponding ERP 

results into the main body, recognising that the comparison between decoding and ERP 
results is relevant for several key points in our manuscript. 

7. We have added a Supplementary Figure demonstrating that our main effect of interest are 
invariant to the chosen amount of data smoothing. 

 
We are again very grateful for your time in considering our manuscript.  
 
Yours faithfully, 
 
Freek van Ede, Sammi Chekroud, Mark Stokes, Kia Nobre 
  



Before turning to our point-by-point replies 
 

Our central aim was to investigate how preparatory cues prioritise target representations relative to 
temporally competing distractor stimuli. We have now included the outcomes of a new, 
complementary, analysis which we feel provides further direct support for our conclusions. We 
introduce and explain this new analysis before turning to our point-by-point replies. As you will see 
below, this analysis provides converging evidence supporting our interpretation that cues can help 
overcome temporally competing distractors by reducing their immediate interference.  
 
Specifically, we have now added the following to our Results and Supplemental Information (please 
note that the term “reference set” is now used to refer to what we previously termed “training set”, 
following a comment from reviewer 1):  
 

p7/8 (Results): “[…] The pattern of results suggested that cues are particularly useful for 
protecting target analysis from distraction. To test this possibility more directly, we performed 
an additional, complementary analysis. We reasoned that, if cues protected target analysis from 
interference, then target representations in distractor-present trials with a cue should more 
closely resemble distractor-absent trials than should distractor-present trials without a cue (i.e., 
in distractor-present trials, cues should make the target representation appear more as if there 
was no distractor). To test this prediction, we re-evaluated target orientation decoding, but this 
time only included distractor-absent trials (irrespective of cue condition) in our reference 
(“training”) set. This confirmed that, indeed, immediately after distractor onset, the target 
orientation could be better decoded from cued compared to uncued distractor-present trials 
(Fig. S2). 
 

 
 

Figure S2. Target decoding in distractor-present trials, when only including distractor-absent trials in 
the reference set. (a) Orientation decoding tuning profiles separately for cued and uncued trials, as well as 
their difference Reference sets were the same for cued and uncued trials; the reference set simply contained 
all distractor-absent trials, independent of cue-presence. (b) Corresponding time-resolved summary statistics 
of target decoding as a function of cue condition. Shadings represent ± 1 s.e.m. calculated across participants 
(n = 30). 

 
  



Point-by-point replies 
 
Reviewer 1 
The authors seek to identify how temporally-oriented attention alters neural representations of visual 
stimuli that are relevant to behavior (targets) and those that are irrelevant (distractors). They apply a 
rigorous EEG-based decoding approach to quantify the fidelity of neural representations at a 
millisecond timescale, and through several clever analyses, establish not only that target 
representations are enhanced when a cue is presented, but also that the interfering effects of irrelevant 
distractor stimuli on EEG decoding are delayed. Furthermore, the authors evaluated whether 
anticipatory alpha oscillations are related to the fidelity of neural representations. Indeed, on trials 
with attenuated alpha power at posterior recording sites, target representations were enhanced and 
distractor interference was reduced. The authors conclude that anticipatory state, either altered via a 
temporal attention cue or via endogenous changes in posterior alpha power, can alter processing of 
relevant visual targets, even when distracting visual stimuli are presented.  
 
Altogether, I think this manuscript will make a really excellent contribution to Nature 
Communications. I suggest several additional analyses that would further expand its reach, especially 
by evaluating the relationship between neural representations and behavioral performance. While I 
encourage the authors to attempt these analyses and report results whichever way they turn out, the 
manuscript stands quite strongly as-is, and negative results from such analyses will not adversely alter 
my enthusiasm for this report. I also have several questions about the analyses & results, which the 
authors may be able to address via minor revisions of the text and figures. 
 
Thank you. We agree that it is useful to include the proposed additional analyses, irrespective of their 
outcomes. As you will see, we have now added the outcomes of these analyses and have made the 
requested revisions to our text and figures. 
 
 
Major 
1. Can the authors relate aspects of neural target/distractor processing/representation to behavioral 
performance on the task? 
 
Unfortunately, our task parameters were such that they may not have enabled us to derive reliable 
correlations between trial-by-trial variability in target decoding and trial-by-trial variability in 
behavioural performance. Many psychological functions likely intervened between perceptual 
decoding and the final response made, possibly hampering our ability to find direct correlations 
between these measures. Examples being post-target lapses in short-term memory, post-target changes 
of mind as to which of the items was the target, perceptual interference by the probe stimulus, motoric 
errors, and so on. Nevertheless, we agree with the reviewer that it is important to disseminate the 
results of these correlational analyses, irrespective of their outcomes, we have therefore now added 
the following to our manuscript – also discussing why we might not have observed any correlations 
and emphasizing that the patterns of target decoding and behavioural accuracy did correspond really 
well across conditions:  
 

p11 (Results): “Correspondence between decoding and behavioural performance 
In a simple perceptual task one would expect the quality of target decoding to correlate with 
behavioural performance on a trial-by-trial basis. In our task, however, many factors are likely to 
influence behavioral performance, of which the perceptual processing that takes place during 
initial encoding is but one. Indeed, behavioural performance on single trials is likely influenced by 
many additional factors that are not well captured by the early EEG responses that we focused on 
(such as post-target lapses in short-term memory, post-target changes of mind as to which of the 
items was the target, perceptual interference by the probe stimulus, motoric errors, and so on.). 
This may explain why we were not able to demonstrate compelling and consistent correlations 
between the trial-by-trial variability in the magnitude of target decoding and in behavioural 



performance (Fig. S6). Furthermore, we note that the experiment was designed to compare 
decoding and performance among conditions, and not for maximising variability within the 
conditions. This will have further compromised the sensitivity for such correlations. However, it 
should at the same time be noted that, at the level of condition averages, the patterns in target 
decoding and in the behavioural reproduction accuracy showed excellent correspondence – both 
measures showed better performance for cued trials, larger cueing effects for distractor present 
trials, prominent interference by the presentation of distractors, and the largest interference for the 
earliest distractors. 
 

 
 

Figure S6. Trial wise correlations between target decoding and behavioural performance. Time-
resolved trial-wise correlations between target decoding and reproduction error (left) as well as reaction time 
(right), as a function of cue and distractor presence. Note that we hypothesised negative correlations, 
provided that better behavioural performance is associated with lower reproductions errors and lower RTs. 
The lines show the group-mean correlation values and the shadings represent ± 1 s.e.m. calculated across 
participants (n = 30).   

  
 
2. Related to (1), behavioral performance should be more comprehensively analyzed/reported. This 
appears to be an orientation recall task, like is commonly used with visual WM experiments. There is 
a recent literature on effects of visual distraction on visual WM representations and behavioral 
performance (see Rademaker et al, 2015; Bettencourt & Xu, 2015, for examples). What kinds of 
effect(s) does the visual distractor stimulus have on the behavioral report? Are response error 
distributions biased in the direction of the distractor? Are they less precise? In general, I encourage 
the authors to report parameters of a mixture model (e.g., Bays, Zhang & Luck, or similar model) fit 
to error histograms, and discuss whether or not they see evidence for distractor-induced biases and/or 
broadening of response distributions. This will also help clarify the source of the increased errors with 
distractors presently plotted in Fig. 1b. Perhaps one or another of these mixture model 
parameters will be related to neural measures of target/distractor representations (point 1 above). 
 
Thank you for this valuable suggestion. We have now subjected our behavioral data to the three-
parameter mixture model by Bays et al. (2009), again including for distractor-present trials only those 
that occurred at the 100-ms ISI to ensure sufficient trials for analysis. As depicted in updated Figure 1 
(also pasted below), this revealed a substantial proportion of so called ‘swapping errors’ (reporting the 
distractor orientation instead of the target orientation) that were reduced by the cue, thus showing that 
the cue was particularly helpful in separating the target from the distractor in time in order to judge 
which one came first (i.e., which item was the target). We also found that cues increased response 
precision and decreased guess rates, specifically in distractor-present trials. These additional results 
thus all converge on our interpretation that the cues are particularly beneficial for visual perception in 
face of temporal distraction. We have now updated Figure 1 as shown below, and have added the 
associated text to our manuscript that is also pasted below: 
 



