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SI Notes 

Phenotypic gap between targeting the KRAS oncoprotein itself versus its downstream effector network 

Our analysis revealed a significant phenotypic gap between targeting the KRAS oncoprotein itself versus 

targeting its downstream effector network. We noted that none of the siRNA combinations could fully 

phenocopy KRAS knockdown: the best effector combination we identified only captures a little over 

50% of KRAS dependency. Several explanations could be offered here. First, we might have missed 

better target combinations due to our limited sampling of the combinatorial space (~500 single nodes, 

node pairs and paralog combinations sampled out of all 1.82x109 possible combinations). Second, in the 

current study we did not analyze distal RAS effectors such as the ETS, FOS and FRA1 transcription 

factors (1-3) and other stress response pathways known to functionally interact with KRAS mutation (4-

8). Thus, expanding the analysis to include these genes and pathways in a greater number of 

combinations could yield a more comprehensive landscape of pathway dependencies in KRAS mutant 

cells. Third and as discussed above, the heterogeneity nature of pathway dependency amongst KRAS 

mutant cell lines could imply that no public combination is able to effectively capture all of KRAS 

dependency across all cell lines. Finally, it is possible that the functional overlap between oncogenic and 

physiological RAS signaling imposes a selectivity ceiling.  Thus, targeting KRAS onco-effectors may 

never achieve the same therapeutic window as targeting the KRAS oncoprotein itself. Recent efforts in 

developing novel KRASG12C inhibitors have gained significant traction (9-11), a useful future direction 

would be to identify KRAS onco-effectors that strongly synergize with KRASG12C inhibitors to enhance 

the genotype-dependent killing of KRAS mutant cancer cells.  



 

  

SI Materials and Methods 

 

RAS effector and stress pathway gene siRNA library curation details 

Sensor siRNAs against the list of RAS effector genes interrogated in this study were generated as 

previously described (12, 13). Briefly, 65 bioinformatically predicted potent shRNA sequences against 

each gene were functionally analyzed using the Sensor assay (12) and the top 5 most potent Sensor 

shRNA sequences were converted to 22-mer Sensor siRNA sequences. From these, the top 2 most potent 

Sensor siRNAs that work in a pool format were identified as follows. Candidate siRNAs each targeting 

a different gene were mixed in a pool of 4-6 siRNAs and co-transfected into human osteosarcoma U-2 

OS cells for 72h. U-2 OS cells were relatively insensitive to RAS pathway gene knockdown. In addition, 

we took advantage of gene paralog redundancy during this validation step to minimize toxicity of siRNA 

pools to U-2 OS cells. To maximize assay sensitivity and minimize siRNA off-target effects, each siRNA 

was tested at a low 2nM transfection concentration (13). Total RNA was first isolated using the RNeasy 

Mini Kit (Qiagen #74106), reverse-transcribed into cDNA using the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems #4368814), and then subjected to RT-qPCR reaction (Applied 

Biosystems 7900HT Fast Real-Time PCR System) for measuring the knockdown efficiency of each 

target mRNA. GAPDH mRNA was used as a normalization control. A Sensor siRNA would qualify and 

be curated into our library when its knockdown efficiency is > 70%. For the rare instances where we 

were unable to qualify two independent Sensor siRNAs, commercially available siRNAs (Qiagen) were 

included in the validation pipeline and the knockdown threshold was lowered to 65%. For each target 

gene, its most potent siRNA was assigned to the Set 1 library and the second most potent siRNA was 

assigned to the Set 2 library. For a selected subset of on-target siRNAs in our library, we generated their 

sequence-specific C911 rescue siRNAs by changing bases 9, 10, and 11 of the guide strands to their 

complement bases as previously described (14). These C911 siRNAs abolish RISC-mediated on-target 

mRNA cutting but preserve seed sequence-mediated, miRNA-like off-target effects. All siRNA 

sequences used in the present study are listed in Dataset S1. 

