1 SUPPLEMENTARY INFORMATION

2 Functional Annotation of Chemical Libraries across Diverse Biological Processes

- 3 Jeff S. Piotrowski^{*1,2}, Sheena C. Li^{*1}, Raamesh Deshpande^{*3}, Scott W. Simpkins^{*4}, Justin
- 4 Nelson⁴, Yoko Yashiroda¹, Jacqueline M. Barber¹, Hamid Safizadeh^{3,5}, Erin Wilson³, Hiroki
- 5 Okada⁶, Abraham A. Gebre⁶, Karen Kubo⁶, Nikko P. Torres⁷, Marissa A. LeBlanc¹, Kerry
- 6 Andrusiak⁷, Reika Okamoto¹, Mami Yoshimura¹, Eva DeRango-Adem⁷, Jolanda van Leeuwen⁷,
- 7 Katsuhiko Shirahige⁸, Anastasia Baryshnikova^{9, 10}, Grant W. Brown^{7,11}, Hiroyuki Hirano¹,
- 8 Michael Costanzo⁷, Brenda Andrews⁷, Yoshikazu Ohya⁶, Hiroyuki Osada^{1§}, Minoru Yoshida^{1§},
- 9 Chad L. Myers^{3,4§}, Charles Boone^{1,7§}
- 10
- 11 1. RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- 12 2. Yumanity Therapeutics, Cambridge, MA, USA
- 13 3. University of Minnesota-Twin Cities, Department of Computer Science and Engineering,
- 14 Minneapolis, Minnesota, USA
- 15 4. University of Minnesota-Twin Cities, Bioinformatics and Computational Biology Program,
- 16 Minneapolis, Minnesota, USA
- 17 5. University of Minnesota-Twin Cities, Department of Electrical and Computer Engineering,
- 18 Minneapolis, Minnesota, USA
- 19 6. University of Tokyo, Department of Integrated Biosciences, Graduate School of Frontier
- 20 Sciences, Kashiwa, Chiba, Japan
- 21 7. University of Toronto, Donnelly Centre, Toronto, Ontario, Canada
- 22 8. The University of Tokyo, Institute of Molecular and Cellular Biosciences, Center for
- 23 Epigenetic Disease, Laboratory of Genome Structure and Function, Yayoi 1-1-1, Bunkyo-ku,
- 24 Tokyo 113-0032, Japan
- 9. Princeton University, Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ 08544,
 USA
- 27 10. Calico Life Sciences, South San Francisco, CA 94080, USA
- 28 11. University of Toronto, Department of Biochemistry, Toronto, Ontario, Canada
- 29
- 30
- 31 *Authors contributed equally to this work
- 32 § Correspondence to charlie.boone@utoronto.ca, chadm@umn.edu,
- 33 osadahiro@riken.jp, <u>yoshidam@riken.jp</u>
- 34

SUPPLEMENTARY RESULTS

Supplementary Table 1. Comparison of chemical-genetic interaction of common compounds between this dataset, Lee et al. 2014, and Hoepfner et al. 2014.

Piotrowski Drug names	Hoepfer Drug names	Giaever Drug names	Piotrowski number drugs	Hoepfner number drugs	Giaever number drugs	Piotrowski- Hoepfner Pearson correlation	Piotrowski- Giaever Pearson correlation	Hoepfner Giaever Pearson correlation	Threeway Pearson correlation
Fluconazole, CPD000471882	1129	SGTC_1787, SGTC_1788, SGTC_227	1	2	3	0.293	0.243	0.064	0.200
Nocodazole	2390	SGTC_1875	1	3	1	0.681	0.721	0.615	0.672
Benomyl	991	SGTC_229	1	97	1	0.704	0.824	0.671	0.733
Chlorpromazine	956	SGTC_2728	1	3	1	0.243	-0.054	-0.009	0.060
MMS	2878	SGTC_915	1	1	1	0.579	0.338	0.347	0.422
NSC19893, CPD000038082	1119	SGTC_242, SGTC_423	2	1	2	0.137	0.046	0.042	0.075
5-Fluorocytosine, CPD000059047	3331	SGTC_1077, SGTC_1698	1	1	2	0.279	0.092	0.026	0.132
Caffeine	1080	SGTC_228	1	4	1	0.446	0.236	0.154	0.279
Hydroxyurea, NSC32065	1089	SGTC_273	3	4	1	0.070	0.155	0.103	0.109