Figure 1. Task design and behavioral performance. (a) Visual orientation reproduction task with 
preparatory auditory cues and visual distractors. Participants reproduced the orientation of the visual target 
grating using a computer mouse. In half the trials, targets were preceded by an auditory warning cue. Targets 
could be followed by no distractors, or by a visual distractor at one of three ISIs (20, 100, 200 ms). Target-
probe intervals and inter-trial intervals were drawn independently of cue and distractor presence. (b) Average 
orientation reproduction errors (in degrees) and reaction times (in ms) for cued and uncued trials as a 
function of distractor presence and ISI. (c) Mixture-modelling parameters as a function of cue and distractor 
presence. c+ for cue present, d- for distractor absent, and so on. (d) Response distributions centred on the 
target and the distractor orientation. To ensure sufficient trialnumbers, we only considered distractor-present 
trials in the 100-ms ISI condition in panels c and d. Error bars represent ± 1 s.e.m. calculated across 
participants (n = 30). ISI = inter-stimulus-interval; SOA = stimulus-onset-asynchrony. *p < 0.05; **p<0.01; 
***p < 0.001. 

p4 (Results): “To further interrogate the behavioral performance data, we also ran a mixture 
modelling analysis (Bays et al., 2009), quantifying the precision of the orientation reproduction 
reports, alongside the proportion of reports classified as a target report, a distractor report 
(‘swapping error’), or a random guess. Each panel in Figure 1c shows these parameters as a 
function of cue and distractor presence. For precision, we observed a significant main effect of 

Redacted



cue presence, with higher precision for cued compared to uncued trials (F(1,29) = 7.514, p = 0.01, 
ηp

2 = 0.206), as well as a significant main effect of distractor presence, with lower precision for 
distractor-present trials (F(1,29) = 68.569, p = 3.959e-9, ηp

2 = 0.703). Although the interaction 
between cue presence and distractor presence was not significant (F(1,29) = 1.767, p = 0.194, ηp

2 

= 0.057), planned comparisons revealed that cues increased precision in distractor-present (t(29) 
= 3.598, p = 0.001, d = 0.657), but not in distractor-absent trials (t(29) = -0.877, p = 0.388, d = 
0.160). In addition, we observed that cues increased the number of target reports in the 
distractor-present (t(29) = 4.688, p = 6.035e-5, d = 0.856), but not the distractor-absent trials (t(29) 
= -1.054, p = 0.301, d = -0.192), this time also marked by a significant interaction between cue 
and distractor presence (F(1,29) = 27.619, p = 1.247e-5, ηp

2 = 0.488). Complementing this increase 
in target reports in distractor-present trials, we also found that cues reduced the number of 
distractor reports in these trials (t(29) = -4.360, p = 1.492e-4, d = -0.796). Finally, we observed a 
significant interaction between cue and distractor presence also for the proportion of guess 
reports (F(1,29) = 9.006, p = 0.006, ηp

2 = 0.237), where cues significantly reduced the proportion 
of guesses in distractor-present (t(29) = -2.336, p = 0.0266, d = -426) but not in distractor-absent 
trials (t(29) = 1.054, p = 0.301, d = 0.192). 

The impact of the cue on performance in our task is further visualized in Figure 1d, 
showing the respective response distributions aligned to the target and distractor orientations. 
This confirmed that, when there are no distractors (left panel), response distributions look very 
similar between cued and uncued trials. However, in face of temporal distractors (right panel), 
it becomes clear that cues increase the proportion of target responses (solid lines), while 
reducing the proportion of distractor responses (dashed lines). These data thus collectively 
reveal a key contribution of the cue in benefiting visual perception in face of temporal 
distractors, and helping to separate the occurrence of targets from distractors in time.” 

 
Finally, note that we have also added a paragraph to our Discussion where we bring forward this 
relevant related work on distraction in visual working memory:  
 

p13 (Discussion): “A recent study also evaluated target decoding in the presence of distractors 
that were presented during a working memory delay (Bettencourt and Xu, 2016; for related 
behavioral studies see also Magnussen and Greenlee, 1992; Rademaker et al., 2015). This study 
nicely demonstrated that the impact of distractors may be different in different brain areas, in 
their case impairing decoding of mnemonic representations in visual areas, while leaving them 
largely preserved in parietal areas. In our data, all effects occurred in posterior sites where 
decoding also peaked. In future studies, it will be interesting to resolve the specific areas in 
which these different effects occur (for example using MEG or iEEG, instead of EEG), as well 
as to compare distractor-dependent effects that occur during time frames of encoding (as in the 
current work) with those during subsequent mnemonic retention (as in Bettencourt and Xu, 
2016).” 

 
 
3. For all decoding analyses, it seems as though alpha-filtered data were used (after removing all 
signal from the 8-14 Hz alpha band). Is it possible to decode orientation representations during the 
post-target/distractor period using this alpha signal alone? I’m mainly thinking of the recent work of 
Joshua Foster & Ed Awh. While they use spatial tasks, it could be that subjects are using a spatial 
strategy here for the delayed response task, which is quite similar to the WM tasks they use. It would 
be especially interesting to see whether the distractor alters the fidelity of the alpha-band 
representation in a similar manner to how it alters the broad-band (minus alpha) representation, as 
reported in Fig 4.  
 
Thank you for bringing this up, this is an interesting point. We removed the alpha-band to ensure that 
the observed increase in target decoding with the cue could not simply be attributed to reduced 
variance in the signal as a consequences of attenuated alpha oscillations. Still, we agree that it is also 
of interest to see whether alpha itself may also contain target-identity information in line with these 
recent studies. As suggested, we have now also analysed stimulus identity decoding for Hilbert-



transformed alpha-band amplitude envelope data (i.e., for topographical patterns of alpha-band 
amplitude). While this confirmed that it was indeed possible to decode stimulus orientation from 
alpha amplitudes, decoding was less robust than when using the broad-band signal and conditional 
differences were no longer apparent. Because we think others may be curious about this too, we have 
added the following to our Results section and Supplemental Information:  
   

p10 (Results): “At the same time, several recent studies have shown that, at least in the context 
of working memory, not only target location (Foster et al., 2015) but also orientation (Fukuda et 
al., 2016) can also be decoded from the topographical pattern of alpha amplitudes. While we 
could confirm such alpha-based orientation decoding in our data, this appeared less robust and 
did not yield clear conditional differences as a function of cue and distractor presence (Fig. 
S5).” 
 

 
 

Figure S5. Target and distractor decoding based on alpha amplitude envelopes. Conventions as in 
Figures 2a and 4a, except before running the decoding analysis, we band-pass filtered the time-domain signal 
in the 8-14 Hz alpha band and used the Hilbert transform to obtain time-varying amplitude envelopes. 
Shadings represent ± 1 s.e.m. calculated across participants (n = 30).   

 
 
3. In any case, some discussion of how these results fit into that literature may be useful.  
 
See above, we now bring this relevant literature forward in our manuscript.  
 
 
4. The alpha range chosen for the analyses reported in Fig. 4 is quite broad – is it possible to limit this 
analysis to each individual participant’s peak alpha frequency (if available)? Or, instead, discuss the 
potential advantages/limitations of using a larger frequency band. 
 
Because of the relatively short time window available for the frequency analysis (in our case, a 500 
ms pre-target window), we only have limited frequency resolution to begin with. Opting for a “broad” 
alpha frequency range enabled us to use a multi-taper method for spectral estimation, which has high 
sensitivity for estimating amplitude in a particular frequency range (see Percival and Walden, 1993). 
We should also note that this “broad range” is where we not infrequently observe our effects, when 
analysed with similarly short time windows (as for example in van Ede et al., 2017). Prompted by the 
reviewer’s suggestion, we also tried estimated individuals’ peak frequencies and estimated amplitude 



in a ± 2 and ± 3 Hz range around this peak. This yielded nearly identical results without any 
observable advantage, so we have not further followed-up on this. We have, however, better specified 
our motivation for this relatively broad range in our Methods:  
 

p18 (Methods): “For relating pre-target alpha power to decoding, we also estimated alpha 
amplitude in a 500 ms pre-target window. Based on previous results using similarly short 
windows (van Ede et al., 2017), we decided to use a relatively broad alpha range between 8-14 
Hz. This also enabled us to use a multi-taper method (Percival and Walden, 1993) to obtain 
reliable single-trial estimates.” 

 
 
5. Is there a latency difference in the distractor interference effect (as in Fig. 3b) as a function of pre-
trial alpha (perhaps within uncued trials)? It appears as though there is in Fig 4c, but a similar plot to 
Fig. 3b may be useful to readers.  
 
Thank you for bringing this up. We agree that the equivalent plot is informative, and have therefore 
now included this in our updated Figure 6 (also to be found below a different comment regarding this 
Figure from reviewer 2). This revealed a qualitatively similar latency effect, although our Jackknife 
quantification reached significance only for the higher thresholds at which we quantified the latency 
shift. We must point out, however, that these results were based on a median-split of the data (i.e., of 
the pre-target alpha amplitudes) which is inevitably less sensitive than an analysis that takes into 
account the continuous variability in the data (a point that we now make clearer in the text). It is for 
this reason that we also included, and focused our main statistical analysis of this effect, on the trial-
wise correlation between alpha amplitude and decoding (Fig. 6f). 
 