 

Cell lines and cell culture media detailed information 

Human colorectal cancer cell lines DLD-1, HCT116, SW620, LoVo, SW403, SW48, and Caco-2 were 

cultured in McCoy’s 5A media (Lonza #12-688F) supplemented with 10% fetal bovine serum (Gibco 

#10438026). Human pancreatic ductal adenocarcinoma cell lines MIA PaCa-2, HUP-T4, SUIT-2, AsPC-

1, PA-TU-8902, and BxPC-3 cells were cultured in RPMI 1640 media (Lonza #12-167F) supplemented 



 

  

with 10% fetal bovine serum. Cell lines were authenticated by short-tandem repeat profiling (Laragen, 

Inc). Human mammary epithelial cells (HMEC) were cultured in MEGM media with supplements 

(Lonza # CC-4136). Immortalized human small airway epithelial cells (iSAEC) were previously 

described (15) and were cultured in SAGM media with supplements (Lonza #CC-3118). Human 

pancreas duct normal epithelial cells (HPNE) were cultured in mixture of 75% DMEM without glucose 

and glutamine (Gibco #A14430) and 25% M3:BaseF medium (Incell Cprporation #M300F-100) 

supplemented with 5% fetal bovine serum, 5.5 mM D-glucose (Gibco #A24940), 2 mM L-glutamine 

(Lonza #17-605E), 10 ng/ml recombinant human EGF (Gibco #PHG0311L), and 750 ng/ml puromycin 

(Gibco # A1113803). Human BJ fibroblast cells were cultured in EMEM (ATCC #30-2003) 

supplemented with 10% fetal bovine serum. All cell lines were cultured at 37 °C in a humidified 5 % 

CO2 incubator. 

 

Reverse transfection of siRNA combinations and co-treatment with siRNAs and inhibitors 

To knockdown multiple gene targets simultaneously, reverse siRNA transfection was performed using 

a protocol similar to a previous study (16) with modifications. Briefly, 2 μl of each siRNA pool was first 

arrayed in 384-well tissue culture plates (Corning #3570) and stored at -80C until used. The siRNA 

concentration was adjusted in the pool such that the final concentration for each individual siRNA in the 

pool during the transfection step was 5nM. Depending on the specific siRNA combination, up to 6 

siRNAs were combined together in each pool. To maintain consistency during the siRNA transfection 

step, the total siRNA concentration was kept at a constant 30 nM: if fewer than six siRNAs were included, 

negative control siRNA (Qiagen AllStars Negative Control siRNA, #SI03650318) was added to the 

siRNA pool to bring total siRNA concentration to 30 nM. 

For the transfection reaction, negative control siRNA at 30nM was included for non-specific 

transfection toxicity. A lethal siRNA pool, siDeath, (Qiagen AllStars Human Cell Death Control siRNA, 

# SI04381048) was included at a concentration gradient of 2.5, 5, 10, and 30 nM as the positive control 

to monitor transfection efficiency. For the transfection reaction, Lipofectamine RNAiMAX (Invitrogen 

# 13778150) was diluted in 20 μl McCoy’s 5A or RPMI 1640 base media without supplements and 

dispensed into wells containing pre-arrayed siRNAs. Cell suspension was prepared in culture media 

supplemented with 20% FBS, and 20 μl of cell suspension was then dispensed into each well and mixed 

with the lipid and siRNA complex. Lipid concentration and the cell number were optimized for each 

individual cell line to obtain minimal toxicity with negative control siRNA and maximum toxicity with 

lethal positive control siRNAs. 



 

  

For siRNA and inhibitor co-treatment, cells were transfected with siRNA mixtures first. Five 

microliters of inhibitors were added into culture 24 hr post-siRNA transfection such that the desired drug 

concentrations were reached in the media. Dose response curves were modeled for determining IC50 

values by using GraphPad Prism software (GraphPad Software). 

 

Cell viability, caspase 3/7 activity, and cell cycle assays. To examine the effect of siRNA-mediated 

gene knockdown on cell viability and apoptosis, cell viability was measured 5 days post-transfection 

using ATP-based CellTiter-Glo Luminescent Cell Viability Assay (Promega #G8462). To examine the 

effect of siRNA-mediated gene knockdown on apoptosis, cells at 3-days post transfection were analyzed 

for caspase 3/7 activity using ApoLive-Glo Multiplex Assay (Promega #G6411). In this assay, cell 

viability was first measured with a fluorescence-based, non-cell lytic assay. Caspase 3/7 activity was 

then measured by a lytic, luminescence-based assay, and adjusted by the corresponding viability 

obtained from the first part of the multiplex assay. To compare the effect of different siRNA pools within 

and across experiments, cell viability and apoptosis was normalized to in-plate negative control siRNA 

wells. Cell cycle analysis was performed as previously described (17). Briefly, cells were transfected 

with siRNA pools in 6-well plates. At 3 days post transfection, both floating cells and attached cells were 

harvested, fixed in 70% ice-cold ethanol, treated with RNase A and stained with propidium iodide. Cell 

cycle distribution was analyzed by flow cytometry using a FACSCantoII instrument with the FACSDiva 

software (Becton Dickinson). Cell cycle distribution was analyzed using the ModFit LT v5.0 software 

