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Supplementary Note: Instructions for using SumHer. Here we provide step-by-step scripts for using SumHer to estimate confound-
ing bias, SNP heritability, enrichments of heritability and genetic correlation from GWAS results. These analyses require the software
LDAK (available at www.ldak.org); we assume that the LDAK executable is saved in current folder, so that LDAK can be run by typing
./ldak5.linux (or ./ldak5.mac for the Mac version). They also use PLINK (available at http://cog-genomics.org/plink2) and awk
(installed by default in Unix); see http://zzz.bwh.harvard.edu/plink/tutorial.shtml and www.ldak.org/awk for tutorials on each. Note that a
backslash (\) at the end of a line indicates the command continues on the next line. This code is also available at www.ldak.org/protocol.

Acquire reference panel. Suppose our reference panel is stored in binary PLINK format in the files ref.bed, ref.bim and ref.fam.
Ideally, Column 3 of ref.bim contains genetic distances (otherwise, replace --window-cm X with --window-kb 1000X in the
scripts below). The individuals in the reference panel should be ancestrally similar to those used in the GWAS. As we analyzed summary
statistics from European-centric GWAS, we used the 404 non-Finnish Europeans from the 1000 Genomes Project,1 whose data can be ob-
tained as follows.

#Download sample IDs and extract Europeans

wget ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.20130502.ALL.panel

awk < integrated_call_samples_v3.20130502.ALL.panel '($3=="EUR" && $2!="FIN"){print $1, $1}' > eur.keep

#Download data for each autosome, and convert using PLINK, extracting European individuals and SNPs with MAF>0.01

for j in {1..22}; do

wget ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/\

ALL.chr$j.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz

./plink --vcf ALL.chr$j.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz \

--make-bed --out chr$j --maf 0.01 --keep eur.keep

done

#Now join these together, excluding multi-allelic SNPs and those with duplicate positions

rm list.txt; for j in {1..22}; do echo chr$j >> list.txt; done

./ldak5.linux --make-bed all --mbfile list.txt --exclude-odd YES --exclude-dups YES

#Download and incorporate genetic distances

wget https://www.dropbox.com/s/slchsd0uyd4hii8/genetic_map_b37.zip?dl=0

unzip genetic_map_b37.zip

for j in {1..22}; do

./plink --bfile all --chr $j --cm-map genetic_map_b37/genetic_map_chr@_combined_b37.txt --make-bed --out map$j

done

cat map{1..22}.bim | awk '{print $2, $3}' > map.all

awk '(NR==FNR){arr[$1]=$2;next}{print $1, $2, arr[$2], $4, $5, $6}' map.all all.bim > ref.bim

cp all.bed ref.bed

cp all.fam ref.fam

#If these scripts were successful, you can remove the files with prefixes chr, all and map

Format summary statistics. For the analyses below, we use summary statistics for Alzheimer’s Disease from Lambert et al.2 (stored in
the file IGAP_stage_1.txt, which can be downloaded from http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php), for
years of education from Okbay et al.3 (stored in the file EduYears_Main.txt.gz, available at http://ssgac.org) and for height from
the GIANT Consortium4 (stored in the file GIANT_HEIGHT_Wood_et_al_2014_publicrelease_HapMapCeuFreq.txt.gz,
which can be downloaded from https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files). To use with
SumHer, the summary statistic files should contain columns labeled Predictor, A1, A2, Direction, Stat and n. The names and alle-
les should be consistent with those in the reference panel. Direction indicates whether the effect of the A1 allele is positive or negative;
for quantitative traits, can use the effect size, for binary traits, the log odds. Stat is the χ2(1) test statistic; for quantitative traits, can use
(effect/sd)2, for binary traits (log odds/sd)2 (else if only p-values are available, can instead provide these in a column labeled P). n is the
number of individuals used when testing that SNP. The predictor names must be unique, so you should check for (and remove) duplicates.
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Having processed the summary statistic files, we also want to identify SNPs within the major histocompatibility complex (Chromosome 6:
25-34 Mb), as well as SNPs which individually explain>1% of phenotypic variation, and SNPs in LD with these. If info scores are provided,
we recommend excluding SNPs with score <0.95.

#Tidy alzheimers summary statistics - the paper tells us there were 17008 cases and 37154 controls

awk < IGAP_stage_1.txt '(NR>1){snp=$3;a1=$4;a2=$5;dir=$6;stat=($6/$7)^2;n=17008+37154}(NR==1)\

{print "Predictor A1 A2 Direction Stat n"}(NR>1 && (a1=="A"||a1=="C"||a1=="G"||a1=="T") \

&& (a2=="A"||a2=="C"||a2=="G"||a2=="T")){print snp, a1, a2, dir, stat, n}' > alz_all.txt

#Identify summary statistics consistent with the reference panel

awk '(NR==FNR){arr[$2]=$5$6;next}(FNR==1 || ($1 in arr && ($2$3==arr[$1] || $3$2==arr[$1])))' \

ref.bim alz_all.txt > alz.txt

#Check for duplicates using the Unix functions sort and uniq

#If this command results in no output, it means all SNP names are unique

awk < alz.txt '{print $1}' | sort | uniq -d | head

#If there are duplicates, we can remove them using

mv alz.txt alz_temp.txt; awk '!seen[$1]++' alz_temp.txt > alz.txt

#Tidy years education summary statistics - the paper tells us the total sample size was 328917

gunzip -c EduYears_Main.txt.gz | awk '(NR>1){snp=$1;a1=$4;a2=$5;dir=$7;stat=($7/$8)^2;n=328917}\

(NR==1){print "Predictor A1 A2 Direction Stat n"}(NR>1 && $10!="NA" && (a1=="A"||a1=="C"||a1=="G"||a1=="T") \

&& (a2=="A"||a2=="C"||a2=="G"||a2=="T")){print snp, a1, a2, dir, stat, n}' > years_all.txt

#Identify consistent summary statistics and check for duplicates (there are none here)

awk '(NR==FNR){arr[$2]=$5$6;next}(FNR==1 || ($1 in arr && ($2$3==arr[$1] || $3$2==arr[$1])))' \

ref.bim years_all.txt > years.txt

awk < years.txt '{print $1}' | sort | uniq -d | head

#Tidy height summary statistics - now per-SNP sample sizes are provided

gunzip -c GIANT_HEIGHT_Wood_et_al_2014_publicrelease_HapMapCeuFreq.txt.gz | awk '(NR>1){snp=$1;a1=$2;a2=$3;\

dir=$5;p=$7;n=$8}(NR==1){print "Predictor A1 A2 Direction P n"}(NR>1 && (a1=="A"||a1=="C"||a1=="G"||a1=="T") \

&& (a2=="A"||a2=="C"||a2=="G"||a2=="T")){print snp, a1, a2, dir, p, n}' - > height_all.txt

#Identify consistent summary statistics and check for duplicates (there are none here)

awk '(NR==FNR){arr[$2]=$5$6;next}(FNR==1 || ($1 in arr && ($2$3==arr[$1] || $3$2==arr[$1])))' \

ref.bim height_all.txt > height.txt

awk < height.txt '{print $1}' | sort | uniq -d | head

#Get list of MHC SNPs (from reference panel)

awk < ref.bim '($1==6 && $4>25000000 && $4<34000000){print $2}' > mhc.snps

#Identify large-effect SNPs (those explaining more than 1% of phenotypic variance)