 
6. Is it possible to demonstrate whether the ‘protective window’ (distractor interference latency) is 
utilized by participants? Perhaps the authors could find a way to split trials based on long vs short-
latency distractor interference effects and compare behavioral performance? Such a scheme may be 
challenging, and perhaps this remains a question best addressed by future experiments. But I would be 
interested to hear the authors thoughts on this (related to points 1 & 2 above). 
 
This is a really important point, but one that is indeed very challenging to address. For example, the 
distractor interference effect is quantified as a difference in target decoding between different trials 
(those with a distractor present and those without a distractor). As such, this effect (as quantified this 
way) simply does not exist within single trials. Moreover, as responded to above, trial wise 
correlations between decoding and behavioral performance did not yield compelling results either. 
That said, this comment did prompt us to further think about this point and to speculate on a possible 
extension of this result in future studies: 
 

p12 (Discussion): “In future work, it will be interesting to evaluate whether the extent of the 
delayed interference may vary with the amount of time required for perceptual processing; 
becoming shorter for easier tasks and longer for harder tasks.” 

  
 
7. On pg 14, the methods which describe trial binning are somewhat confusing. Specifically, this 
sentence is challenging to interpret: “For each bin, we included training trials whose angular 
difference from the test trial were within ± 22.5 degrees of the bin’s center”. First, what does the 
angular difference from the test trial have to do with the training bins?  
 
To obtain tuning profiles, we always look at the multivariate Mahalanobis distance between a given 
test trial, and all remaining trials (what we had referred to as “training” trials) that have a certain 
angular difference from this particular test trial. In this way, we were able to generate a tuning profile 
of similarity to the test trial (centered at orientation 0) as a function of angular difference with the 
training trials (ranging from -90 to +90 degrees). This is different from other “decoding” approaches 
(such as the forward encoding modelling approach) in which training trials are used to obtain weights 



that can then be used to reconstruct tuning in test trials. Upon reflection, we now believe the term 
“training trials” may not be technically appropriate for describing our approach and may therefore be 
potentially misleading. As a better term, we now refer at all relevant instances to “reference trials” 
and “reference set” instead of “training trials” and “training set”.  
 
Having clarified this, we agree that this sentence was unnecessarily confusing. We have therefore 
simplified this to: “For each bin (i.e., each orientation wedge), we included reference trials within ± 
22.5 degrees of the bin’s center.” which we anticipate will be much easier to parse in in the context of 
the preceding sentences (page 19, Methods). 
 
 
Second (and perhaps I’ve misinterpreted), does this mean that, for each bin used for training, all trials 
within a 45-deg wide feature wedge (1/4 of feature space) were used? If so, does this mean a given 
training trial counted multiple times (as the bins were spaced by 10 deg it seems)? That seems odd to 
me – some justification of this choice, or a demonstration that using exclusive/non-overlapping 
boundaries for each bin would help clarify, if this is a correct interpretation. 
 
We indeed used overlapping wedges by using 45-degree feature wedges and going in steps of 10 
degree. This ensured sufficient data in each reference (“training”) bin, while yielding smooth tuning 
profiles. (This is conceptually very similar to the use of overlapping time windows in a time-
frequency analysis where the same data is used in multiple overlapping time windows.) Importantly, 
however, as shown below in Reply Figure 1, nearly indistinguishable results were obtained when no 
overlap was allowed (in the case below, we used 30-degree reference wedges to allow a better trade-
off between tuning resolution and trials per wedge).   
 

 
 

Reply Figure 1. Tuning profile (all targets) and summary decoding statistics (per condition) when no 
overlap is allowed between neighbouring orientation bins. Horizontal lines again show significant 
clusters of the main cueing effect (blue), main distractor effect (magenta), and their interaction (green).  

 
 
We have also clarified our Methods sections in accordance: 
 

p19 (Methods): “For each bin (i.e., each orientation wedge), we included reference trials within 
± 22.5 degrees of the bin’s center. While we thus allowed substantial overlap between our bins 
(yielding smoother tuning profiles), we confirmed that highly similar results were obtained 
when not allowing any overlap between reference-bins.” 

 
 
8. How will the data/code be shared?  
 
We intend to share the experiment presentation script, the behavioural and EEG data, and the essential 
analysis code upon publication. We have now also added a statement regarding this to our Methods.  
 



 
Minor 
 
1. In the abstract, there’s a small typo: “but, instead, delay[s] it” 
 
Thank you, we have corrected this.  
 
 
2. Fig. 1c – is it possible to break out the overlaid ‘fidelity’ plot (which is on top of the pattern 
similarity image) into a separate panel? This panel is especially dense at present, and readers may 
benefit from smaller chunks of digestible data. Additionally, adding a color bar for panel 1c would 
also help readers interpret the data. 
 
Thank you, we have now broken this down into separate panels, alongside other revisions to this 
figure (now Figure 2) as prompted by further comments. This Figure now looks like this:  
 

 
 

Figure 2. Time-resolved EEG orienting decoding of targets and distractors. (a) Time resolved 
orientation tuning profiles. Data represent the mean-centred pattern similarity (quantified using the 
Mahalanobis distance) between the test trials and the reference trials, as a function of the angular difference 
between test and reference trials (y axis). The inset in the leftmost panel highlights the 8 electrodes that were 
used for the orientation decoding analysis. (b) Average tuning profiles for the data in panel a, in five 
successive time windows. (c) Timecourses of the corresponding summary decoding statistic (Methods for 
details). (d) Time resolved decoding (summary statistic) as a function the EEG electrode row used for 
decoding. Topography plot to the right shows the same data in a more conventional manner whereby the 
value in each electrode indicates how well the row to which that electrode belongs is able to decode target 
orientation. Error bars represent ± 1 s.e.m calculated across participants (n = 30). 

 
 
3. Fig. 1c – can this analysis be shown separately for target representations (on no-distractor trials) 
and distractor representations (on distractor+ trials)? 
 
As shown above, we have now separated this out by target decoding in distractor-absent trials, target 
decoding in distractor-present trials, and distractor decoding. We hope that this will help emphasize 
the utility of our decoding approach for individuating targets and distractors (even when these are 
presented in close temporal proximity) and tracking each in time. Only after presenting and discussing 
this important feature of the approach, do we turn to the influence of cues (which is our main interest). 



To accommodate these revisions, we have also substantially reworked the associated text in the 
Results section. 
 
 
4. Fig. 4a-b – again, very dense figure panels. If possible, separating the topographies and scatterplot 
from the TFR would make these figures easier to digest, and features of the data easier to see. This 
would also avoid the problem of covering up portions of panel a with the topographies. 
 
We agree, and have now placed the topographies and scatterplots below the TFR plots (see current 
Figure 6, also to be found below a related comment from reviewer 2).  
 
 
5. Are trials culled based on eye movements? The methods only describe removing trails with 
identified blink artifacts 
 
Thank you, we have now added the following explanation to our Methods:  
 

p18 (Methods): “We did not explicitly cull for eye movements as the task was presented at 
fixation (although trials with large artifacts as a result of saccading would have likely been 
removed anyways based on our variance-based artifact rejection).” 

 
  



Reviewer 2 
 
Using EEG decoding methods in a visual orientation reproduction task with preparatory auditory cues 
and visual distractors, the manuscript shows that the representations of target and distractor 
orientations in broad-band time-domain EEG signals (ERPs) are affected by the preparatory cue in 
two specific ways: (1) enhancing the representation of the target stimulus; and (2) delaying the 
interference of distractors with target representations. These two changes in EEG target decoding by 
the auditory cue are then related to the attenuation of posterior alpha oscillations. The authors 
conclude that anticipation is mediated by alpha oscillations through target representation enhancement 
and delayed distractor interference. 
 
In my view, the data provided in this manuscript is insufficient to advance this conclusion. I have 
three main objections: 
 
Thank you for your valuable comments. As you will see below, we have made several important 
clarifications and have added the outcomes of several additional analysis to our manuscript. Before 
turning to more elaborate responses to each of the points below, we first wish to emphasize that our 
main question regards how anticipatory cues facilitate target processing in the face of temporal 
distractors. The analyses linking the identified modulations (enhancing target decoding and delaying 
distractor interference) also to states of attenuated alpha oscillations are “only” subsidiary, and we 
now more carefully outline their role in our manuscript as well as the conclusions we associate with 
them (as also described in response to point 3 below). We further wish to note that our focus on how 
preparatory cues can overcome temporal distractors provides the major novelty and advance in 
relation to previous work (e.g., Kok et al., 2012), in addition to the fact that we capitalised on the high 
temporal resolution of EEG to evaluate at what processing stages cues impact target representations 
(as further elaborated on in response to point 2 below). 
 