(Verity Software House). Cell fractions in G0/G1, S, and G2/M phases were determined using the viable 

cell population; whereas the sub-G1 fraction was determined using the total cell population. 

 

Immunoblotting. To examine the effect of siRNA-mediated knockdown on protein expression and 

pathway activity, cells were reversely transfected with siRNA pools in 96-well plates. At 5 days post-

siRNA transfection, cell viability in each well was first determined using a non-lytic cell viability assay 

by performing CellTiter-Fluor Cell Viability Assay (Promega #G6082). Whole cell extract was 

harvested using Laemmli sample buffer with buffer volume adjusted in proportion to cell viability. 

Samples were subjected to SDS-PAGE followed by immunoblotting using primary antibodies from the 

following sources: KRAS (Sigma #WH0003845M1), ARAF (Santa Cruz Biotechnology #SC-408), 

BRAF (Santa Cruz Biotechnology #SC-5284), CRAF (BD Biosciences #610151), RAC1 (Cytoskeleton 

#ARC03), ATG7 (Cell Signaling #2631), phospho-MEK1/2_S217/S221 (Cell Signaling #9121), 

MEK1&2 (Cell Signaling #8727), phospho-ERK1/2_ T202/Y204 (Cell Signaling #9106), ERK1&2 

(Cell Signaling #9102), phospho-FRA1_S265 (Cell Signaling #5841), FRA1 (Cell Signaling #5281), 



 

  

BIM (Cell Signaling #2933), ATG5 (Cell Signaling #12994), LC3B (Cell Signaling #3868), p62 (Santa 

Cruz Biotechnology #SC-28359), and GAPDH (Santa Cruz Biotechnology #SC-47724). HRP-

conjugated anti-rabbit and anti-mouse secondary antibodies were from Jackson Immuno Research. 

Immunoblots were imaged using a ChemiDoc Touch Imaging System (Bio-Rad) and 

chemiluminescence signal was quantified using the Image Lab Software (Bio-Rad). Analyte protein or 

phospho-protein level was normalized to GAPDH protein level in the same sample. Changes in total 

protein or phospho-protein level in response to siRNA was compared to sample transfected with negative 

control siRNA. 

 

Data analysis and statistics. To assess the differential impact of siRNAs on KRAS mutant and WT 

cancer cell lines as well as immortalized, non-transformed normal cell lines, we first normalized cell 

viability in response to different siRNA pools to that of negative control siRNA for each individual cell 

line. Next, we quantified the effect of each siRNA pools using the following metrics. For each KRAS 

mutant cancer cell line, we calculated the differential dependency score (DDS) for each siRNA pool 

using KRAS WT cancer cell lines as the baseline: DDS = !"# − %&'(  , where !"#  is the mean 

normalized viability of all KRAS WT cancer cell lines and %&'( is the normalized viability of the specific 

KRAS mutant cell line in response to an siRNA pool. For each KRAS mutant cell line, we also calculated 

the differential dependency score (DDSn) for each siRNA pool using normal cell lines as the baseline: 

DDSn = !)*+& − %&'( , where !)*+& is the mean normalized viability of all normal cell lines and %&'( 
is the normalized viability of the specific KRAS mutant cell line in response to an siRNA or siRNA 

combination. To quantify the extent by which each siRNA pool captures KRAS dependency, its mean 