#This command uses the fact that the proportion of variance explained by each SNP is stat/(stat+n)

awk < alz.txt '(NR>1 && $5>$6/99){print $1}' > alz.big

awk < years.txt '(NR>1 && $5>$6/99){print $1}' > years.big

awk < height.txt '(NR>1 && $5>$6/99){print $1}' > height.big

#Find SNPs tagging the alzheimers large-effect loci (there were no large-effect loci for years or height)

./ldak5.linux --remove-tags alz --bfile ref --top-preds alz.big --window-cm 1 --min-cor .1

#Create exclusion files, containing mhc and (for alzheimers) SNPs tagging large-effect SNPs

cat mhc.snps alz.out > alz.excl

cat mhc.snps > years.excl

cat mhc.snps > height.excl
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Estimate SNP heritability. To estimate h2SNP there are two steps: first we compute a (1-part) tagfile which contains qj +
∑
l∈Nj

qlr
2
jl

for each SNP; then we perform the regression to estimate h2SNP. To compute an LDAK tagfile, we must first compute LDAK weightings;
this can take a few hours, but can be efficiently parallelized. We should use only SNPs in the reference panel for which we have summary
statistics, excluding those in the MHC or tagging large-effect loci.

#Calculate LDAK weightings (use --extract / --exclude to filter the SNPs)

#Here, we calculate weightings separately for each chromosome then merge

#The on-screen instructions explain how to further parallelize (use --calc-weights instead of --calc-weights-all)

for j in {1..22}; do

./ldak5.linux --cut-weights alz_chr$j --bfile ref --extract alz.txt --exclude alz.excl --chr $j

./ldak5.linux --calc-weights-all alz_chr$j --bfile ref --extract alz.txt --exclude alz.excl --chr $j

done

#Merge weightings across chromosomes

cat alz_chr{1..22}/weights.short > alz.weights

#Calculate the (1-part) LDAK tagfile (no need for --extract / --exclude here as used when computing weightings)

./ldak5.linux --calc-tagging alz_ldak --bfile ref --weights alz.weights --power -.25 --window-cm 1

#Perform the regression (again no need for --extract / --exclude as used when computing weightings)

#Pay attention to the screen output (if it finds errors in the summary statistics, you must add --check-sums NO)

./ldak5.linux --sum-hers alz_ldak --tagfile alz_ldak.tagging --summary alz.txt

#Estimates of SNP heritability will be in alz_ldak.hers

#To convert to the liability scale, add the prevalence (here 0.075) and ascertainment (17008/(17008+37154)=0.314)

./ldak5.linux --sum-hers alz_ldak --tagfile alz_ldak.tagging --summary alz.txt \

--prevalence 0.075 --ascertainment 0.314

#The liability estimates have suffix .liab

#To instead assume the GCTA Model, use --ignore-weights YES and --power -1 when computing the tagfile

#This takes longer (as it uses all SNPs), but we can calculate separately for each chromosome then merge

for j in {1..22}; do

./ldak5.linux --calc-tagging alz_gcta$j --bfile ref --ignore-weights YES --power -1 --window-cm 1 \

--extract alz.txt --exclude alz.excl --chr $j

done

#Join the tagfiles across chromosomes

rm list.txt; for j in {1..22}; do echo "alz_gcta$j.tagging" >> list.txt; done

./ldak5.linux --join-tagging alz_gcta --taglist list.txt

#Then perform the regression (again pay attention to the screen output)

./ldak5.linux --sum-hers alz_gcta --tagfile alz_gcta.tagging --summary alz.txt

#Estimates of SNP heritability are in alz_gcta.hers

#Repeat these steps (calculate weightings and tagging files, then perform the regression) for years and height

Estimate confounding bias. To estimate how much test statistics are inflated due to confounding (or to allow for confounding inflation
when estimating SNP heritability, heritability enrichments or genetic correlation), you should add either --genomic-control YES (to
assume inflation is multiplicative) or --intercept YES (to assume inflation is additive) when performing the regression.

#Allow for multiplicative inflation

./ldak5.linux --sum-hers alz_ldak.gcon --tagfile alz_ldak.tagging --summary alz.txt --genomic-control YES

#The estimated scaling factor C is in alz_ldak.gcon.extra

#Allow for additive inflation
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./ldak5.linux --sum-hers alz_ldak.cept --tagfile alz_ldak.tagging --summary alz.txt --intercept YES

#The estimated intercept 1+A is in alz_ldak.cept.extra (as per-SNP sample sizes are constant, C=1+A)

#Based on the estimate of C (1.03, SD 0.01), we conclude that there is substantial confounding bias

#Therefore we should use the estimate of SNP heritability in alz_ldak.gcon.hers

#This estimate is about a third lower than the one in alz_ldak.hers

#Repeat these steps for years and height - for years we also find confounding, but not for height

./ldak5.linux --sum-hers years_ldak.gcon --tagfile years_ldak.tagging --summary years.txt --genomic-control YES

./ldak5.linux --sum-hers height_ldak.gcon --tagfile height_ldak.tagging --summary height.txt --genomic-control YES

#Confounding bias is substantial for years (0.82, SD 0.01) but not significant for height (0.98, SD 0.02)

Estimate functional enrichments. Now we need to create a (multi-part) tagfile, which contains qjIjk +
∑
l∈Nj

qjIlkr
2
jl for each SNP

and category. To work out which SNPs are in each of the 24 annotations, we use the genefiles in annotations.zip, available at
www.ldak.org/annotations (these are modified versions of the bedfiles provided at https://data.broadinstitute.org/alkesgroup/LDSCORE).

#First work out which (reference panel) SNPs are in each annotation

#Will save these in ann_snps.1, ..., ann_snps.24 (the SNP lists must have consecutive suffixes)

for j in {1..24}; do

./ldak5.linux --cut-genes ann$j --bfile ref --genefile ann$j.genefile --ignore-weights YES

mv ann$j/genes.predictors.used ann_snps.$j

done

#Now compute a tagfile - as the categories overlap, we use --annotation-number and --annotation-prefix

./ldak5.linux --calc-tagging alz_ldak.ann --bfile ref --weights alz.weights --power -.25 --window-cm 1 \

--annotation-number 24 --annotation-prefix ann_snps.