 
1) The preparatory cue is shown to improve behavioral performance in this task, but none of the brain 
signal analyses are then shown to be directly related to this behavioral effect. The EEG differences 
observed between cued and uncued trials could be related to multisensory processing, divided 
attention, and not specifically to anticipating visual perception. This is particularly disappointing 
given the fact that the decoding methods used can power single-trial analyses (see Fig. 4d) and thus 
relate to behavioral errors even on a trial-by-trial basis (see for instance Kok et al. 2012). Such 
approaches could be used at several points in the manuscript to validate the interpretations on the 
relation of EEG signals with behavior. For instance, the 2 mechanisms identified in Fig. 3 could be 
specifically linked to reproduction error by restricting the analysis to uncued trials and checking 
correlation between cue decoding and reproduction error, and distractor interference latency and 
reproduction error. Similarly, the relationship of alpha power with decoding identified in Fig. 4 should 
also correlate with reproduction error to validate the current interpretation of the manuscript.  
 
As shown in added Figure S6 below, the correlations between trial-by-trial variability in target 
decoding and trial-by-trial variability in behavioral performance were not reliable. As we elaborate 
below, many features in our task may have contributed to this. Therefore, while we agree that the 
demonstration of such trial-wise correlations would have provided additional support for our 
conclusions, we disagree that the validity of our conclusions are contingent on the presence of such 
correlations. There are many potential reasons why we might not have been able to observe such 
correlations in our data. Foremost, in our task, behavioural performance on single trials is likely 
influenced by many additional factors that are not captured by the early EEG responses that we 
focused on. Examples are post-target lapses in short-term memory (response probes appeared only 
500 ms after the target), post-target changes of mind as to which of the two items was the target, 
perceptual interference by the probe stimulus, motoric errors, and so on. While the variability caused 
by such factors is likely to have “averaged out” in the comparison between condition-averages, it may 
have substantially hampered our ability to observe robust trial-wise correlations between decoding 
and behavioral performance measures (note that these later, post-encoding, processes are irrelevant to 



the correlation between pre-target alpha amplitude and decoding, which may explain why this 
correlation did work). We should also note that our experiment was not geared toward looking at trial-
wise correlations but, rather, was set up to compare experimental conditions with each other. Possibly, 
by incorporating multiple conditions, our correlational analyses (within each condition) were 
underpowered. Furthermore, we cannot rule out the presence of one or more “third variables” that 
may influence both decoding and performance, but in opposite ways – thereby possibly countering 
their estimated correlation.  
 
It must however be emphasized that the pattern of decoding and behavioral performance did 
correspond really well when comparing condition-averages – both measures showed better 
performance for cued trials, larger cueing effects for distractor-present trials, prominent interference 
by the presentation of distractors, and the largest interference for the earliest distractors (for which we 
have now included the decoding results in Fig. S3, also to be found below a related comment below). 
 
We do contend with both reviewers that this is nevertheless important information to share. To be 
more transparent about this aspect of our data in our manuscript, we have therefore now added the 
following:  
 

p11 (Results): “Correspondence between decoding and behavioural performance 
In a simple perceptual task one would expect the quality of target decoding to correlate with 
behavioural performance on a trial-by-trial basis. In our task, however, many factors are likely to 
influence behavioral performance, of which the perceptual processing that takes place during 
initial encoding is but one. Indeed, behavioural performance on single trials is likely influenced by 
many additional factors that are not well captured by the early EEG responses that we focused on 
(such as post-target lapses in short-term memory, post-target changes of mind as to which of the 
items was the target, perceptual interference by the probe stimulus, motoric errors, and so on.). 
This may explain why we were not able to demonstrate compelling and consistent correlations 
between the trial-by-trial variability in the magnitude of target decoding and in behavioural 
performance (Fig. S6). Furthermore, we note that the experiment was designed to compare 
decoding and performance among conditions, and not for maximising variability within the 
conditions. This will have further compromised the sensitivity for such correlations. However, it 
should at the same time be noted that, at the level of condition averages, the patterns in target 
decoding and in the behavioural reproduction accuracy showed excellent correspondence – both 
measures showed better performance for cued trials, larger cueing effects for distractor present 
trials, prominent interference by the presentation of distractors, and the largest interference for the 
earliest distractors. 
 

 
 

Figure S6. Trial wise correlations between target decoding and behavioural performance. Time-
resolved trial-wise correlations between target decoding and reproduction error (left) as well as reaction time 
(right), as a function of cue and distractor presence. Note that we hypothesised negative correlations, 
provided that better behavioural performance is associated with lower reproductions errors and lower RTs. 
The lines show the group-mean correlation values and the shadings represent ± 1 s.e.m. calculated across 
participants (n = 30).   

 
 



In addition, we could confirm that the size of the cue-induced alpha attenuation correlated with the 
size of the relative RT facilitation by the cue across participants. We have added these results to 
updated Figure 6 (panel b, also depicted below), and have added associated text to our Results 
section:  
 

p9 (Results): “Further corroborating this attentional interpretation, we also found that those 
participants who showed the largest cue-induced alpha attenuation, also showed the largest cue-
induced reductions in RT (expressed as the RT-ratio between cued and uncued trials), thus 
yielding a positive correlation (Fig. 6c; cluster p = 0.005, cluster interval in the non-permuted 
data: -180 to 220 ms post target; frequency range: 6 to 11 Hz). This correlation has a clear 
posterior topography (topography Fig. 6b).”  

 

 
 

Figure 6. Attenuated posterior alpha oscillations predict enhanced target decoding (across 
participants) and distractor resistance (across trials). (a) Time-frequency plot of the cue-induced 
modulation in spectral power, expressed as a percentage change (i.e. [[cued – uncued] / [uncued]]*100). Data 
from all posterior electrodes marked in the inset in the right top. Topographies show modulations from 5 to 
10 Hz in the interval between -400 to -200 ms (left) and from 8 to 14 Hz in the interval between 0 and 300 
ms post-target (right). Topographies were scaled according to the same colorbar as the time-frequency plot. 
(b) Time-frequency plot of the correlation (across participants) of the cue-induced modulation with the 
magnitude of the main cueing effect on reaction time (RT; expressed as a ratio between cued and uncued 
RTs). (c) Similar to panel b, except showing the correlation with the main cueing effect on target decoding 
(averaged over 118 to 248 ms post-target; see Fig. 4a) The participant-specific magnitudes of the alpha 
modulation used for the scatter plots in panels b and c were extracted from the significant time-frequency 
clusters and only serve to show the underlying distributions. (d) Time courses of target decoding in uncued 
trials as a function of distractor presence and pre-target alpha amplitude (median split). Trials were sorted by 
alpha amplitude averaged over all posterior channels in the 500 ms pre-target interval. Inset shows associated 
pre-target spectra. (e) Distractor interference time courses as a function of pre-target alpha state. Same 
conventions as for Figure 4b. (f) Time courses of the trial wise correlation between pre-target alpha 
amplitude and target decoding, separately for distractor-present and absent trials. Shadings represent ± 1 
s.e.m. calculated across participants (n = 30). The green shaded band in panel f highlights the similarity of 
the alpha-dependent decoding effect with the cue-dependent decoding effect (the interaction effect) in Figure 
4.  

 
 
Finally, regarding the potential cognitive factors that might mediate the cueing effects on target 
decoding (and the identified interaction with distractor presence), we should note that the influence of 
the cues appeared largely specific to the targets and was particularly pronounced in distractor-present 
trials. This shows that the cues did more than merely boost all sensory information in a non-selective 
way (i.e., equally for both target and distractor). Rather, they specifically helped separating targets 



from distractors in time (an ‘attentional’ function). We have added this point to the relevant paragraph 
of our Discussion (page 13). While it remains true that there are many potential ways to label the 
cognitive processes that mediate this (which we acknowledge at several instances in our manuscript), 
in order to explain our data these must run through anticipatory states (and be to some degree 
correlated with alpha-oscillatory markers of preparatory attention); and this is all we claim.   
 
 
The behavioral impact of the visual mask is also known to be different depending on the similarity of 
target and distractor (Magnussen et al. 1991; Magnussen and Greenlee 1992, 1999; Rademaker et al. 
2015), this could also be validated in their behavioral data and then used to test if distractor 
orientation difference affects target decoding in a direction consistent with the behavioral effects.  
 
Firstly, thank you for bringing to our attention this relevant line of research. As also prompted by 
reviewer 1, we feel this work on distraction in visual working memory is relevant to our study and 
have now added a paragraph dealing with this to our discussion (also pasted below the relevant 
comments from reviewer 1). 
 