DDS and DDSn across KRAS mutant cell lines was compared to that of KRAS siRNAs. We also 

calculated the Pearson correlation coefficient (r) for an siRNA pool versus siKRAS using their viability 

data in KRAS mutant cell lines: r = ∑ (./01)(3/04)5
/67

8∑ 9./01:
;5

/67 8∑ 93/04:
;5

/67

 , where <= and > are the specific and mean 

normalized viability, respectively, of KRAS mutant cell lines in response to an siRNA or siRNA 

combination, and ?= and @  are the specific and mean normalized viability, respectively, of KRAS mutant 

cell lines in response to siKRAS. Unsupervised hierarchical clustering was performed by using Partek 

Genomic Suite software (Partek Incorporated). Outlier analysis, paired t-test and ANOVA and post 

analysis were performed by using GraphPad Prism (GraphPad Software).  
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Supplemental Figure Legends 

 

Fig. S1. Construction of an siRNA library targeting RAS effector and stress-response genes. 

A. Twenty-nine gene nodes from 6 canonical RAS effector pathways and 10 gene nodes from 

selected stress response and metabolic pathways (boxed) were included in our analysis. For each 

gene node, the gene paralogs are listed next to the node. 

B. Knockdown efficiency of the validated siRNAs in the library. Two Sensor siRNAs with target 

mRNA knockdown efficiency of > 70% in a pooled setting were included in the library. For each 

gene, the most potent siRNA was assigned to the Set 1 siRNA library and the second most potent 

siRNA was assigned to the Set 2 siRNA library. For six genes only one qualified siRNA was 

identified (´ indicates no Set 2 siRNA was available), and the same siRNA was used in Set 2 

library. 

C. Distribution of knockdown efficiency of all siRNAs included in the library. 

D. Comparison of knockdown efficiency of Set 1 and Set 2 library siRNAs.  

E. Flowchart of siRNA curation and library assembly. Set 1 and Set 2 siRNAs were used in parallel 

to construct two independent single node (siNode) and node pair (siNodePair) libraries. For the 

siNode library, each siRNA pool consists of siRNAs targeting all paralogs within the gene node 

(the RAF siNode pool is illustrated as an example). For the siNodePair library, each siRNA pool 

consists of siRNAs targeting all paralogs within two gene nodes (the RAF+AKT siNodePair is 

illustrated as an example). 

 

Fig. S2. Single node dependency analysis with Set 1 and Set 2 libraries. 

A. Cell viability data of single node knockdown by Set 1 vs Set 2 siRNA libraries in colorectal 

cancer cell lines. Cell viability was measured 5 days post siRNA transfection and was normalized 

to the siNeg control for the respective cell line. 

B. Correlation between Set 1 and Set 2 siNode library viability data. 

C. Outlier analysis for Set 1 vs. Set 2 siNode library concordance. For each siNode (x-axis), a z-

score for the difference in viability by Set 1 and Set 2 siRNAs was calculated (y-axis). Outliers 

was identified using the ROUT analysis (Q = 1%). The HK node siRNAs were identified as an 

outlier (red). 

 



 

  

Fig. S3. Correlation between single node dependency and KRAS dependency.  Correlation plot of 

the viability of individual cell lines in response to siKRAS vs. siRAF (A), siRAL (B), siGLS (C), 

siMEK (D) and siERK (E). The correlation (R2) between siKRAS and each siNode was 

calculated using data from the five KRAS mutant cell lines. 

 

Fig. S4. Comparison of RAF, MEK and ERK node dependency in KRAS mutant cells. 

A. Western blot validation of target protein knockdown by the indicated siNode pools. Cell lysates 

was collected 5 days post siRNA transfection. Phospho-ERK1/2 (p-ERK1/2) was used as a 

readout for MAPK pathway activity. 

B. Quantification of phospho-ERK1/2 (p-ERK) levels in the western blots as shown in panel A. 

Comparable degree of p-ERK reduction was observed between Set 1 vs. Set 2 siRNAs for a given 

node, and between the siRAF, siMEK and siERK pools. 

C. Rescue of the cytotoxicity of Set 1 on-target KRAS, RAF, MEK and ERK siRNAs (left panel) by 

their corresponding C911 siRNAs (right panel). 

D. Unsupervised hierarchical clustering analysis of Set 1 siRNA cell viability data using Caco-2 as 

the sole KRAS WT control. Dendrogram branches involving siKRAS are highlighted in red. For 

each siNode, averaged differential dependency scores (DDS) and Pearson correlation coefficient 

(r) with siKRAS are listed. 