#Perform the regression (our analysis above indicates we should add --genomic-control YES)

./ldak5.linux --sum-hers alz_ldak.ann --tagfile alz_ldak.ann.tagging --summary alz.txt --genomic-control YES

#The enrichment estimates are in (Column 5 of) alz_ldak.ann.enrich

#Repeat the last two steps for years (allow for inflation) and height (not necessary to allow for inflation)

#Given the three sets of enrichment, we can compute inverse-variance-weighted averages using

for i in {1..24}; do

grep "Enrich_A$i " {alz,years,height}_ldak.ann.enrich | awk -v i=$i '{a+=$5/$6^2;b+=1/$6^2}END\

{print "Annotation:", i, "Av. Enr.:", a/b, "SD:", 1/b^.5, "Num. Traits:", NR}'

done

#For the PRS (below), we must save average contributions of each annotation and the base (use the .share files)

rm props.ldak

for i in {1..24}; do

grep "Share_A$i " {alz,years,height}_ldak.ann.share | awk -v i=$i '{a+=$2/$3^2;b+=1/$3^2}END\

{print a/b, 1/b^.5}' >> props.ldak

done

grep Share_Base {alz,years,height}_ldak.ann.share | awk -v i=$i '{a+=$2/$3^2;b+=1/$3^2}END\

{print a/b, 1/b^.5}' >> props.ldak

#To instead assume the GCTA Model, use --ignore-weights YES and --power -1 when computing the tagfile

#Note that to copy Finucane et al, you must use all 52 annotations (not just the first 24)

./ldak5.linux --calc-tagging alz_ldak.ann --bfile ref --ignore-weights YES --power -1 --window-cm 1 \

--extract alz.txt --exclude alz.excl --annotation-number 24 --annotation-prefix ann_snps.

#If categories partition the genome (LDAK allows some overlap), should use --partition-number and --partition-prefix

#In this example, we construct lists part.1 and part.2 containing coding (Annotation 1) and non-coding SNPs

cp ann_snps.1 part.1

6



awk '(NR==FNR){arr[$1];next}!($2 in arr){print $2}' part.1 ref.bim > part.2

./ldak5.linux --calc-tagging alz_ldak.coding --bfile ref --weights alz.weights --power -.25 --window-cm 1 \

--partition-number 2 --partition-prefix part.

#Note that we can achieve the same using

./ldak5.linux --calc-tagging alz_ldak.coding --bfile ref --weights alz.weights --power -.25 --window-cm 1 \

--partition-number 1 --partition-prefix part. --background YES

Estimate genetic correlation. We now calculate a (1-part) tagfile, using only SNPs common to the two traits. Now the direction of effects
matters, so we recommend using only non-ambiguous SNPs (alleles A & C, A & G, C & T or G & T), unless very confident the alleles are
consistently aligned (note that to include ambiguous SNPs, you must add --allow-ambiguous YES when performing the regression).

#Find the overlap of non-ambiguous SNPs for alzheimers and years

awk < alz.txt '(($2=="A"&&$3=="C") || ($2=="A"&&$3=="G") || ($2=="C"&&$3=="A") || ($2=="C"&&$3=="T") || \

($2=="G"&&$3=="A") || ($2=="G"&&$3=="T") || ($2=="T"&&$3=="C") || ($2=="T"&&$3=="G")){print $1}' > alz.non

awk < years.txt '(($2=="A"&&$3=="C") || ($2=="A"&&$3=="G") || ($2=="C"&&$3=="A") || ($2=="C"&&$3=="T") || \

($2=="G"&&$3=="A") || ($2=="G"&&$3=="T") || ($2=="T"&&$3=="C") || ($2=="T"&&$3=="G")){print $1}' > years.non

awk '(NR==FNR){arr[$1];next}($1 in arr){print $1}' alz.non years.non > alz_years.non

#Will exclude SNPs in the exclusion lists for either trait

cat alz.excl years.excl | sort | uniq > alz_years.excl

#Calculate LDAK weightings for the overlap

for j in {1..22}; do

./ldak5.linux --cut-weights alz_years_chr$j --bfile ref --extract alz_years.non --exclude alz_years.excl --chr $j

./ldak5.linux --calc-weights-all alz_years_chr$j --bfile ref --extract alz_years.non --exclude alz_years.excl \

--chr $j

done

cat alz_years_chr{1..22}/weights.short > alz_years.weights

#Calculate LDAK tagging file

./ldak5.linux --calc-tagging alz_years_ldak --bfile ref --weights alz_years.weights --power -.25 --window-cm 1

#Perform the regression (by default, SumHer allows for multiplicative confounding of test statistics)

./ldak5.linux --sum-cors alz_years_ldak --tagfile alz_years_ldak.tagging --summary alz.txt --summary2 years.txt

#The estimate of genetic correlation is in alz_years_ldak.cors

#Could repeat these steps for alzheimers and height, then for years and height

Comparing heritability models. The easiest way to compare two heritability models is by likelihood. By default, LDAK excludes SNPs
with zero weight when computing tagfiles. However, when comparing heritability models, it is important that each tagfile contain the same
SNPs. Therefore, when computing an LDAK tagfile, now add --reduce NO.

#Comparing the GCTA and LDAK Models for alzheimers by likelihood

#Compute (standard) GCTA tagfile and an unreduced LDAK tagfile

#We made former earlier; for the latter, because unreduced you must now use --extract / --extract to filter the SNPs

for j in {1..22}; do

./ldak5.linux --calc-tagging alz_ldak.full$j --bfile ref --weights alz.weights --power -.25 --window-cm 1 \

--reduce NO --extract alz.txt --exclude alz.excl --chr $j

done

rm list.txt; for j in {1..22}; do echo "alz_ldak.full$j.tagging" >> list.txt; done

./ldak5.linux --join-tagging alz_ldak.full --taglist list.txt
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#Perform the regressions (our earlier analysis indicated we should add --genomic-control YES)

./ldak5.linux --sum-hers alz_gcta.gcon --tagfile alz_gcta.tagging --summary alz.txt --genomic-control YES

./ldak5.linux --sum-hers alz_ldak.full.gcon --tagfile alz_ldak.full.tagging --summary alz.txt --genomic-control YES

#The likelihoods and likelihood ratio test statistics are in alz_gcta.gcon.extra and alz_ldak.full.gcon.extra

#Comparing the GCTA and LDAK Models for alzheimers by creating a merged tagfile

echo "alz_gcta.tagging

alz_ldak.full.tagging" > list.txt

./ldak5.linux --merge-tagging alz_both --taglist list.txt

./ldak5.linux --sum-hers alz_both.gcon --tagfile alz_both.tagging --summary alz.txt --genomic-control YES

#The share of heritability allocated to the LDAK Model (p) is the value Share_P2 in alz_both.gcon.share

#Could repeat these steps for years (allow for inflation) and height (not necessary to allow for inflation)

Polygenic risk scores. For each of body mass index, height, HDL & LDL cholesterol and triglyceride, we computed five PRS (one classical
and four Bayesian) using the results from the 24 Summary GWAS, then measured how well each of these predicted for the eMERGE data.5

To avoid strand issue, we reduced to non-ambiguous SNPs. To calculate a Bayesian PRS, we first compute a tagging file (either 1-part or
multi-part), then the prior distribution for the heritability tagged by each SNP, and finally the posterior mean effect sizes. We found that the
Bayesian PRS benefited from clumping6, 7 (identifying pairs of SNPs in high-LD, then removing the least significant) but not the Classical
PRS. Here we demonstrate for height. Suppose the eMERGE data are stored in eMERGE.bed, eMERGE.bim and eMERGE.fam, and the
corresponding phenotypes are in height.pheno.

