Supporting Information

Rerouting the Pathway for the Biosynthesis of the Side Ring System of Nosiheptide: The Roles of NosI, NosJ, and NosK

Edward D. Badding,^{\perp} Tyler L. Grove,^{\perp,\dagger} Lauren Gadsby,^{ξ} Joseph W. LaMattina,^{\perp} Amie K. Boal,^{$\perp, \xi, *$} and Squire J. Booker^{$\perp, \xi, #, *$}

[⊥]The Department of Chemistry, ^ξThe Department of Biochemistry and Molecular Biology, and [#]The Howard Hughes Medical Institute, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA

The codon-optimized sequence of *nosI*, with the *NdeI* and *Eco*RI restriction sites indicated in bold type.

5'-CACTATAGGGCGAATTGAAGGAAGGCCGTCAAGGCCGCATCATATGGGTGATATGGG AGTTACCGGTGTTCGTTGGGGTGGTGATTTTGCAGCATGGGATGATCTGCTGACCGCAGG TCGCGATCTGGCAGCACAGGTTCGTCCGGGTGGTGCCTATGCAATTGATCCGACAGCAGG TCTGCCTGCCCTGGCAGCCCTGTTTGCAGTTGCAACCGTTCCGGATACCGTTCTGCTGTG GGCAAGTCCGCGTACCCTGGGTGTTACCGGTCGTGAAATTGCTCCGGCACTGCATGCCCT GCCGGATGATGGTAGCGTTCCGCTGGCAGCGCAAGAACGTCCGCTGTGGGGGTGTTTGTAC CAGCGGTAGCAGTGGTGCACCGAAAGTTGCAGTTGGTCCGGCAGATGAATGGGAGCAGA TTGCCCTGCATGCCGAAGCAGCAATGTATGCAGATGCATTTCCGGCAGGTCCGCCTGAAG CACTGGCAACCTGTCTGCCGCTGGGTTTTAGCGCAGCCTTTTTTATGTGTGTTCTGCCAG CACTGTATCTGAAACGTGATCTGGTTGTTCATCCGCCTCATGATTGGAGTCCGCTGTATG ATCTGGCACGTGATCGTCGTGTTCTGGCACTGGGTGTTCCAGCTCTGGCAGCCGCAGCAT GTCTGAGCGCACCGGCAGCAACCGATCTGGGTAGCGTTGCACTGTTTCTGGGTGGTGGTC ATCTGAGTGCACCGCGTGTTGAACTGATTCGTCGTCATTTTACCGGTGCAGCAGTTAGCA ATCTGTATGGCACCGCAGAAACCGGTGCAATTGCCCTGGATCACGATCCGGGTCATAATC GTCATGTTGGTCGTCCGATTCCGGGTAAAAGCGTTTGGCTGACCGGCACCGATGAACGTG GTATTGGCACCGTTGCCGTTGCAGGTCCGGGTTGTTGTCGTCGTACCTGGCGTCCGGGTA GCCCTCCGAGTGCCCCTGCAGATCATGTGACCGGTACAGATTATGGTCGTTTTGATGCAG ATGGTAATCTGTGTCTGGAAGGTCGTCTGGATGGTGCAGAAAAACTGGCAGGCGTTCTG GTGCGTCCGCGTGAAATCGAACGTCATGTGCTGGCCCTGGATGGCGTTAGTGATGTTCGT GTTACCGTTGAAACCGCACCGACCGGTCTGGAATTTCTGGCAGCGACCGTTGTTGGTAGC GTGGATGCAGATACCGTGCGTGCACATTGTGCGGCACTGCCGGAACAGCATCGTCCGAGC CGTATTAGCTGTGCAAGCGAACAAGAAGCAGCCACCGTTTATAGCGCACATGGTAAACTG TAAGAATTCCTGGGCCTCATGGGCCTTCCTTTCACTGCCCGCTTTCCAG-3'

The codon-optimized sequence of the *nosJ* gene. The *Nde*I and *Eco*RI restriction sites are indicated in bold type.