E. Top public single node dependency based on average Set 1 siRNA DDS using Caco-2 as the sole 

KRAS WT control. Bars represent the average DDS across five KRAS mutant cell lines. 

 

Fig. S5. Paired-node dependency analysis with Set 1 and Set 2 libraries. 

A. Cell viability data of paired-node knockdown by Set 1 vs Set 2 siRNA libraries in colorectal 

cancer cell lines. Cell viability was measured 5 days post siRNA transfection and was normalized 

to the siNeg control for the respective cell line. 

B. Correlation between Set 1 and Set 2 siNodePair library viability data. 

C. Outlier analysis for Set 1 vs. Set 2 siNodePair library concordance. For each siNodePair (x-axis), 

a z-score for the difference in viability by Set 1 and Set 2 siRNAs was calculated (y-axis). Outliers 

was identified using the ROUT analysis (Q = 1%).  Outlier siNodePair were colored red. 

 

Fig. S6. Detailed view of selected node pair clusters highlighted in Figure 2A. 



 

  

A. The Death cluster includes the siDeath control and most of BCL2-based node pairs. The 

RAF+PI3K and RAF+MEK node pairs also clustered here. 

B. The PI3K cluster includes the majority of PI3K-based node pairs. Cell lines marked with * harbor 

mutations in PIK3CA or PIK3CB genes. 

C. The MEK cluster includes the majority of MEK-based node pairs. The cell line SW48 (marked 

with *) harbor mutations in MEK1 and is sensitive to MEK node knockdown. 

D. The ERK cluster that are enriched for ERK-based node pairs. 

 

Fig. S7. Comparison of RAF, MEK and ERK node pair dependency in KRAS mutant cells. 

A. Scatter plot of DDS and r values for the 5 KRAS mutant cell lines from Set 1 siRNA data 

excluding the SW48 cell line. All node pairs involving the RAF, MEK and ERK nodes were 

highlighted. 

B. Top RAF, MEK, and ERK-based node pairs based on DDS calculated from Set 1 siRNA data 

excluding the SW48 cell line. Viability of single node RAF, MEK and ERK knockdown is 

included for comparison. Bars represent the average DDS across five KRAS mutant cell lines and 

dots represent data points for individual cell lines. 

 

Fig. S8. Top private node pair dependency for individual cell lines. 

Node pair dependency was ranked based on cell line-specific DDS. siKRAS was included as a positive 

control. Notably, top node pair dependency typically includes the top single node dependency in the 

combination. 

 

Fig. S9. Additional analysis of public node pair dependencies. 

A. KRAS wild-type and mutant CRC and PDAC cell lines were transfected with siKRAS, siRAF 

node, and siNodePair combinations as indicated. Cell viability was determined 5 days post-

transfection and normalized to siNeg control. Bars represent the average cell viability across 3 

KRAS wild-type or 20 KRAS mutant cell lines and dots represent data points for individual cell 

lines (n.s., not significant; ** p < 0.01; *** p < 0.001). 

B. Correlation plot of the viability of individual cell lines in response to siKRAS vs. siRAF node in 

CRC and PDAC cell lines. The correlation (R2) was calculated using data from the 10 KRAS 

mutant cell lines. 



 

  

C. Correlation plot of the viability of individual cell lines in response to siKRAS vs. siNodePair 

combinations as indicated in CRC and PDAC cell lines. The correlation (R2) between siKRAS 

and each siNode was calculated using data from the 10 KRAS mutant cell lines. Cell line symbols 

are the same as panel B. 

D. Rescue of the cytotoxicity of on-target siKRAS, siRAF node and siNodePair combinations by 

their corresponding C911 siRNAs pools. 

 

Fig. S10. Toxicity evaluation of gene combination knockdown in immortalized normal cell lines. 

A. Immortalized normal cell lines were transfected with siRNAs targeting individual gene paralogs 

as indicated. Cell viability was determined 4 days post-transfection. 

B. Average DDS of CRC and PDAC cell lines in response to siKRAS and siRNA combinations 

targeting RAF paralogs. Bars represent the average DDS across 10 KRAS mutant cell lines and 

dots represent data points for individual cell lines (*** p < 0.005). 

 

Fig. S11. Deconvolution of node pair dependencies to minimal gene paralog combinations. 