#Identify the non-ambiguous emerge SNPs

awk < emerge.bim '(($5=="A"&&$6=="C") || ($5=="A"&&$6=="G") || ($5=="C"&&$6=="A") || ($5=="C"&&$6=="T") || \

($5=="G"&&$6=="A") ||($5=="G"&&$6=="T") || ($5=="T"&&$6=="C") || ($5=="T"&&$6=="G") ){print $2}' > emerge.non

#Each PRS scorefile should have the columns Predictor, A1, A2, Centre (can set to NA) and Effect

#For the classical PRS, the effect size of each SNP is its correlation, equal to sign(direction)*(stat/(stat+n)^.5

awk < height.txt '(NR==1){print "Predictor A1 A2 Centre Effect"}(NR>1){r=($5/($5+$6)^.5); \

if($4<0){r=-r};print $1, $2, $3, "NA", r}' > height_class.score

#To calculate the two LDAK Bayesian PRS (normal and enriched), we need unreduced 1-part and 25-part tagfiles

#We made the 1-part version above, so now make the 25-part version

for j in {1..22}; do

./ldak5.linux --calc-tagging height_ldak.ann.full$j --bfile ref --weights height.weights --power -.25 \

--window-cm 1 --reduce NO --extract height.txt --exclude height.excl \

--annotation-number 24 --annotation-prefix ann_snps. --chr $j

done

rm list.txt; for j in {1..22}; do echo "height_ldak.ann.full$j.tagging" >> list.txt; done

./ldak5.linux --join-tagging height_ldak.ann.full --taglist list.txt

#Compute the prior expected heritability tagged by each SNP

#For this we must provide an estimate of SNP heritability (here we use 0.5, but ideally get estimates from SumHer)

#For the enriched LDAK PRS, we must also provide the heritability fractions for the annotations (computed above)

./ldak5.linux --calc-exps height_ldak.full --tagfile height_ldak.full.tagging --her 0.5

./ldak5.linux --calc-exps height_ldak.ann.full --tagfile height_ldak.ann.full.tagging --her 0.5 --props props.ldak

#Next we compute the posterior means

#Will likely have to add --allow-ambiguous YES to ignore warnings (or avoid by adding --extract emerge.non)

./ldak5.linux --calc-posts height_ldak.full --expectations height_ldak.full.exps --summary height.txt \

--allow-ambiguous YES

./ldak5.linux --calc-posts height_ldak.ann.full --expectations height_ldak.ann.full.exps --summary height.txt \

--allow-ambiguous YES
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#Finally, we clump (we add --extract emerge.non, as we will only use these SNPs when predicting

#Normally when clumping we provide pvalues; here we instead provide "psuedos" (which rank SNPs by Bayes factors)

./ldak5.linux --thin height_ldak.full --bfile ref --extract emerge.non --window-cm 1 --window-prune .5 \

--pvalues height_ldak.full.psuedos

./ldak5.linux --thin height_ldak.ann.full --bfile ref --extract emerge.non --window-cm 1 --window-prune .5 \

--pvalues height_ldak.ann.full.psuedos

#To test each PRS, we project onto the emerge data

#All PRS contain standardized effect sizes, so we use --power -1 (when providing raw effect sizes, use --power 0)

#It is convenient to provide the phenotype (for our analysis, we first regressed on sex and population PCs)

#Read the screen output (as we have excluded ambiguous SNPs, it is ok to allow flips)

./ldak5.linux --calc-scores height_class --bfile emerge --extract emerge.non \

--scorefile height_class.score --power -1 --pheno height.pheno --allow-flips YES

./ldak5.linux --calc-scores height_ldak.full --bfile emerge --extract height_ldak.full.in \

--scorefile height_ldak.full.score --power -1 --pheno height.pheno --allow-flips YES

./ldak5.linux --calc-scores height_ldak.ann.full --bfile emerge --extract height_ldak.ann.full.in \

--scorefile height_ldak.ann.full.score --power -1 --pheno height.pheno --allow-flips YES

#Predicted and observed phenotypes stored in height_class.profile, height_ldak.full.profile

#and height_ldak.ann.full.profile

#We measured performance by calculating rho, the correlation between predicted and observed phenotypes

#We estimated the SD of rho by block-jackknifing 200 times for each PRS; for each jackknife we computed rho_z

#the correlation across 99.5% of individuals, then the estimate of the SD of rho is SD(rho_z)*199^.5

Additional scripts. Our previous paper8 provided scripts for estimating inflation due to confounding via REML and for performing associa-
tion analysis, including how to construct covariates (when performing linear regression, we included sex and ten principal components; five
derived from the reference panel, five from the 1000 Genomes Project1). To simulate phenotypes for the eMERGE data under the GCTA
and LDAK Models, we used the second of the following two scripts (emerge.weights contains LDAK weightings from the emerge data).

#Simulating 100 phenotypes under GCTA and LDAK Models (each with SNP heritability 0.5 and 2000 causal SNPs)

./ldak5.linux --make-phenos gcta --bfile emerge --ignore-weights YES --power -1 --num-causals 2000 \

--num-phenos 100

./ldak5.linux --make-phenos ldak --bfile emerge --weights emerge.weights --power -.25 --num-causals 2000 \

--num-phenos 100

#Simulating 50 pairs of phenotypes under GCTA and LDAK Models so that consecutive pairs have genetic correlation 0.5

./ldak5.linux --make-phenos gcta_bivar --bfile emerge --ignore-weights YES --power -1 --num-causals 2000 \

--num-phenos 50 --bivar .5

./ldak5.linux --make-phenos ldak_bivar --bfile --weights emerge.weights --power -.25 --num-causals 2000 \

--num-phenos 50 --bivar .5
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Supplementary Figure 1: REML estimates of confounding for the 25 raw GWAS. For each trait, we compute KA, KB , KC and
KD, kinship matrices from Chromosomes 1-3, Chromosomes 4-7, Chromosomes 8-12 and Chromosomes 13-22, respectively, each time
assuming the LDAK Model.9 Then, using REML, we estimate h2A, h2B , h2C and h2D, by regressing the phenotype separately on each of KA,
KB , KC and KD, and h2ALL, by regressing the phenotype jointly on KA, KB , KC and KD. Our estimate of inflation due to population
structure and cryptic relatedness is then 1

3 (h2A + h2B + h2C + h2D − h2ALL)/h2ALL. Bars report estimates of h2ALL (for binary traits, estimates
are on the liability scale); the vertical line segments mark 95% confidence intervals. The black rectangle at the base of each bar indicates the
estimated inflation, while the number above the bar expresses this as a percentage of h2ALL.
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Supplementary Figure 2: Simulations demonstrating the importance of the assumed heritability model. We use genotypes from the
eMERGE Network.5 After the quality control described in Supplementary Figure 19, and excluding SNPs within the major histocompatibil-
ity complex (Chr 6: 25-34 Mb) and those not present in our reference panel, there are 25 875 individuals and 4 555 718 autosomal SNPs with
MAF≥0.01. We generate 200 phenotypes, each with 2000 causal SNPs (picked uniformly at random), h2SNP = 0.5 and no confounding bias
(C = 1 + A = 1), using the model Y =