In addition, we have now also quantified behavioral performance as a function of target-distractor 
similarity. As shown in Reply Figure 2 below, responses appeared “pulled” toward distractor 
orientations (and more strongly so in uncued trials). At the same time, however, mixture-modelling of 
the behavioural data (as advised by reviewer 1) also revealed a large proportion of ‘swapping errors’ 
in which participants reported the distractor orientation instead of the target orientation (and further 
showed that this too was significantly reduced by the cue, as now brought forward and quantified in 
the revised manuscript). We have incorporated these mixture-modelling results in our manuscript in 
updated Figure 1 alongside an added paragraph to our Results section (both to be found below the 
relevant comment of reviewer 1). This large proportion of swapping errors complicates further 
analysis of this apparent “pull” effect, as the latter effect is likely a reflection of these swaps. 
Following these new insights, we also evaluated whether target and distractor decoding differed 
between swap and non-swap trials but again found no compelling differences (likely due to the same 
reasons as listed in our response to the first comment regarding correlations with performance, in 
addition to the difficulty of reliably classifying individual trials as swaps).   
 
 

 
 

Reply Figure 2. Response deviations occur in the direction of the distractor orientation. However, this 
is likely the result of the larger proportion of ‘swap errors’ (that were also reduced in cued compared 
to uncued trials); see updated Fig. 1. Data from distractor-present trials with the 100-ms ISI.  Dashed lines 
represent ± 1 s.e.m. 

 
 
Also the ISI dependence of the behavioral effect in Fig. 1b could be used to test the relationship of 
target decoding effects and behavior.  



 
Thank you for this interesting suggestion. We had concentrated our efforts on the 100-ms ISI 
condition, as this contained the vast majority (80%) of distractor-present trials. We initially only 
included the 20 and 200-ms ISI conditions to map out the basic behavioral effect of ISI (that we had 
also observed in prior pilot runs of the task). For the more sophisticated decoding analyses, we trial 
numbers in these conditions were deemed to be insufficient to support robust statistical analyses. Still, 
because we agree that the descriptive patterns in these these data may be of interest too, we have now 
also quantified target decoding in these trials and have included this in Supplementary Figure 3 (also 
pasted below). Importantly, although we could not observe significant (cluster corrected) cueing 
effects in these trials (likely due to low statistical sensitivity as a consequence of low trial numbers), 
we did observe qualitatively similar effects of the cue on protecting the target from distractor 
interference (i.e., delayed distractor interference). As also emphasized in response to comment 1, 
these data also again confirmed a nice correspondence between target decoding and behavioural 
accuracy at the level of condition-averages. For example, they suggest that distractor interference 
much larger in the 20-ms ISI condition, and that cueing benefits are particularly prominent for the 20 
and 100-ms ISI conditions, but only moderate or absent for the 200-ms ISI condition (as was the case 
for the cueing benefits on behavioural accuracy in face of these different distractor times). We hope 
that this, together with our other new complementary analysis (discussed before our point-by-point 
replies), further increases trust in our main decoding results.  
 
We have added the following to our Results and Supplemental Information: 
 

p8 (Results): “Although limited trial numbers for the 20-ms and 200-ms ISI distractor 
conditions hampered statistical sensitivity for quantifying cueing benefits on decoding, we did 
observe qualitatively similar patterns in these conditions whereby, descriptively, distractor 
interference immediately after the respective distractor time appeared attenuated by the cue 
(Fig. S3; note that we again only included distractor-absent trials in the reference sets, to ensure 
the same reference for all three ISI conditions). This appeared particularly clear in the 20-ms 
ISI condition for which we also observed a similar cueing benefit on behavioral accuracy. In 
this condition we further noted substantially larger distractor-interferences in target decoding 
(Fig. S3) in further agreement with the behavioral performance data.” 

 

 
 



Figure S3. Target decoding in cued and uncued distractor-present trials as a function of the interval 
between target and distractor. As in Figure S2, we only included distractor-absent trials in our reference 
sets to ensure a fair comparison between the 20, 100, and 200-ms ISI conditions. For the middle (distractor 
interference) panels, we subtracted the decoding in the distractor-absent trials (unshown) to yield the same 
type of distractor interference plot as in Figure 4b. Arrows indicate effects of interest, whereby distractor 
interference appears delayed in cued compared to uncued trials. The right panels show the difference 
between cued and uncued trials. Black vertical lines indicate the onset of the distractor in the different 
conditions. Shadings represent ± 1 s.e.m. calculated across participants (n = 30).   

 
 
An additional component of their task that could provide behavioral parameters to relate with the 
subjects' anticipatory state is the ITI. Despite the flat hazard rate defined for the ITI, it is likely that 
there is a subjective urgency that can have behavioral impact (Janssen and Shadlen, 2005) and impact 
correspondingly ERP decoder modulations. 
 
Thank you for this suggestion. We aimed to minimize effects of hazard-rate by always drawing ITIs 
from a (truncated) negative exponential distribution that approximated a flat hazard rate (as also stated 
on page 17 in our Methods section). This is a key difference with the study by Janssen and Shadlen 
(2005) (as well as Schoffelen et al., 2005; and others) where the authors explicitly manipulated 
distinct hazard rates that yielded clear expectation profiles and that could be compared against each 
other.  
 
Prompted by this suggestion, we nevertheless investigated the potential influence of ITI but could not 
find a strong influence on performance (see Reply Figure 3 below). In a way, the results below thus 
show that our aims to minimize the influence of hazard-rate were successful.  
 

 
 

Reply Figure 3. Behavioural performance as a function of the preceding inter-trial-interval (ITI). Data 
were binned in 10 successive bins of ITI, and centred on the average ITI in that bin. Dashed lines represent ± 
1 s.e.m. 

 
 
2) The association of alpha-band activity with the two EEG mechanisms (ERP target decoding 
accuracy and distractor interference latency) is sketchy and not consistent. Figure 4c-d show nicely 
how pre-stim alpha power acts very similarly to the anticipatory cue, in relation to the distractor 
interference effect of Fig. 3. However, these same panels show that pre-stim alpha does not reproduce 
the main effect of the auditory cue (main effect of cue in Fig. 3c). This is in contrast with the message 
of Fig. 4b. Are there 2 alphas? A cue-induced alpha that is responsible for the main effect of cue, and 
a spontaneous alpha that accounts for the interaction effect (distractor interference)? While the 
spontaneous alpha analysis in Fig. 4c-d is very suggestive, the interaction effect reported in Fig. 3 is 
triggered by the cue presentation, so it should also be present in the analysis of cue-induced alpha. 
Does the cue-induced alpha correlate in an inter-individual analysis with the magnitude of the 
interaction effect? In Discussion it is suggested that both spontaneous and cue-induced alpha correlate 



with the main effect and the interaction effect ("This was the case both for the task-related 
modulation..."), but this is currently not supported by Fig. 4.  
 
Thank you, you are right. We now make this distinction between the across-participant and across-
trial results much more explicit. For example:  
 

p12 (Discussion): “[…] This was the case both for the task-related modulation by anticipatory 
cues (across participants), as well as for the spontaneous fluctuations in alpha amplitude in the 
absence of cues (across trials) – although we note that the variability in the cue-induced 
modulation across participants only correlated significantly with the main cueing effect on 
decoding, whereas the spontaneous variability across trials only correlated with the target 
decoding in distractor-present trials, in the identified interaction window. Resolving this 
apparent discrepancy remains an interesting target for future research as it suggests there may 
be distinct sources of variability in posterior alpha oscillations that may have different bearings 
on perception.” 

 
We must also point out that our main contribution relates to the observed differences between 
experimental conditions presented in Figure 3 (now Figure 4). This alpha-based analysis, while 
clearly of interest, involves a subsidiary analysis aimed merely to find additional support for the 
observed differences and to link this work to the attentional literature where alpha modulations are 
commonly reported. While we agree (and now make more explicit in our manuscript) that the alpha-
based correlations did not correspond one-to-one with the observed cueing effects on decoding (with 
the across-participant correlation only corroborating the main cueing effect, and the across-trial 
correlation only corroborating on the interaction effect), they do provide at least some tentative 
evidence that the observed cueing effects are linked to (and may at least partially be mediated by) 
states of attenuated alpha oscillations. 
 
 
An additional aspect of alpha-band activity that is not addressed in this analysis is the role of alpha 
phase. Recent studies are showing that alpha paces the sequence of perceptual cycles (VanRullen 
2016) and that auditory stimuli reset the posterior alpha rhythm, with perceptual consequences 
(Romei et al., 2012). The timings and intervals of interest in the current task are within one alpha 
cycle, possibly making the effects sensitive to alpha phase. Could a sizable part of the behavior and 
target decoding results be explained by the alpha phase-resetting of the auditory cue? 
 