A. Scatter plots showing the relationship between DDS and r metrics for all siRNA combinations. 

B. Scatter plots showing the relationship between DDSn and r metrics for all siRNA combinations. 

C. Scatter plots showing the relationship between DDS and DDSn metrics for all siRNA 

combinations. 

D. Ranking of siRNA combinations based on DDS. siRNAs targeting KRAS and RAF paralogs were 

included for comparison. Bars represent the average DDS across 10 KRAS mutant cell lines and 

dots represent data points for individual cell lines. A heatmap for corresponding r and p-values 

(compared to RAF knockdown) are shown below the bar chart. Gene symbol abbreviations are 

the same as Figure 4A. 

E. Ranking of siRNA combinations based on DDSn. siRNAs targeting KRAS and RAF paralogs 

were included for comparison. Bars represent the average DDSn across 10 KRAS mutant cell 

lines and dots represent data points for individual cell lines. A heatmap for corresponding r and 

p-values (compared to RAF knockdown) are shown below the bar chart. Gene symbol 

abbreviations are the same as Figure 4A. 

 

Fig. S12. On-target validation of gene paralog siRNA combinations. 



 

  

Rescue of the cytotoxicity of on-target siRNA combinations by their corresponding C911 siRNAs pools 

in the indicated cell lines (error bars represent S.D.). 

 

Fig. S13. Knockdown validation of gene paralog siRNA combination. 

A. KRAS mutant HCT116 and KRAS WT Caco-2 CRC cells were transfected with various 

combinations of on-target siRNA combinations and their corresponding C911 siRNA 

combinations. Whole cell extracts were collected 5 days post-transfection and subjected to 

immunoblotting using antibodies against the targets and downstream proteins in the MAPK and 

autophagy pathways. FRA1 level in Caco-2 cells was not detectable (n.d.). Gene symbol 

abbreviations are the same as Figure 4A. 

B. Quantification of changes in protein levels from blots in panel A. Relative protein level is 

presented as log2 fold change compared to siNeg (n.d., non-detectable). Gene symbol 

abbreviations are the same as Figure 4A. 

 

Fig. S14. RAC1 and ATG7 depletion sensitizes KRAS mutant cells towards MAPK pathway 
inhibitors. 

KRAS mutant cancer cell lines HCT116 and MIA PaCa-2 and KRAS WT cancer cell line BxPC-3 were 

transfected with siRNAs against RAC1 and/or ATG7. One day post transfection cells were treated with 

the RAF inhibitor RAF709 or the MEK inhibitor trametinib. Cell viability was determined 4 days later 

to obtain the dose response curves (error bars represent S.D.). 

A. RAF709 dose response curves. 

B. Trametinib dose response curves. 

 

Fig. S15. Impact of RAC1 and ATG7 knockdown on cell cycle and cell death. 

KRAS mutant (HCT116, MIA PaCa-2, and SW403) and WT (Caco-2 and SW48) cancer cell lines were 

transfected with siRAC1 or siATG7. Cell cycle and apoptosis status were analyzed 3 days post-

transfection. 

A. Changes in G0/G1 viable cell populations by flow cytometry (** p < 0.01 vs. siNeg). 

B. Changes in sub-G1 dead cells by flow cytometry. 

C. Changes in caspase 3/7 activity in cells. 



 

  

 

Fig. S16. A model of the cooperative role between RAF and autophagy in mediating KRAS 
oncogene addiction. 

In KRAS WT cells, balanced signaling from WT RAS proteins to RAF paralogs leads to physiological 

proliferation. Co-depletion of BRAF, CRAF and ATG7 has relatively little impact on WT cell viability 

as ARAF is sufficient to mediate physiologic RAS signaling and autophagy is dispensable under nutrient 

replete conditions. In KRAS mutant cells, BRAF and CRAF are the critical onco-effectors for mutant 

KRAS, whereas autophagy serves as a protection mechanism against metabolic stress. Co-depletion of 

BRAF, CRAF and ATG7 results in both a reduction in proliferative and survival signal and a loss of 

protection against oncogenic stress, thus leading to enhanced cell cycle arrest and/or elevated apoptosis 

in KRAS mutant cells. This combination selectively targets both aspects of oncogene and non-oncogene 

addiction downstream of KRAS to preserve the therapeutic window for KRAS mutant cells. 
  