∑
j βjXj + e, where βj is the effect size of Xj , the jth causal SNP, and e is Gaussian-distributed

noise. For the first 100 phenotypes, we sample effect sizes according to the GCTA Model (βj ∼ N(0, [fj(1−fj)]−1), where fj is the MAF
of Xj), for the second 100 phenotypes, we sample effect sizes according to the LDAK Model (βj ∼ N(0, [fj(1−fj)]−0.25wj), where wj is
the LDAK weighting forXj). (a) Solid bars (scale on left) report average estimates of h2SNP from each of LDSC-Zero, LDSC, SumHer-Zero
and SumHer-GC, while hatched bars (scale on right) report estimates of confounding bias from LDSC and SumHer-GC. (b) Average esti-
mates of enrichment of SNPs in conserved regions (one of the 24 functional categories, see Supplementary Table 1) from LDSC-Zero and
SumHer-Zero. For each method, we estimate enrichment using three approaches: a 2-part model (conserved and non-conserved SNPs), a
25-part model (one for each of the 24 functional categories, plus one for all SNPs), and a 53-part model (24 categories, 28 buffer regions and
all SNPs, the approach preferred by Finucane et al.10). (c) Zoomed-in version of (b). (d) Same as (b), except now we estimate enrichment
using LDSC and SumHer-GC
aaaWhen generating the phenotypes, we ensured that consecutive pairs (Phenotypes 1 & 2, 3 & 4, etc.) have genetic correlation 0.5. (e)
Average estimates of genetic correlation from LDSC-Zero, LDSC, SumHer-Zero and SumHer-GC. We see that by allowing for confounding
bias (i.e., using LDSC or SumHer-GC), it is possible to obtain accurate estimates of genetic correlation regardless of which heritability
model is assumed. (f) Average estimates from LDSC and SumHer-GC of h2A & h2B (the SNP heritability of the first and second pheno-
type in each pair), h2AB (their genetic covariance) and h2AB/

√
h2Ah

2
B (their genetic correlation). We see that even though assuming a poor

heritability model causes over/under-estimation of the SNP heritabilities, it also causes over/under-estimation of the genetic covariance by
approximately the same amount, resulting in accurate estimates of genetic correlation.
aaaIt is worth noting that both the GCTA and LDAK Models assume every SNP tags some heritability, whereas it is likely that for many
traits, a substantial fraction of the genome tags no heritability. However, these simulations, for which we generated phenotypes with a
relatively small number (2 000) of causals SNPs, demonstrate that it is possible to obtain accurate estimates despite this assumption. For a
more detailed look at this and other fundamental assumptions, see the paper in which we proposed LDAK.11
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Supplementary Figure 3: Simulations investigating the additive and multiplicative models for inflation due to confounding. We now
construct summary statistics where there is confounding bias. Using the results of single-SNP analysis for each of the 200 phenotypes
generated for Supplementary Figure 2, we introduce either additive or multiplicative inflation: for the former, we add 0.05 to each test
statistic; for the latter we multiply each test statistic by 1.05 (Supplementary Tables 10 & 11 indicate that, for a GWAS of this size, there
would have to be substantial confounding to inflate test statistics by 5%). (a) Average estimates of the intercept, 1 + A, from LDSC and
SumHer-CEPT, and of the scaling factor, C, from LDSC-GC and SumHer-GC (LDSC-GC assumes the GCTA Model and multiplicative
inflation, while SumHer-CEPT assumes the LDAK Model and additive inflation). (b) Average estimates of h2SNP from LDSC-Zero, LDSC,
LDSC-GC, SumHer-Zero, SumHer-CEPT and SumHer-GC. (c) and (d) We find no observable difference in results if instead of inflating
test statistics by a constant, we either add on 0.1a or multiply by 1 + 0.1a, where a ∼ Uniform(0, 1).
aaaThese simulations demonstrate that when per-SNP sample sizes are constant, the choice of modeling inflation as additive or multiplicative
has no impact on the estimate of confounding. The choice will impact estimates of h2SNP; specifically, the estimate when allowing for
additive inflation will be C = 1 + A times the estimate when allowing for multiplicative inflation. Our analyses of real data indicate that
for a carefully-performed GWAS, C will be close to one; for example, only five of the 24 summary GWAS had estimated inflation >10%
(Supplementary Table 3), and for each of these, the bias was negative (C<1), indicating that it was predominantly due to genomic control.
Therefore, the impact on estimates of h2SNP of changing the confounding model will in general be slight compared to the impact of changing
the heritability model.
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Supplementary Figure 4: Introducing population structure for the 13 WTCCC GWAS. For each GWAS, we replace 2 000 randomly
picked controls with either 2 000 unrelated individuals from People of the British Isles12 (POBI) or 2 000 non-European individuals from
the 1000 Genome Project1 (1000G). These principal component plots demonstrate the impact of switching controls for Crohn’s Disease
(top row), Ischaemic Stroke (middle row) and Celiac Disease (bottom row), the smallest and two largest GWAS, respectively. Points are
colored according to collection (black: WTCCC, red: POBI, blue: 1000G). Although both the WTCCC controls and POBI individuals were
recruited from the UK, switching in the latter generates modest structure, because the POBI individuals came from predominantly isolated,
rural regions (observe that the red points in Column 3 are not uniformly spread across the black points). Switching in 1000G individuals
generates extreme structure (Column 4), because these are Admixed Americans, Africans and Asians, whereas the WTCCC individuals are
Caucasian. In practice, we would expect population structure to be modest, rather than extreme, as when performing a GWAS it is standard
practice to identify and exclude ancestral outliers.13
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Supplementary Figure 5: Introducing relatedness for the 12 eMERGE GWAS. The eMERGE data contain 28 803 Caucasian individuals.
For our main analyses, we restricted to 25 875 unrelated individuals (obtained by filtering so that no pair of individuals remained with allelic
correlation14 >0.05). In order to generate familial relatedness, we repeat the analysis twice, first restricting to 27 575 individuals (obtained
by filtering so that no pair of individuals remains with allelic correlation >0.175), then using all 28 803 individuals. These two histograms,
(b) is a zoomed-in version of (a), summarize the allelic correlation for the 28803C2 pairs of individuals; they show that using all 28 803
individuals results in the inclusion of approximately 14 identical twins, 950 full-sibs and 700 half-sibs.