35

Compound	Prediction coherence	Target process #1	Target process #2		
NPD7992	-0.13	cell wall organization or biogenesis	negative regulation of transcription from RNA		
			polymerase I promoter		
NPE593	-0.11	Golgi to plasma membrane transport	cellular macromolecule		
	0111		localization		
NPD6955	-0.1	receptor recycling	endonucleolytic cleavage to		
			generate mature 5'-end of		
			SSU-rRNA from (SSU-		
			rRNA, 5.8S rRNA, LSU-		
			rRNA)		
NPD887	-0.05	proteasomal ubiquitin-independent	hydrogen transport		
NIDE720	0.02	protein catabolic process	frame al (ann a call ann 11		
NPE738	-0.02	meiotic DNA double-strand break	fungal-type cell wall		
NPD7879	-0.01	processing DNA catabolic process	biogenesis fungal-type cell wall		
NFD/0/9	-0.01	DIVA catabolic process	biogenesis		
NPE164	0	telomere maintenance	fungal-type cell wall		
	0		biogenesis		
NPD5925	0	DNA catabolic process	fungal-type cell wall		
		*	biogenesis		
NPE614	0	fungal-type cell wall biogenesis	DNA catabolic process		
Desipramine	0.01	RNA polymerase II transcriptional	retrograde vesicle-mediated		
-		preinitiation complex assembly	transport, Golgi to ER		
NPD7371	0.02	positive regulation of cytoskeleton	phospholipid transport		
	0.00	organization			
NPE81	0.03	energy coupled proton	DNA-dependent		
		transmembrane transport, against	transcriptional preinitiation		
NPD1256	0.03	electrochemical gradient cytokinesis	complex assembly vesicle targeting		
NPD6024	0.03	meiotic DNA double-strand break	00		
INF D0024	0.04	processing	response to metal ion		
NPD5954	0.04	nuclear migration	RNA export from nucleus		
NPE1081	0.06	fungal-type cell wall biogenesis	response to metal ion		
NPD838	0.06	establishment of protein localization	organelle localization		
111 D050	0.00	to membrane			
NPD3577	0.06	nuclear-transcribed mRNA poly(A)	DNA catabolic process		
	- ·	tail shortening	r		
NP214	0.07	energy coupled proton	DNA replication		
		transmembrane transport, against	•		
		electrochemical gradient			
NPD401	0.07	glycosylation	cytoplasmic translation		

37 Supplementary Table 2. Top 20 compounds with distinct dual-target predictions

-

Supplementary Table 3. Compounds with described modes-of-action and targets in the high-confidence