5'-CGAATTGGCGGAAGGCCGTCAAGGCCACGTGTCTTGTCCAGAGCTC**CATATG**ACCAGC CAGCGTACCACACCGCGTACACCGGATGGTGTTCCGGATCTGCAAGAAGAACTGGCAGGT CTGCTGCAAGAGGATGATCCGCGTCGTCGTCGTCGGATAGCCTGGAAACCGTTGTTGTTCTG AGCTATTTTGCACGTCAGGCACCGGGTCGTACCCTGCCGGAACTGCCGGATGCTCCGCGT ACCATTGAAGGTTGGGTTACCTGGGCAGATCAGCGTAGCAGCGCAAGCTAA**GAATTC**GG TACCTGGAGCACAAGACTGGCCTCATGGGCCTTCCGCTCACTGC-3'

The codon-optimized sequence of *nosK*, with the *Nde*I and *Eco*RI restriction sites indicated in bold type.

5'-

CGAATTGGCGGAAGGCCGTCAAGGCCACGTGTCTTGTCCAGAGCTC**CATATG**GATGCAG AAACCCCGATGGATACCGAAACACCGCGTGATACGGAAACGCCGATGCATACAGGTATGA GCACCGGTCCGGAAACACCGACCGTTTATCTGGTTCATGGTCTGCTGGGCACCGGTCATG GTCATTTTGCAGCACAGATTCGTGCATGGCATGGTCGTCTGCGTACCGTTCCGGTTGATC TGCCTGGTCATGGCCGTTGTCGTCGTGATGCAGCCGAAGATTATTTTGATGATGCACTGC GTTATCTGGTGGCAGTTCTGGAACGTTTTGGTCCGGGTCGTCTGATTGGTGCAAGCTATC TGGGTGGTCCGCTGGCACATCGTTGTGCAGCAACCCGTCCGGATCTGGTTAGCAGCCTGG TTCTGACCGGTTTTGCACCGGATGTTAGCCGTGATGCATTTCTGAGCCTGATTGCAGGTT TTGAAGGTCTGGCAGCACAGCAGCCTGCACTGGCAGCAGAATATGAACAGCTGCATGGCA CCCGTTGGAAACGTACCCTGGATGCAGTTACAGGTCATGTTGAACGTGATTTTGAACGTA CCGCACTGGTTCGTGCAGCAGATGTTGCAGCACTGACCGTTCCGACCCTGGTGCTGAATG GTAGCCTGAAAAGCGTGGAACGTGCAGCCGCAGAACAGGCACCGGGTTGGGGTGGTCGT TTTAATGAAGCAGTTGAAGATTTTTGGCGCACCGCACATGATGCACCGGCAGGTCCGCGT ACCACAGAAAAGGTGATACC**GAATTC**GGTACCTGGAGCACAAGACTGGCCTCATGGGC CTTCCGCTCACTGC-3'

Figure S1. Purification of NosJ. Lanes 1 and 6, molecular mass markers (kDa); lane 2, crude extract; lane 3, pellet; lane 4, flow through from DE-52 column; lane 5, wash from DE-52 column; lane 6, pooled protein from DE-52 column; lane 7, post S-200 column.

Figure S2. Purification of Nosl. Lane 1, molecular mass markers (kDa); lane 2, pellet; lane 3, crude extract; lane 4, flow through from Talon Co(2⁺) column; lane 5, wash from Talon Co(2⁺) column; lane 6, second wash from Talon Co(2⁺) column; lanes 7 and 8, eluted protein at 2 different concentrations.

Figure S3. Overproduction and purification of NosK. Lane 1, molecular mass markers (kDa); lane 2, before IPTG induction; lane 3, after IPTG induction; lane 4, pellet; lane 5, crude extract; lane 6, flow through from Talon Co(2^+) column; lane 7, wash from Talon Co(2^+) column; lane 8, second wash from Talon Co(2^+) column; lanes 9 and 10, eluted protein at 2 different concentrations.

Figure S4. Overlay of the catalytic triad acidic residue loop in NosK and valacyclovirase (20CG PDB accession code).

Figure S5. Electrostatic surface potential map for NosK. Surface contoured at + 5 $k_{\rm B}$ T (blue) and -5 $k_{\rm B}$ T (red). Corresponding cartoon representations for each view are shown in the bottom panels.