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Supplementary Figure 6: Simulations investigating the impact of genomic control and mixed-model association analysis. For each
of the 200 simulated phenotypes described in Supplementary Figure 2 (h2SNP = 0.5 and no confounding bias), we perform four types of
association analysis: Standard Analysis tests each SNP using classical (least-squares) linear regression; Genomic control also performs
classical linear regression, but then divides test statistics by the genomic inflation factor; Original Mixed Model tests each SNP using mixed-
model association analysis15 (to generate the kinship matrix, we thinned SNPs then computed allelic correlations14); LOCO Mixed Model
also uses mixed-model association analysis, but when testing each SNP, excludes from the kinship matrix all SNPs on the same chromosome
(for this we use Bolt-LMM16, 17). Solid bars (scale on left) report estimates of h2SNP from LDSC-Zero, LDSC, LDSC-GC, SumHer-Zero
SumHer-CEPT and SumHer-GC, while hatched bars (scale on right) report estimate of confounding bias from LDSC, LDSC-GC, SumHer-
CEPT and SumHer-GC (LDSC-GC assumes the GCTA Model and that inflation of test statistics due to confounding is multiplicative,
while SumHer-CEPT assumes the LDAK Model and additive inflation). Note that because per-SNP effect sizes are constant, estimates of
confounding bias from LDSC and SumHer-CEPT match those from LDSC-GC and SumHer-GC, respectively (Supplementary Figure 3).
aaa If we focus on the LDAK Phenotypes, as these best reflect real data, we see that when test statistics have been subjected to genomic
control or obtained from ordinary mixed-model analysis, SumHer-Zero will substantially under-estimate h2SNP, but that reliable estimates
can be obtained by using instead SumHer-GC. For mixed-model analysis, the under-estimation occurs because when testing each SNP for
association, some of its variance explained is attributed to the kinship matrix (proximal contamination18). However, this can be avoided by
using leave-one-chromosome-out (LOCO) analysis.16 We note that SumHer-CEPT performs as well as SumHer-GC when applied to test
statistics from ordinary mixed-model analysis, suggesting the deflation of test statistics is a mixture of additive and multiplicative. These
simulations explain why we view genomic control as a source of confounding, whose impact is often larger than that due to, say, population
structure or relatedness. They also emphasize that when genomic control has been performed, the accuracy of SumHer-GC estimates
depends on the appropriateness of the LDAK Model. In Supplementary Figure 7, we see that most of the estimates from SumHer-GC post
genomic control were consistent with those from SumHer-Zero pre genomic control, reflecting that in general the LDAK Model performs
well; however, the inconsistent results for Ischaemic Stroke remind that the LDAK Model will be sub-optimal for some traits.
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Supplementary Figure 7: Performing genomic control for the 25 raw GWAS. Each plot compares estimates from SumHer using raw
test statistics (x-axis) with those using test statistics subjected to genomic control (y-axis). (a) Estimates of h2SNP using SumHer-Zero both
pre and post genomic control. (b) Estimates of h2SNP using SumHer-Zero pre genomic control and SumHer-GC post genomic control. (c)
Average estimates of enrichments for the 24 functional categories using SumHer-Zero both pre and post genomic control. (d) Average
estimates of enrichments for the 24 functional categories using SumHer-Zero pre genomic control and SumHer-GC post genomic control.
In the first two plots, estimates for binary traits are on the observed scale, while colors distinguish between the 13 WTCCC, the 5 binary
eMERGE and 7 quantitative eMERGE traits (black denotes the 25-trait average). In the last two plots, both SumHer-Zero and SumHer-GC
estimates of enrichments were obtained using a 25-part model, while colors indicate significant enrichments (P < 0.05) from one or both
methods. In all plots, horizontal and vertical line segments mark 95% confidence intervals. Genomic control divides test statistics by the
genomic inflation factor (GIF).19 As the GIF tends to over-estimate confounding bias,20 performing genomic control will generally result
in deflated test statistics. We find that if not accounted for (i.e., using SumHer-Zero, which assumes test statistics are not confounded),
genomic control will result in under-estimation of h2SNP and inaccurate estimates of heritability enrichments, but that reliable estimates can
be obtained by allowing for multiplicative inflation of test statistics (i.e., using SumHer-GC).
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Supplementary Figure 8: Mixed-model association analysis for the 25 raw GWAS. Details are same as Supplementary Figure 7, except
now plots compare estimates from SumHer using test statistics from classical linear regression (x-axis) with those using test statistics from
mixed-model association analysis (y-axis). To generate the kinship matrix required for the latter, we thinned SNPs then computed allelic
correlations.14 Supplementary Figure 7 showed how genomic control resulted in estimates of h2SNP centered on zero and less accurate
estimates of enrichments. Here we see that mixed-model association analysis has a similar, albeit less severe, impact, but that accuracy
can be improved by using SumHer-GC instead of SumHer-Zero. For these analyses, we used ordinary mixed-model association analysis,
where no allowance is made for proximal contamination;18 see Supplementary Figure 9 for results using instead leave-one-chromosome-out
mixed-model association analysis.16
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Supplementary Figure 9: Leave-one-chromosome-out mixed-model association analysis for the 25 raw GWAS. Details are same
as Supplementary Figure 7, except now plots compare estimates from SumHer using test statistics from classical linear regression (x-
axis) with those using test statistics from Bolt-LMM17 (y-axis). When testing each SNP, Bolt-LMMM avoids proximal contamination by
excluding from the kinship matrix all SNPs on the same chromosome.16 Whereas ordinary mixed-model association analysis results in
deflated estimates of h2SNP (Supplementary Figure 8), this is no longer the case with leave-one-chromosome-out mixed-model association
analysis (LOCO), and as such there appears limited advantage to using SumHer-GC instead of SumHer-Zero. However, we appreciate that
the use of summary statistics from mixed-model (rather than classical) regression requires closer investigation. In particular, it is recognized
that with sufficient sample size, mixed-model association analysis can increase detection power compared to classical association analysis16