42 predictions set

Drug	P-value	GO Process	GO rank	Top 5 targets
MMS	$< 2 \times 10^{-5}$	DNA metabolic process	1	TSA1, RRM3, RNR4, RNH203, MMS4
Benomyl	$< 2 \times 10^{-5}$	tubulin complex assembly	1	TUB3, GIM3, GIM4, YKE2, CIN1
Nocodazole	< 2 × 10 ⁻⁵	tubulin complex assembly	1	TUB3, GIM3, YKE2, GIM4, CIN1
Latrunculin B	$< 2 \times 10^{-5}$	cellular component movement negative regulation of	1	PFY1, MYO5, TAF1, BIM1, CIN8
FK228	< 2 × 10 ⁻⁵	chromatin silencing	1	HCS1, YPL150W, SSU72, SIN3, RPD3
Hedamycin	$< 2 \times 10^{-5}$	DNA metabolic process	1	POL3, RNR4, TSA1, RAD27, RFA3
Mycophenolic acid	$< 2 \times 10^{-5}$	DNA metabolic process negative regulation of	1	RAD55, RAD57, RNR4, AFT1, YPL077C
Trichostatin A	$< 2 \times 10^{-5}$	chromatin silencing	3	TRS33, SSU72, GRH1, YPL150W, HCS1
Tunicamycin	$< 2 \times 10^{-5}$	glycosylation	1	ALG14, ALG5, YIL102C, ERI1, ALG13
Micafungin	$< 2 \times 10^{-5}$	cellular component movement Maintenance of fidelity in DNA	1	FKS1, PFY1, ARC18, YNL181W, ILM1
Furazolidone	$< 2 \times 10^{-5}$	replication	1	MMS4, RNR4, SLX1, MUS81, RNH203
Brefeldin A	$< 2 \times 10^{-5}$	RNA transport	1	HIR2, TAF7, MED1, THP2, SUB2
Acriflavine	$< 2 \times 10^{-5}$	base-excision repair homoserine biosynthetic	1	RFA2, RAD27, RFC4, HOM6, POL32
Haloperidol	$< 2 \times 10^{-5}$	process	1	HOM2, ERG25, UBP3, HOM3, BRE5
Aclacinomycin A	$< 2 \times 10^{-5}$	DNA conformation change	2	NUP60, NUP84, SUB2, TLD3, TOP1
Cinerubin B	$< 2 \times 10^{-5}$	DNA packaging energy coupled proton	1	FAL1, SLD3, PDS1, SCC4, LSR4
Rapamycin	$< 2 \times 10^{-5}$	transmembrane transport Ubiquitin-dependent macromolecule catabolic	1	CNB1, NBP2, SWA2, FLC2, VMA11
Daunorubicin	$< 2 \times 10^{-5}$	process	2	RPT2, SPT3, UBP6, RPN11, UBX4
Hydroxyurea	$< 2 \times 10^{-5}$	DNA conformation change	2	TOP1, TAF7, TAF1, WSS1, MMS4
5-Fluorocytosine	$< 2 \times 10^{-5}$	tRNA modification	1	SWC4, ADA2, CDC7, YTA7, DBF4
Camptothecin	4×10^{-5}	DNA geometric change	3	SCC2, TCP1, POL2, DCC1, KTI11
Caffeine	4×10^{-5}	TOR signaling cascade	1	TOR1, YMR018W, STE24, KOG1, KRS1
Tyrocidin B	4×10^{-5}	regulation of pH transcription from RNA	1	GAS1, SWA2, KRE1, KRE5, BIG1
Blasticidin S	6 ×10 ⁻⁵	polymerase I promoter mitotic sister chromatid	1	VPS28, VPS25, BTS1, YGR012W, SNM1
Fluconazole	8×10^{-5}	cohesion	1	POC4, PRP16, RPN10, HDA3, YPL150W
Itraconazole	1.8×10^{-4}	steroid biosynthetic process	16	ERG3, RPN10, EMC6, POC4, ERG25
Cisplatin	2.4×10^{-4}	DNA replication	3	SLX1, WSS1, MMS4, RNH202, RNH203
Podophyllotoxin	2.4×10^{-4}	RNA splicing	1	MED1, MRP7, BIM1, SLU7, YHC1
Bortezomib		No Prediction		IRC25, POC4, EMC6, SEM1, UBX4
Nigericin		No Prediction		NUP84, SEC27, SED5, COG6, ARL1
OligomycinA		No Prediction		PDB1, POP7, MET30, MOB2, RIM8
Griseofluvin		No Prediction		SPF1, MNN2, YND1, SSS1, ERG4
Polyoxin D		No Prediction		YTA7, IPK1, BIM1, RSE1, MPS1

46 Supplementary Figure 1. Constructing a drug sensitized yeast strain. To construct a drug
 47 sensitized yeast strain for chemical genomics assays, we deleted the transcription factors Pdr1p

48 and Pdr3p, which control much of the yeast pleiotropic drug response as well as the multidrug

49 transporter, Snq2p, in strain Y7092, which encodes markers and reporters necessary for SGA

- 50 analysis.
- 51

collection. Distribution of genes comprising the diagnostic set (blue) compared to that of genes

in the complete genome-wide deletion collection (grey) across the 17 major bioprocesses of thecell.