Table S1. Fragments from NosK trypsin digestion after treatment with NosJ, NosI, MIA, ATP, CoA, and holo ACP synthase. Highlighted in blue are the peptide fragments containing Ser102.

Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications
DTETPmHTGMSTGPETPTVYLVHGLLGTGHGHF AAQIR	8	1	1	C6FX50	M6(Oxidation)
DAFLSLIAGFEGLAAQQPALAAEYEQLHGTR	101	1	1	C6FX50	
AADVAALTVPTLVLnGSLK	41	1	1	C6FX50	N15(Deamidated)
DAFLSLIAGFEGLAAQqPALAAEYEQLHGTR	3	1	1	C6FX50	Q17(Deamidated)
DTETPMHTGMSTGPETPTVYLVHGLLGTGHGHF AAQIR	3	1	1	C6FX50	
DTETPmHTGmSTGPETPTVYLVHGLLGTGHGHF AAQIR	11	1	1	C6FX50	M6(Oxidation); M10(Oxidation)
cAATRPDLVSSLVLTGFAPDVSR	61	1	1	C6FX50	C1(Carbamidomethyl)
AADVAALTVPTLVLNGSLK	47	1	1	C6FX50	
DAFLSLIAGFEGLAAQQPALAAEYEQLHGTRWK	2	1	1	C6FX50	
FGPGRLIGA S YLGGPLAHR	8	1	1	C6FX50	S10(Ser-MIA)
AADVAALTVPTLVLnGSLKSVER	1	1	1	C6FX50	N15(Deamidated)
EFNEAVEDFWR	82	1	1	C6FX50	
DFERTALVRAADVAALTVPTLVLNGSLK	2	1	1	C6FX50	
LIGA S YLGGPLAHR	41	1	1	C6FX50	S5(Ser-MIA)
DAAEDYFDDALR	24	1	1	C6FX50	
YLVAVLERFGPGRLIGA S YLGGPLAHR	5	1	1	C6FX50	S18(Ser-MIA)
TALVRAADVAALTVPTLVLNGSLK	2	1	1	C6FX50	
LIGA S YLGGPLAHRCAATRPDLVSSLVLTGFAPDV SR	5	1	1	C6FX50	
DTETPmHTGmSTGPETPTVYLVHGLLGTGHGHF AAQIRAWHGRLR	1	1	1	C6FX50	M6(Oxidation); M10(Oxidation)
AADVAALTVPTLVLNGSLKSVER	2	1	1	C6FX50	
LIGA S YLGGPLAHRcAATRPDLVSSLVLTGFAPDV SR	3	1	1	C6FX50	C15(Carbamidomethyl)
AAAEQAPGWGGR	5	1	1	C6FX50	
DFERTALVRAADVAALTVPTLVLnGSLK	3	1	1	C6FX50	N24(Deamidated)
AADVAALTVPTLVLNGSLKSVERAAAEQAPGWG GR	3	1	1	C6FX50	
DTETPMHTGmsTGPETPTVYLVHGLLGTGHGHF AAqIR	1	1	1	C6FX50	M10(Oxidation); S11(Ser- MIA); Q36(Deamidated)
YLVAVLER	1	1	1	C6FX50	
TLDAVTGHVER	2	1	1	C6FX50	
TLDAVTGHVERDFER	1	1	1	C6FX50	

Table S2. Fragments from NosK trypsin digestion after treatment with NosJ, MIA, ATP, CoA, and holo ACP synthase (NosI omitted). Highlighted in blue are the peptide fragments containing Ser102.

Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications
DAFLSLIAGFEGLAAQQPALAAEYEQLHGTR	116	1	1	C6FX50	
DTETPmHTGmSTGPETPTVYLVHGLLGTGHGHF AAQIR	8	1	1	C6FX50	M6(Oxidation); M10(Oxidation)
AADVAALTVPTLVLNGSLK	82	1	1	C6FX50	
DAFLSLIAGFEGLAAQQPALAAEYEQLHGTRWK	3	1	1	C6FX50	
AADVAALTVPTLVLnGSLK	14	1	1	C6FX50	N15(Deamidated)
cAATRPDLVSSLVLTGFAPDVSR	31	1	1	C6FX50	C1(Carbamidomethyl)
DTETPmHTGmSTGPETPTVYLVHGLLGTGHGHF AAqIRAWHGR	2	1	1	C6FX50	M6(Oxidation);M10(Oxidat ion); Q36(Deamidated)
GRVVPGAGHLVGHDRPREFNEAVEDFWR	1	1	1	C6FX50	
LIGA S YLGGPLAHRcAATRPDLVSSLVLTGFAPDV SR	2	1	1	C6FX50	C15(Carbamidomethyl)
AADVAALTVPTLVLNGSLKSVER	3	1	1	C6FX50	
LIGA S YLGGPLAHRCAATRPDLVSSLVLTGFAPDV SR	7	1	1	C6FX50	
EFNEAVEDFWR	70	1	1	C6FX50	
AADVAALTVPTLVLNGSLKSVERAAAEQAPGWG GR	3	1	1	C6FX50	
DFERTALVRAADVAALTVPTLVLNGSLK	2	1	1	C6FX50	
DAAEDYFDDALR	20	1	1	C6FX50	
AADVAALTVPTLVLnGSLKSVER	1	1	1	C6FX50	N15(Deamidated)
DAFLSLIAGFEGLAAQQPALAAEYEQLHGTRWKR	3	1	1	C6FX50	
DTETPmHTGmSTGPETPTVYLVHGLLGTGHGHF AAQIRAWHGRLR	3	1	1	C6FX50	M6(Oxidation); M10(Oxidation)
DTETPmHTGmSTGPETPTVYLVHGLLGTGHGHF AAqIR	1	1	1	C6FX50	M6(Oxidation); M10(Oxidation); Q36(Deamidated)
TALVRAADVAALTVPTLVLNGSLK	2	1	1	C6FX50	
LIGA S YLGGPLAHR	1	1	1	C6FX50	
DTETPmHTGmSTGPETPTVYLVHGLLGTGHGHF AAqiRAWHGRLR	1	1	1	C6FX50	M6(Oxidation); M10(Oxidation); Q36(Deamidated)
YLVAVLER	3	1	1	C6FX50	
AAAEQAPGWGGR	5	1	1	C6FX50	
AADVAALTVPTLVLnGSLKSVERAAAEQAPGWG GR	1	1	1	C6FX50	N15(Deamidated)
DTETPmHTGMSTGPETPTVYLVHGLLGTGHGHF AAQIR	5	1	1	C6FX50	M6(Oxidation)
TLDAVTGHVERDFER	1	1	1	C6FX50	
TLDAVTGHVER	2	1	1	C6FX50	

Data Collection				
Resolution (Å)	28.00-2.30 (2.38-2.30)			
Space group	P3 ₁ 21			
Cell dimensions				
a, b, c (Å)	75.29, 75.29, 110.12			
α, β, γ (°)	90, 90, 120			
Redundancy	10.8 (11.1)			
Completeness (%)	99.9 (100)			
<i>Ι</i> /σΙ	13.31 (2.62)			
Wilson <i>B</i> -factor (Å ²)	33.96			
R _{sym}	0.040 (0.252)			
$R_{\rm pim}$	0.057 (0.356)			
CC _{1/2}	0.997 (0.936)			
Refinement				
Resolution (Å)	28.00-2.30 (2.38-2.30)			
No. reflections	16453			
R _{work} / R _{free}	0.22/0.26			
No. atoms	1858			
Protein	1762			
Ligand/ion	5			
Water	230			
rms deviations				
bond lengths (Å)	0.007			
bond angles (°)	0.87			
Ramachandran analysis				
Favored (%)	98			
Allowed (%)	2.2			
Outliers (%)	0			
<i>B</i> -factor (Å ²)				
Protein	41.84			
Ligands/ion	35.19			
Water	43.34			

TableS3.CrystallographicdatacollectionandrefinementstatisticsforNosK(PDBaccessioncode5V7O)

Statistics for the highest-resolution shell are shown in parentheses.