(this is because the inclusion of a random effect “soaks up" the polygenic contribution of SNPs, resulting in a lower residual variance).
This increase in power might be the reason why in Panel (a) the average estimate of h2SNP from SumHer-Zero is slightly above the diagonal
(to be expected if test statistics for associated SNPs from mixed-model association analysis are slightly higher than those from classical
regression), and we believe that for much larger sample sizes (e.g., upwards of 200 000 individuals), the inflation could be substantial.
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Supplementary Figure 10: Average estimates of functional enrichments across the 24 summary GWAS from the LDSC software.
Bars report average estimates of enrichments for each of the 24 functional annotations; vertical line segments mark 95% confidence intervals.
Numerical values are provided in Supplementary Tables 14, 15 & 16. The top row presents results from the SumHer implementation of
LDSC, using a 53-part model, and from SumHer-GC, using a 25-part model. These are the same results presented in Figure 3a in the
Main Text. When running SumHer, we ensure that the SNPs in the reference panel match those used for the regression (we achieve this by
restricting to SNPs which are both present in the 1000 Genome Project1 and for which we have summary statistics). By contrast, the authors
of LDSC21 recommend that the reference panel contains as many SNPs as possible, but that the regression should use only HapMap 3 SNPs22

with MAF≥0.05. To examine the impact this has, we now estimate enrichments using the LDSC software,21 following the recommendations
on https://github.com/bulik/ldsc (in particular, we use the reference panel they supply, which comprises 489 European individuals from the
1000 Genomes Project,1 and also use the precomputed LD scores). For the middle row, we use the approach of Finucane et al.,10 (who
used the 53-part model); for the bottom row we use the approach of Gazal et al.,23 who instead used a 75-part model (to the 53 categories,
they add 3 more functional annotations, 3 extra buffers, 10 MAF tranches and 6 continuous LD-related annotations). By adding the option
-not-M-5-50, LDSC will perform the regression using HapMap 3 SNPs with MAF ≥0.01, rather than just those with MAF ≥0.05.
Regardless of settings, we see that estimates from the LDSC software are very similar to those from the SumHer implementation of LDSC,
and very different from SumHer-GC estimates.
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Supplementary Figure 11: Estimates of genetic correlation for the 24 summary GWAS. We analyze each of the 276 pairs of traits using
LDSC (x-axis) and SumHer-GC (y-axis). (a) Estimates of genetic correlation. (b) Standard deviations of these estimates; the red line marks
y = 2x/3. (c) χ2(1) test statistics (the estimate divided by its s.d, all squared); two extreme test statistics are not shown, those for Crohn’s
Disease & Inflammatory Bowel Disease (x=1434,y=1418) and Ulcerative Colitis & Inflammatory Bowel Disease (x=1153,y=2517). We see
that while LDSC and SumHer-GC estimates of genetic correlation are highly concordant (correlation 0.94), the latter are on average a third
more precise, resulting in higher test statistics.
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Supplementary Figure 12: Impact of introducing poorly-genotyped SNPs for the 24 summary GWAS. When analyzing Crohn’s
Disease, inflammatory bowel disease, schizophrenia and ulcerative colitis, we excluded SNPs with info score <0.95; for the remaining 20
traits, for which info scores were not available, we restricted to SNPs present in the eMERGE data (Supplementary Table 4). Now we
omit this filtering. The first three plots show that reducing quality control does not change the main conclusions; it remains that SumHer-
GC gives substantially lower estimates of confounding than LDSC, higher estimates of h2SNP and more modest estimates of enrichments.
However, we note that reducing quality control reduces the estimate of p, the LDAK Proportion in the hybrid model, from 0.85 (marked
by the lower horizontal line) to 0.73 (SD 0.01). This is to be expected; there will be a correlation between the heritability tagged by a SNP
and its genotyping certainty (a SNP genotyped with error will tag less causal variation than were it perfectly typed),8 and similarly, there
will be a correlation between genotyping certainty and local levels of LD (low-LD regions tend to contain more low-MAF SNPs, which are
often hard to genotype reliably, while imputation is easier in high-LD regions). Therefore, including lower-certainty SNPs in a GWAS will
generate correlation between the heritability tagged by each SNP and levels of LD. This will reduce the fit of the LDAK Model (whose core
assumption is that the amount of heritability tagged by each SNP is independent of levels of LD11), and improve the fit of the GCTA Model
(under which the amount of heritability tagged by each SNP is assumed to be proportional to levels of LD21), and as such, traits will appear
more “GCTA-like".
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Supplementary Figure 13: Is it beneficial to use a hybrid model? Caption on next page.
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Supplementary Figure 13. Is it beneficial to use a hybrid model? Continued from previous page. In order to compare the fit of the
GCTA and LDAK Models, we ran SumHer using a hybrid heritability model where the fractions 1−p and p indicate the proportions of GCTA
and LDAK, respectively. This heritability model can also be used to obtain estimates of confounding bias, h2SNP, heritability enrichments
and genetic correlation. Here we compare estimates for the 24 summary GWAS obtained using the hybrid model to those obtained using
only the GCTA Model or only the LDAK Model. Full details are provided below, however, our main conclusions are that estimates from the
hybrid model are more similar to those based on the LDAK Model (blue points) than those based on the LDAK Model (red points), and that
estimates based on the LDAK Model are more precise than those based on the hybrid model (for the blue points, the horizontal segments
tend to be shorter than the vertical segments).
aaaFor the left two columns (LDSC vs SumHer-CEPT vs Hybrid-CEPT), we assume that the inflation of test statistics due to confounding
is additive; for the right two columns (LDSC-GC vs SumHer-GC vs Hybrid-GC), we assume that the inflation due to confounding is
multiplicative. The top two rows show that estimates of confounding bias and h2SNP from the hybrid model match very closely those using
only the LDAK Model, but not those using only the GCTA Model. The third row compares estimates of enrichments, averaged across
the 24 traits. For these, LDSC and LDSC-CEPT use a 53-part model, SumHer-CEPT and SumHer-GC use a 25-part model, meaning that
Hybrid-CEPT and Hybrid-GC use a 78-part model. Again, estimates from the hybrid model are closer to those from the LDAK Model than
those from the GCTA Model (for numerical values see Supplementary Table 19). To calculate the expected share of each category under the
hybrid model (the denominators when computing enrichments), it is necessary to choose a value for p; we set p = 0.5, so that the expected
shares are the averages of those for the GCTA and LDAK Models separately. Note that p is only fixed for the purpose of calculating the
expected shares, and not when calculating the estimated shares. Moreover, the expected shares under the GCTA and LDAK Models are so
similar (Supplementary Table 1), that the enrichment estimates would generally not change by more than 10% were we to have instead set
p = 0 or p = 1. In the fourth row we compare estimates of the share of h2SNP contributed by each category (the numerators when computing
enrichments), averaged across the 24 traits. Once more, estimates from the hybrid model are closer to those from the LDAK Model than
those from the GCTA Model (again, numerical values are in Supplementary Table 19). Note that for computational reasons, we have not
considered estimates of genetic correlation (to do so, it would be necessary to compute three sets of tagging files for each of the 276 pairs
of traits). However, the fact that, estimates of genetic correlations from LDSC and SumHer-GC are so similar (Supplementary Figure 11),
indicates that estimates from all three heritability models will be highly concordant.
aaa While we showed that it is better to use the LDAK Model than the GCTA Model, in order to protect against model misspecification,
it might appear better still to use the hybrid model. We advise against this for four reasons. Firstly, using the hybrid model is much more
computationally demanding that using the LDAK Model (it typically requires 20 times as much memory, and 20 times as long to run),
and when using multi-part models, we often encountered convergence issues. Secondly, the hybrid model generally produces less precise
estimates; this is particularly true when estimating enrichments (see Supplementary Table 19). Thirdly, we showed that introducing poorly-
genotyped SNPs makes traits appear more GCTA-like (Supplementary Figure 12), indicating that using the hybrid model will make results
more sensitive to genotyping errors. Finally, the above results show that even if we switched to the hybrid model, it would not affect our
main conclusions, that LDSC tends to over-estimate confounding bias, under-estimate h2SNP and produce misleading estimates of functional
enrichments.
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Supplementary Figure 14: Empirical support for the SumHer-GC estimates of confounding bias. Estimates of confounding bias can
be used to adjust test statistics. Here we provide empirical evidence for height and body mass index (BMI) that adjusting test statistics
based on the SumHer-GC estimates of confounding bias is more accurate than either not adjusting or adjusting based on the LDSC esti-
mates of confounding bias. We choose height and body mass index as for each of these traits we have access to additional results from
one related and one independent GWAS: for height, we have so far been using results from the 2014 GIANT Consortium meta-analysis4