Supplementary Figure 3. Optimizing detection of chemical-genetic interactions. (a) The 60 effect of culture time, inoculum density, and PCR cycle number on the signal-to-noise ratio 61 within the chemical genomic profile of micafungin (25 nM). Darker blue indicates improved 62 signal detection of the top sensitive strains relative to the entire pool. (b) Correlation of 63 independent, replicate chemical genomic profiles for benomyl and micafungin. (c) Total barcode 64 read count yield when sequencing of the amplicon containing the multiplex tag barcode, and 65 mutant strain barcode is done in a single priming step (Read-through), versus yield when 66 sequencing is done with separate priming steps for the multiplex tag barcode and mutant strain 67 barcode (Separated). 68

Supplementary Figure 4. In vitro tubulin polymerization in the presence of paclitaxel, 71 nocodazole, NPD2784 and DMSO. Tubulin polymerization was observed in a fluorescence-72 based in vitro assay (Cytoskeleton, Cat. #BK011P) using 10 µM paclitaxel, 10 µM nocodazole, 73 21 µM NPD2784, and 1% DMSO. In this assay, tubulin polymerization incorporates a 74 75 fluorescent analog that accurately reports microtubule polymer mass in terms of relative 76 fluorescence units (RFU). The rate of tubulin polymerization increases in the presence of paclitaxel, an anti-mitotic drug, and substantially decreases in the presence of compounds that 77 78 inhibit tubulin polymerization such as nocodazole and NPD2784. 79

Supplementary Figure 5. Schematic of target bioprocess prediction method. *Top*: Heat maps 81 illustrate the set of gene mutants that are sensitive to benomyl exposure (red signal in Benomyl 82 83 CGI profile) and a subset of negative (red) and positive (green) genetic interactions associated with the benomyl sensitive mutants (Genetic Interactions). Bottom: The chemical genetic profile 84 85 of a compound is correlated with the known genetic interaction network of yeast. The genes (red nodes) whose genetic interaction profiles have the greatest correlation with the benomyl 86 87 chemical-genetic interaction profile and represent "gene-level" target predictions are indicated 88 on the global genetic profile similarity network. Functional enrichment among the "gene-level" target predictions is calculated using Gene Ontology as a functional standard to provide 89 "process-level" target predictions. 90

93

95 Supplementary Figure 6. Bioactivities of all compounds in the final dataset and their

96 relationship to high-confidence target prediction. Bioactivity distribution of screened

97 compounds (blue) and the effect of bioactivity on inclusion into the high confidence set (black)

based on our false discovery rate (FDR). Greater bioactivity is correlated with confidence of

99 target predictions, but drops off at very high bioactivity (> 80% growth inhibition).

102

103 Supplementary Figure 7. Relationship between bioactivity and pool overrepresentation of 104 $gtr1\Delta$, $avt5\Delta$ and $gas1\Delta$ mutants. The proportion of read counts mapped to $gtr1\Delta$, $avt5\Delta$ and 105 $gas1\Delta$ strains is inversely related to the fitness of the pooled collection in the presence of 106 compounds (x-axis, growth relative to DMSO).

107

Supplementary Figure 8. Functional space covered by the NCI natural products collection. 111 (a) The global genetic interaction similarity network. Genes (nodes) that share similar genetic 112 interaction profiles are connected by an edge and are proximal to each other; less-similar genes 113 are positioned further apart. Densely connected network clusters enriched for genes with similar 114 functional annotations and corresponding to distinct biological processes are indicated and color 115 coded. (b) Compounds of the NCI Natural Product collection predicted to target specific genes 116 117 are presented as a node on the network map, where each node corresponds to the top gene-level target in one compound's top process-level target. Compounds are colored according to the color 118 of the biological process-enriched cluster shown in (a). 119 120

Supplementary Figure 9. Cell cycle progression phenotypes associated with 71 compounds. Asynchronous log phase cells were treated with each compound for 4 h then prepared for flow cytometry analysis to assess DNA content and identify compounds that result in in a G1-phase delay or arrest, S-phase delay or arrest, or G2-phase delay arrest phenotypes. Two biological replicates presented.