This is an interesting point. Unfortunately, potential phase-resetting of posterior alpha oscillations by 
the auditory cue was hard to detect in our task. As shown in Reply Figure 4 below, inter-trial 
coherence (a measure of phase-alignment across trials) was dominated by the auditory evoked 
response (possibly overshadowing more subtle effects on posterior alpha oscillations) and later by the 
ERP to the visual target itself. Moreover, our cue-target interval was only 500, thereby possibly not 
allowing sufficient time to detect the potential phase-resetting of the ongoing alpha oscillations in the 
interval between the cue the anticipated target.  
 

 
 

Reply Figure 4. Inter-trial coherence in cued and uncued trials robustly tracks the auditory cue and 
visual target, but shows no clear signs of anticipatory phase-resetting of posterior alpha oscillations. 
Data are averaged over the posterior channel cluster that was also used in the alpha-amplitude based analysis 
in updated Figure 6. 



 
We nevertheless explored target decoding as a function of pre-target alpha phase (e.g., by sorting 
trials by pre-target alpha phase, and evaluating circular-to-linear correlations), but were not able to 
find compelling phase-dependence of decoding either. Still, because we consider this an important 
avenue for future research, we have added the following to our manuscript:  
 

p11 (Results): “We also investigated potential cue-induced resetting of oscillatory phase (as in 
e.g., Romei et al., 2012), as well as potential relations between pre-target alpha phase and target 
decoding, as the phase of alpha oscillations may also critically shape perception (VanRullen, 
2016 for review). However, beyond a clear phase-reset in the lower frequencies (which, again, 
most likely reflected the auditory ERP), we did not find compelling evidence for anticipatory 
phase-alignment following the cue, nor did we observe compelling associations between pre-
target phase and target decoding. However, as our task might not be ideal for looking at this, 
this should remain an interesting avenue for future endeavours.” 
 

 
3) out of the 2 mechanisms identified in this manuscript, the main effect of the cue has already been 
reported before (Kok et al 2012). The manuscript does not discuss this influential, recent result at all. 
 
Thank you. We should have related our results explicitly to the results in Kok et al (2012). Because 
we were specifically interested in the effects of cued preparation on overcoming temporal distraction 
and were using high temporal-resolution methods accordingly, Kok’s relevant study was not on the 
forefront of our thinking, but the reviewer is correct that it still has relevance. We must, however, 
emphasize that our observations make two substantial advances over the previously published results 
by Kok et al. First, we manipulated the presence of temporal distractors and investigated not only how 
cues affect target decoding, but also how they enabled to separation of targets from distractors that 
compete within the time frames of attentional competition. Second, we decoded target identities from 
high temporal resolution EEG (instead of fMRI), which enabled us to temporally define the 
amplification of target decoding and show that this occurs already in early visual responses within the 
first few hundred millisecond of processing. We further note that, in Kok et al., expectations regarded 
the orientation of the upcoming target, whereas in our study cues only informed target timing (i.e., 
that a target would occur in 500 ms), without giving any information as to the identity of this target.  
 
We now cite this relevant prior work and highlight what additional insights are gained from our 
manuscript:  
 

p11 (Discussion): “Previous fMRI work has already demonstrated that anticipatory 
expectations about features defining target identity can increase representational information in 
human visual cortex (e.g., Kok et al., 2012). Our results show that even simple anticipation of 
stimulus timing, with no expectation that enables any feature-related template to be established, 
also significantly boosts target representations. Furthermore, by resorting to high temporal-
resolution EEG measurements, our results reveal that this occurs already during early sensory 
processing stages. Specifically, this “representational boost” peaked around the classical N1 
time range.” 
 
p12 (Discussion): In addition to a direct influence of anticipatory cues on target processing, we 
also observed a second effect that depended on distractor presence (thus further complementing 
previous fMRI work on the influence of expectations on target representations as in Kok et al., 
2012). 

 
 
In addition I have a number of methodological concerns: 
 
1) “Participant-specific trial-averaged ERP and decoding time courses were subsequently smoothed 
with a Gaussian kernel with a 15 ms standard deviation”. I miss a strong argument to perform such 
operation in the final average. This looks like a “cosmetic” preprocessing step and “it obscures the 



ability to evaluate the physiological plausibility of an effect, and thereby hides relevant 
complementary information from readers” (Van Ede & Maris 2016). 
 
Thank you for raising this point. When Eric Maris and I (first author of the current article) put 
together this opinion piece on data reporting practices, we were particularly concerned with practices 
in which data are only reported in “collapsed form”, such as in a single bar graph, when the data 
underlying that bar graph contains multiple dimensions (e.g., time, space, and frequency). In our view, 
we adhere to these ‘guidelines’ by reporting the decoding as a function of both time and space, and by 
showing time, frequency, and spatially-resolved correlations between oscillatory amplitude and 
decoding.  

Our data smoothing step was in no means intended to cover up or obscure any aspect of our data. 
Also, I believe in our opinion piece, we did not argue against data smoothing as a bad practice. In fact, 
data smoothing can substantially increase statistical sensitivity by reducing variance across 
participants. For example, if participants show a qualitatively similar effect of the cueing 
manipulation on the target decoding, but in slightly different latencies (e.g., because their ERP 
components have slightly difference latencies due to slight anatomical and physiological differences) 
then temporal smoothing can allow to “bridge” such differences and thereby increase second-level 
group statistics. Because of these important advantages, data smoothing is a very common practice in 
both fMRI (spatial smoothing) and EEG/ERP research (temporal smoothing; as also comes with low-
pass filtering of ERP components). 

We quantified stimulus identity decoding in a timepoint-by-timepoint manner, whilst preserving the 
1000 Hz sampling rate of the data. We then applied a smoothing kernel to the resulting decoding time 
courses simply with the aim of reducing inter-timepoint and inter-subject variability, and thereby to 
increase statistical sensitivity. 
 
We now added the following to clarify this point: 
 

p18 (Methods): “This allowed to bridge variability in the timing of the responses across 
participants, without smoothing away the essential characteristic of the ERP waveform (i.e., the 
distinct peaks). Such smoothing has similar consequences as low-pass filtering, which is also 
common in ERP research.” 

 
Of course, it is still true that the decision for the amount of smoothing is relatively arbitrary, and that 
data can also easily be “over-smoothed”. In this light, it is important to note that with the applied 
amount of smoothing, our ERPs still showed clearly discernible components. To further take away the 
concern that we may have “cherry-picked” our particular smoothing parameter and to further increase 
transparency, we now show our main contrasts of interest as a function of data smoothing (Fig. S1, 
also pasted below) and show that our main decoding as well as our ERP effects are largely invariant 
to the choice of smoothing (within reasonable ranges, here evaluated for 6 steps between 5 and 30 
ms). We also explicitly point to this at the relevant section in our manuscript: 
 

p6 (Results): “We also note that each of these three effects were largely invariant to our choice 
of data smoothing (Fig. S1).”    

p18 (Methods): “We did confirm that our main results were largely invariant to this particular 
choice of smoothing (Fig. S1).” 

 



 
 

Figure S1. Decoding and ERP effects are largely invariant to choice of smoothing kernel. Main effects 
of cue presence (left), distractor presence (middle), and their interaction (right) for both target decoding 
(upper) and ERPs (lower) as a function of the width (in standard deviations) of the applied Gaussian 
smoothing kernel (different colors).  Plotted are the t-values associated with the simple contrasts (left: cued 
vs. uncued; middle: distractor present vs absent; right: cued minus uncued in distractor-present vs. distractor-
absent trials; see also Figure 4c). All results reported in the manuscript were based on the smoothing kernel 
with the 15 ms standard deviation (i.e., the red line). 
 
 

2) "Significant clusters". Wrong concept that appears repeatedly in the manuscript (Figure 3 and 
Figure S1 captions; “three significant clusters”, page 4, etc). The non-parametric cluster-based 
permutation test serves to test a null hypothesis: The data (not the parameters estimated from the data) 
in different experimental conditions came from the same probability distribution, so they are 
exchangeable. The alternative hypothesis consists that the data in different experimental condition do 
NOT come from the same probability distribution. Stating “there is a significant cluster” is simply 
wrong. The statistical significance indicates an informed decision about the uncertainty to accept or 
reject the null hypothesis but never about “when” (time) or “where” (topography, frequency) those 
differences take place. The correct statistical conclusion would be that the authors have found a 
significant difference between condition A v.s. condition B. I encourage the authors to revisit Maris & 
Oostenveld (2007) and Maris (2012). Check: 
http://www.fieldtriptoolbox.org/faq/how_not_to_interpret_results_from_a_cluster-
based_permutation_test 
 
Thank you for reminding us of this point regarding statistical reporting practices. We agree that we 
were sloppy in our initial reporting of this. We have now revised our manuscript in the following 
ways. First, we make clear that our evaluation involved three separate comparisons, and explicitly 
state what inferences are and are not warranted with this statistical approach: 
 

p6 (Results): “Cluster-based permutation statistics (Maris and Oostenveld, 2007) were used to 
evaluate the main effects of cueing (cued vs. uncued trials, both for target and distractor 
decoding), distractor presence (distractor-present vs. absent trials), and their interaction (i.e., 
the cueing effect in distractor-present vs. absent trials), while circumventing the multiple-
comparisons encountered along the time axes. Although we below state the time-ranges of the 
significant clusters as they were observed in the observed (non-permuted) data, it is relevant to 
note that this cluster-based permutation test does not warrant inferences regarding exact time 
ranges that are significant, as it only evaluates whether the compared conditions are 
’exchangeable’ or not – and, for this evaluation, it considers the full time range (Maris and 
Oostenveld, 2007 and Maris, 2012).”  

 

https://owa.nexus.ox.ac.uk/owa/redir.aspx?SURL=zIuOMOUabVlg-pD3WRmFLK2k9d-1ktxt1Sjbw5q5xA8VZKnNf-_UCGgAdAB0AHAAOgAvAC8AdwB3AHcALgBmAGkAZQBsAGQAdAByAGkAcAB0AG8AbwBsAGIAbwB4AC4AbwByAGcALwBmAGEAcQAvAGgAbwB3AF8AbgBvAHQAXwB0AG8AXwBpAG4AdABlAHIAcAByAGUAdABfAHIAZQBzAHUAbAB0AHMAXwBmAHIAbwBtAF8AYQBfAGMAbAB1AHMAdABlAHIALQBiAGEAcwBlAGQAXwBwAGUAcgBtAHUAdABhAHQAaQBvAG4AXwB0AGUAcwB0AA..&URL=http%3a%2f%2fwww.fieldtriptoolbox.org%2ffaq%2fhow_not_to_interpret_results_from_a_cluster-based_permutation_test
https://owa.nexus.ox.ac.uk/owa/redir.aspx?SURL=zIuOMOUabVlg-pD3WRmFLK2k9d-1ktxt1Sjbw5q5xA8VZKnNf-_UCGgAdAB0AHAAOgAvAC8AdwB3AHcALgBmAGkAZQBsAGQAdAByAGkAcAB0AG8AbwBsAGIAbwB4AC4AbwByAGcALwBmAGEAcQAvAGgAbwB3AF8AbgBvAHQAXwB0AG8AXwBpAG4AdABlAHIAcAByAGUAdABfAHIAZQBzAHUAbAB0AHMAXwBmAHIAbwBtAF8AYQBfAGMAbAB1AHMAdABlAHIALQBiAGEAcwBlAGQAXwBwAGUAcgBtAHUAdABhAHQAaQBvAG4AXwB0AGUAcwB0AA..&URL=http%3a%2f%2fwww.fieldtriptoolbox.org%2ffaq%2fhow_not_to_interpret_results_from_a_cluster-based_permutation_test


Second, while we still state the time windows of the largest clusters as they were observed in the non-
permuted data, we explicit state that these involve the ranges in the non-permuted data (e.g., “cluster 
interval in non-permuted data: 118 to 248 ms post target”). We do so at every relevant instance, 
including in the relevant figure captions (“Horizontal lines mark where the clusters of the contrasts 
that survived cluster-based permutation statistics were observed in the non-permutated data”). 
Together with the added text above, we hope this makes sufficiently clear that our statistical 
inferences do not concern these time ranges, but that these ranges were simply where the largest 
clusters were located in the observed data.  
 
 
3) EEG orientation decoding (in Methods). The authors state that “a 250 ms pre-target baseline was 
subtracted”. Was it performed at a single-trial level? Such a short period will contain a lot of noise 
and a demeaning operation (mean subtraction of the entire epoch) would be way more efficient. If 
data is stationary, single-trial baseline correction would correspond to baseline correction averaging 
the data across trials. Please check the stationarity of your data: do you find significant differences in 
your ERP and decoding plot subtracting the single trial baseline estimates v.s. the grand-mean 
baseline subtraction? If the answer is positive, please consider a more careful data normalization (see 
Grandchamp & Delorme 2011). 
 
Apologies for not stating this clearly. We now make clear that we subtracted trial-specific pre-target 
baseline values in the time-domain (which is standard practice in ERP research, at least in our lab). As 
far as we can tell, it appears the reference by Grandchamp and Delorme (2011) regards the use of 
baselining when quantifying spectral perturbations, where it is also common to use relative changes 
from baseline. We only used baselining for our time-domain signals (that we subjected to our 
decoding and ERP analyses) where absolute changes are the standard. For the only time-frequency-
analysis that we presented (regarding the alpha modulation; updated Figure 6), we directly contrasted 
cued and uncued conditions without baselining at all.  
 
While subtracting the mean of the entire epoch would also have been a possibility, we feel that the 
downside of this for characterising (single trial) ERPs (that could then be subjected to our decoding 
pipeline) is that this can induce carry-over effects between components (e.g., if a given trial has a 
large positive deflection at time X, a demeaning operation will introduce relative down weighting of 
values at time points other than X). This is avoided by subtracting a pre-stimulus baseline.    
 
 
Minor comments: 
 
Please provide the number of trials per condition left after artifact rejection. This is important 
information to interpret the decoding results and to design future experiments based on your findings. 
As much as possible, authors should follow well-established guidelines (Keil et at., 2014). 
 
Thank you. We have now added this information to our Methods:  
 

p18 (Methods): “After artifact rejection, there were 1042 ± 24 (mean ± 1 s.d.) trials left. Broken 
down by our main four conditions, numbers were: 291±8 (cued, no distractor), 288 ± 7 
(uncued, no distractor), 233 ± 5 (cued, distractor at 100-ms ISI), and 230 ± 7 (uncued, distractor 
at 100-ms ISI).” 

 
 
Figure 1c: There is no color bar associated. Please add the proper color bar to the figure or specify in 
the figure legend that Figure 1c and d share the same color bar. 
 
Figure 1c summary decoding statistic is not clear. The y-scale is difficult to read and this statistic is 
the one employed throughout the paper. I think it deserves a subfigure in its own right. Figure 2bc in 
Wolf et al., (2017) could be a good choice. 



 
Thank you. We have now revised this Figure (Figure 2 in the revised manuscript) to incorporate these 
valuable suggestions (and have also made some further changes following comments from reviewer 
1). This revised Figure (also pasted below) should also help better emphasize the utility of our 
decoding approach for individuating targets and distractors and tracking each in time. 
  

 
 

Figure 2. Time-resolved EEG orienting decoding of targets and distractors. (a) Time resolved 
orientation tuning profiles. Data represent the mean-centred pattern similarity (quantified using the 
Mahalanobis distance) between the test trials and the reference trials, as a function of the angular difference 
between test and reference trials (y axis). The inset in the leftmost panel highlights the 8 electrodes that were 
used for the orientation decoding analysis. (b) Average tuning profiles for the data in panel a, in five 
successive time windows. (c) Timecourses of the corresponding summary decoding statistic (Methods for 
details). (d) Time resolved decoding (summary statistic) as a function the EEG electrode row used for 
decoding. Topography plot to the right shows the same data in a more conventional manner whereby the 
value in each electrode indicates how well the row to which that electrode belongs is able to decode target 
orientation. Error bars represent ± 1 s.e.m calculated across participants (n = 30). 

 
 
 
Figure 3a: the legend is confusing and it is not well explained. For example, the black line “distr –“ 
never appears in the figure. Same goes to Figure S1a. Please clarify this because takes time to 
understand your key figures. 
 
Thank you. We agree our labelling was potentially confusing, so we have now changed the relevant 
legends and directly link each condition to a separate line in the legend. For this we use “c+” for cue 
present, “d-“ for distractor absent, and so on. We also make this clearer in the relevant Figure 
captions. For example in the caption of Figure 4a (previous Fig. 3a) we state: “Time courses of target 
and distractor orientation decoding (summary statistic) as a function of cue presence (blue for cued, 
“c+”; red for uncued, “c-“) and distractor presence (solid for distractor-absent, “d-“; dashed for 
distractor-present, “d+”).” 
 
 
Figure 4b,c inset plots are too small.  
 
Thank you. We have now enlarged this plots and placed them below the TFR plots, as can be seen in 
the updated Figure 6, which is also depicted below comment 1. 



Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
I appreciate the authors' careful attention to detail in their response to my previous comments. They 
have satisfied all my concerns, and I believe the resulting manuscript makes a very strong 
contribution to Nature Communications.  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
The manuscript has improved significantly following the revisions introduced. There is however one 
concern that has not been sufficiently addressed by the authors. Specifically, my 3rd methodological 
concern in relation to the baselining approach was not addressed with alternative baselining methods 
to confirm the robustness of the results. In addition, the authors now bring up an important caveat 
concerning "carry-over effects between components" that in my view could be contaminating their 
interpretation of the data considering the fact that they took a 250ms pre-target baseline for their ERP 
analyses: any cue-related signals prior to the target will be artifactually carried over to later points in 
the trial by means of the pre-target baselining procedure. It is imperative that the results are shown 
to be robust to baselining the data prior to the cue, and also taking other possible baseline approaches 
(whole trial as in Grandchamp and Delorme 2011, or fusing baselines as in Ciuparu and Muresan, 
2016 DOI: 10.1111/ejn.13179). The fact that these articles referred specifically to spectral analyses 
and not ERPs does not justify not controlling for the possible caveats of ERP baselining that I raised in 
my report.  



Dear Editor, 
 
We were pleased to see that both reviewers highly valued our previous revisions and consider our 
manuscript substantially improved. As you will see below, we now also address the single remaining 
point from reviewer 2 and confirm that our results are also largely invariant to choice of baseline.  
 
We have meanwhile also aligned the formatting of our manuscript with the Editorial policies of 
Nature Communication and are ready to make our data publically available through the Dryad Digital 
Repository upon receiving your final decision.  
 
We are very grateful for your time and are looking forward to your decision.  
 
Yours faithfully, 
 
Freek van Ede, Sammi Chekroud, Mark Stokes, Kia Nobre 
 
 
Replies – round 2 
 
Reviewer 1 
I appreciate the authors' careful attention to detail in their response to my previous comments. They 
have satisfied all my concerns, and I believe the resulting manuscript makes a very strong 
contribution to Nature Communications. 
 
Reviewer 2 
The manuscript has improved significantly following the revisions introduced. There is however one 
concern that has not been sufficiently addressed by the authors. Specifically, my 3rd methodological 
concern in relation to the baselining approach was not addressed with alternative baselining methods 
to confirm the robustness of the results. In addition, the authors now bring up an important caveat 
concerning "carry-over effects between components" that in my view could be contaminating their 
interpretation of the data considering the fact that they took a 250ms pre-target baseline for their ERP 
analyses: any cue-related signals prior to the target will be artifactually carried over to later points in 
the trial by means of the pre-target baselining procedure. It is imperative that the results are shown to 
be robust to baselining the data prior to the cue, and also taking other possible baseline approaches 
(whole trial as in Grandchamp and Delorme 2011, or fusing baselines as in Ciuparu and Muresan, 
2016 DOI: 10.1111/ejn.13179). The fact that these articles referred specifically to spectral analyses 
and not ERPs does not justify not controlling for the possible caveats of ERP baselining that I raised 
in my report. 
 
Thank you. We too feel the manuscript greatly improved after incorporating your valuable comments 
and suggestions. We apologise for not having responded in sufficient detail to this remaining point 
during our previous revision – the large number of revisions that we made detracted our full devotion 
to this relevant point.  
 
We now show that our main target decoding results are also largely invariant to choice of baseline. 
We show this below for six different baseline variants, and we have now also included the below 
figure in our Supplementary Material. In particular, we show that our main results are largely 
invariant to the positioning of the baseline in the pre-target or pre-cue interval, as well as to baseline 
duration (250 or 100 ms) and quantification (mean or median subtraction).  
 
With respect to the concern of potential “carry-over” effects when using a pre-target (as opposed to 
pre-cue) baseline, we additionally clarify that cues predicted target occurance, not target identity (our 
decoding variable of interest). It is therefore not possible for any stimulus orientation decoding in the 
post-target period to be the result of a carry-over effect from a pre-target baseline. 



 

 
 

Added Supplementary Figure 2. Main decoding results for six different baseline variants. Baselines 
were either positioned pre-target or pre-cue and spanned either 100 or 250 ms. In addition to subtracting the 
mean EEG signal of each of each baseline, we also explored subtracting the median. All baselines were 
performed at the single-trial level and involved subtraction. The baseline used in all other analyses was the 
250 ms pre-target baseline with mean subtraction (the second column). This baseline was chosen based on a-
priori reasons – it is the closest to the target processing period of interest, whilst not containing any stimulus 
identity information –, and this baseline comparison was only made after all other reported analyses had 
already been evaluated. Shadings represent ± 1 s.e.m. calculated across participants (n = 30).   
 

 
As shown above, we found that our analysis generally yielded highly similar patterns of target 
decoding for all considered baselines. We did note, however, that target decoding generally yielded 
slightly attenuated values when using pre-cue as compared to pre-target baselines (while baseline 
duration and quantification yielded near perfect replications). This is likely due to the fact that pre-
target baselines are simply closer to the target processing period of interest and therefore yield more 
consistent signal ranges (closer baselines better mitigate potential drifts in the signal). Indeed, in a 
subsidiary analysis, shown in Rebuttal Figure 1 below, we confirmed that pre-target (compared with 
pre-cue) baselines yielded less variability in the ERP across trials within the target processing period 
of interest. 
 



 
 

Rebuttal Figure 1. Pre-target compared to pre-cue baselines yield less variable EEG 
signals in the target processing period of interest.  

 
When considering the main effects of cue presence, distractor presence, and their interaction (second, 
third and fourth row in Supplementary Fig. 2 above), we also noted highly similar patterns. Main 
effects of cue presence and distractor presence were virtually indistinguishable between pre-cue and 
pre-target baselines, and for the different baseline durations and quantifications. The interaction 
effect, however, became slightly less robust when moving from a pre-target to a pre-cue baseline – 
although it should be noted that the average size, shape, and timing of this effect were largely 
preserved (see overlay plot in rightmost panel of the third row) and that this effect remained highly 
robust for each of the pre-target baseline variants. This is, however, unlikely due to a systematic 
(“confounding”) reason of the baseline being positioned before or after the cue. The interaction effect 
involves a difference in the cueing effect between distractor-present and distractor-absent trials, and 
whether a trial will contain a distractor is neither known before nor after the cue (this is only known 
once a distractor is actually presented). Instead, the less reliable interaction effect for the pre-cue (as 
opposed to pre-target) baselined data is likely attributed to the fact that target decoding appears 
slightly less sensitive and ERP variability is higher with these baselines, as shown above. 
 
We restricted our choice of baselines to intervals preceding target/distractor processing. Our 
target/distractor identity decoding analysis capitalizes on differential responses to trials with different 
stimulus orientations. Using a baseline period that overlaps with the target/distractor processing 
period may therefore subtract out such patterns of interest and may additionally “smear” stimulus 
decoding in time. These issues are avoided when restricting the baseline to any period before target 
onset (pre-target or pre-cue), as there simply is no stimulus identity information available in these data 
(cues predict target occurance, not identity). Only epochs prior to target onset can thus be used safely 
to normalise the data, while leaving trial-specific stimulus-orientation information (our decoding 
variable) unaffected. Thus, while we appreciate the use of the entire epoch as another useful baseline 
in many instances, when it comes to decoding stimulus identity, it is our principled belief that baseline 
periods must always be placed before onset of the to-be decoded stimuli. 
 
Finally, considering the baselines proposed in the articles by Grandchamp and Delorme (2011) or 
Ciuparu and Muresan (2016), in our reading, these clever approaches were developed for tackling 
potential biases that may be introduced when using relative changes (division) for data that is 
positively skewed. We found that, when considering ERP data, relative changes from baseline can 
lead to highly inappropriate scaling because the average value in the baseline (the denominator) can 
be very close to zero. Indeed, our time-domain data was already close to being zero-centred provided 
that we had applied a 0.1 Hz high-pass filter during data acquisition (which we now state explicitly in 
our Methods section). Absolute changes (subtraction) are thus preferred when dealing with evoked 
responses, as in our case. Of course, one must still be cautious of the potential contribution of outlier 
data points when baselining. Therefore, as a complementary way to deal with the contribution of 



potential outlier data in our baselines, we also considered subtracting median as opposed to mean 
baseline values. As we have shown above, this yielded virtually identical results.  
 
Following these clarifications and additions, we have also added to following text to our manuscript:  
 

Page 10/11 (Methods): “We chose to position our baseline in the pre-target period because this 
interval is closest in time to the data period of interest (the target/distractor processing period), 
whilst not in itself containing any information regarding target/distractor identity. We did, 
however, confirm that highly similar results were obtained when positioning the baseline pre-cue, 
or when changing the duration of the baseline or subtracting the median as opposed to the mean 
baseline value from each trial (Supplementary Fig. 2).” 
 
Page 4 (Results): “We also note that these effects were largely invariant to our choice of data 
smoothing  (Supplementary Fig. 1) or baselining (Supplementary Fig. 2).” 



REVIEWERS' COMMENTS:  
 
Reviewer #2 (Remarks to the Author):  
 
The authors' reply now addresses my last methodological concerns regarding this manuscript, which 
are now clearly resolved with the additional supplementary figure provided.  
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