Supplementary Figure 10. Phenotypic analysis of cells treated with predicted cell wall targeting agents. Effect of zymolyase treatment on cells treated with predicted cell wall targeting compounds; reduced OD600 indicated increased cell lysis in the presence of zymolyase $(n=3, mean \pm S.E.)$. (b) Leakage of adenylate kinase from cells treated with predicted cell wall targeting compounds; increase in luminescence indicates leakage of cytosolic adenylate kinase resulting from compromised cell surface integrity (n=3, mean \pm S.E.). (c) Structural comparison of jervine, pseudojervine, and related RIKEN NPDepo compounds (d). Aniline blue staining of cells treated with either jervine or DMSO.

Supplementary Figure 11. Overlay of fluorescence signals of NPD5925 and DAPI. Yeast
cells were exposed to NPD5925 and DAPI, and visualized by fluorescence microscopy. The
fluorescence signals across the cells from bud to mother cell (arrows) of NPD5925 (red) and
DAPI (blue) are displayed as a histogram, and are merged in right most panel.

Supplementary Figure 12. Detailed investigation of the genetic interaction profiles that 155 drive dual bioprocess target predictions of NPD5925. A heatmap illustrating the dual target 156 nature of NPD5925. (a) The mean chemical genetic interaction profile of NPD5925 (n=3, 157 technical replicates). Chemical-genetic interactions are shown in red. The heatmap visualizing 158 the pleiotropy or dual target nature of NPD5925 was created by performing target prediction on 159 160 the whole chemical genetic profiles, to compare for pleiotropy, or driver profiles of either GO process (b) A portion of the NPD5925 chemical-genetic profile overlaps genetic interactions 161 associated with genes involved in DNA catabolic processes. (c) A different set of chemical 162 genetic interactions in the NPD5925 chemical genetic profile overlaps genetic interactions 163 164 associated with genes involved in fungal-type cell wall biogenesis.

165

Supplementary Figure 13. Barcode amplification performance of 96 multiplex tag primers, and rational selection of 768 well-performing multiplex tag primers. (a) Read count distribution of 96 multiplex index tags used in initial pilot experiments. (b) Read count distribution of 1000 index tags from identical DMSO treated pools. A set of 768 index tags with near-uniform performance was selected from the 1000 index tags to give the most consistent read counts, and tags yielding very high or low read counts were excluded.

174

177

Supplementary Figure 14. Design of our screening plates and sequencing strategy. Each of 178 our screening plates had 88 unique compounds, 4 control compounds, and 4 DMSO control 179 conditions. The control compounds were benomyl, MMS, micafungin, and bortezomib for the 180 RIKEN screen. For the NCI/NIH/GSK screens, tunicamycin was added as a fifth control in place 181 of a DMSO. The control compounds and DMSO controls were included to ensure proper plate 182 orientation and assess any plate-specific batch effects. Each sequencing lane had 7 compound 183 plates and one DMSO only plate to serve as the solvent control. Our 768 indexed primers were 184 shuffled for each of the 3 replicates to ensure that no compound plate had the same primer set in 185 any replicates, to ensure we could detect and correct any potential primer biases. 186

Supplementary Figure 15. Overlap of diversity set compounds with previously defined 189 chemical-genetic signatures. Compounds in each diversity set (RIKEN and NCI/NIH/GSK) 190 were annotated to the major chemical-genetic signatures defined in Lee et al. 2014^8 if they 191 possessed significant Pearson correlation coefficients (PCCs) above a given cutoff value to at 192 193 least one compound in a Lee et al. major signature (see Methods). (a) Coverage of Lee et al. major chemical-genetic signatures by at least one RIKEN or NCI/NIH/GSK diversity set 194 compound as a function of PCC cutoff value. The distributions of diversity set compound 195 annotations across Lee et al. major chemical-genetic signatures are shown in the upper-right and 196 lower-left insets for PCC cutoffs of 0.2 and 0.4, respectively. (b) We mapped 43/45 chemical-197 198 genetic signatures defined in Lee et al. 2014 to the 17 bioprocesses of Costanzo et al. 2016¹¹. 199