(n̄j = 246 000), but also have results from the 2010 GIANT Consortium meta-analysis24 (n̄j = 132 000), and from an analysis of the UK
Biobank (n̄j = 336 000) by members of the Neale Lab (https://dropbox.com/s/sbfgb6qd5i4cxku/50.assoc.tsv.gz?dl=0); for BMI we have
been using results from the 2015 GIANT Consortium meta-analysis25 (n̄j = 230 000), but also have results from the 2011 GIANT Consor-
tium meta-analysis26 (n̄j = 122 000), and again results from an analysis of the UK Biobank (n̄j = 336 000) by members of the Neale Lab
(https://dropbox.com/s/sweqn7nztyv42zt/21001.assoc.tsv.gz?dl=0).
aaaOur basic premise is that for causal SNPs, the effect size estimates from the two pairs of GIANT GWAS should be consistent; for both
height and BMI, we only observe this to be the case when we correct test statistics according to the SumHer-GC estimates of confounding
bias. To avoid winner’s curse, we identified causal SNPs using the (independent) Biobank results; we found 430 genome-wide significant
loci (P < 5×10−8) for height and 107 for BMI loci. (a) compares estimates of (standardized) effect sizes for the height loci calculated from
the test statistics as reported (black), after division by the LDSC estimate of confounding bias (blue), and after division by the SumHer-GC
estimate of confounding bias (red). Note that the estimated effect size of SNP j is

√
Sj/(Sj + nj), where Sj is its test statistic and nj its

sample size (the sign is irrelevant as we align alleles so that the effect is always positive). Without adjustment, effect size estimates from
GIANT 2014 are on average 23% (SD 1) higher than those from GIANT 2010, reflecting that the latter used genomic control whereas the
former did not; after LDSC adjustment, they are on average 9.5% (SD 1) lower; after SumHer-GC adjustment, they are on average 0.2%
higher (SD 1). (b) reports the same as (a) except for BMI. Without adjustment, effect size estimates from GIANT 2015 are on average
11% (SD 2) lower than those from GIANT 2010, reflecting that while both GWAS used genomic control, test statistics were corrected more
strongly in the former owing to its larger sample size; after LDSC adjustment, they are on average 8.4% (SD 2) lower; after SumHer-GC
adjustment, they are on average 1.1% higher (SD 2). (c) and (d) are the same as (a) and (b), except they consider estimates of the heritability
tagged by each causal SNP, (Sj − 1)/nj . In all plots, the dashed black line (y = x) is partly or wholly obscured by the red line of best fit.
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Supplementary Figure 15: Varying the LD window size. Equation (4) in Online Methods uses the approximation v2j = h2j+
∑
l∈Nj

r2jl h
2
l ,

where Nj indexes SNPs “near" SNP j. This is based on the assumption that r2jl will be negligible for SNPs sufficiently far apart. For the
200 simulated phenotypes described in Supplementary Figure 2, bars report average estimates of h2SNP from LDSC-Zero and SumHer-Zero
using five definitions of Nj (SNPs within 0.1, 0.2, 0.5, 1, 2 or 5 cM). The window size should be sufficiently large to capture the majority
of tagging due to LD, but not too large to make computation prohibitively slow. The fact that estimates change little when we increase the
cutoff to 2 cM or 5 cM, indicates that our recommended choice, 1 cM, performs well.
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Supplementary Figure 16: Impact of changing the reference panel for the 24 summary GWAS. Our recommended reference panel
is 404 non-Finnish Europeans from 1000 Genome Project1 (1000G). Now we instead use 8 850 unrelated Caucasian individuals from the
Health & Retirement Study27 (HRS). Changing the reference panel has almost no effect on either LDSC or SumHer-GC estimates of
confounding bias, h2SNP and enrichments. Nor does it significantly impact the estimate of p, the LDAK proportion in the hybrid model; the
HRS estimate of 0.858 (SD 0.01) is very close to the 1000G estimate of 0.852 (marked by the lower horizontal line). Thus we conclude that
our recommended reference panel suffices despite its small sample size (however, a larger reference panel would likely be required if we
wished to include rare SNPs in the analyses).

22



a b

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

hSNP
2  from Linear Regression

h S
N

P
2

 fr
om

 L
og

is
tic

 R
eg

re
ss

io
n 13−Trait Average

c

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Av. Enrichments from Linear Regression
A

v.
 E

nr
ic

hm
en

ts
 fr

om
 L

og
is

tic
 R

eg
re

ss
io

n

Supplementary Figure 17: Comparing estimates from linear and logistic regression for the 13 WTCCC GWAS. SumHer is designed to
be used with summary statistics from (classical) linear regression. However, for binary traits (e.g., case-control studies), its estimates will in
general be very similar if instead summary statistics from logistic regression are used. This is because for SNPs with small or moderate effect
there will be high concordance between test statistics from linear and logistic regression (while the two methods can produce contrasting
test statistics for large-effect SNPs, we recommend excluding these when running SumHer). (a) Points compare test statistics from logistic
regression to those from linear regression; we focus on approximately 50 000 SNPs per trait, obtained by first thinning (within 1 cM and
r2jl > 0.1), then excluding SNPs which individually explain >1% of phenotypic variation. (b) Points compare (liability-scale) estimates
of h2SNP from SumHer-Zero using test statistics from logistic regression to those using test statistics from linear regression. (c) For the 24
functional categories, points compare the average estimates of enrichments from SumHer-Zero using test statistics from logistic regression
to those using test statistics from linear regression.
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Supplementary Figure 18: Investigating the relationship between heritability and MAF for the 25 raw and 24 summary GWAS. The
LDAK Model assumes E[h2j ] ∝ [fj(1 − fj)]1+αwj , where h2j , fj and wj are, respectively, the heritability contributed by SNP j, its MAF
and its LDAK weighting.8, 11 The parameter α specifies the assumed relationship between heritability and MAF. We recommend α = −0.25

based on a previous REML analysis of 42 human traits, where we found that, of the seven values considered (from -1.25 to 0.25 with spacing
0.25), using -0.25 resulted in highest average likelihood.8 For Column 1, we perform the equivalent analysis using SumHer, now considering
26 alternative values for α (from -1 to 0.25 with spacing 0.05). Across the 25 raw GWAS (top), we again find highest support for α = −0.25

(even if we restrict to the 12 eMERGE GWAS, which were not in our previous study); across the 24 summary GWAS (bottom), the most
supported value is α = −0.45 (using this value increases the average log likelihood by 3.1 nats). Whenever performing heritability analysis,
we advise checking whether results are sensitive to the choice of α. Columns 2 & 4 show that for both the 25 raw and 24 summary GWAS,
estimates of confounding bias and functional enrichments are relatively stable for plausible values of α (e.g., −0.5 ≤ α ≤ 0). Column 3
shows that for the 24 summary GWAS, estimates of h2SNP do vary; for example, those based on α = −0.45 are on average 23% (SD 3)
higher than those based on α = −0.25. However, we note that this change is small compared to the 65% (SD 1) reduction if we switched to
using the GCTA Model, and only adds support to our conclusion that LDSC tends to substantially under-estimate h2SNP.
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Supplementary Figure 19: Sample quality control for the eMERGE data. The post-imputed eMERGE data contains 52 572
individuals.28 To filter based on ancestry, we perform principal component analysis (PCA) on the 2 404 individuals from the 1000 Genome
Project. Panel 1 plots the first two PCs for the 1000 Genome Project individuals. The 404 non-Finnish Europeans are marked in green; the
center of the cross indicates their median (Mx,My), while the horizontal and vertical line segments mark 95% confidence intervals (with
widths 3.96Sx and 3.96Sy , respectively). If (Pxi, Pyi) denotes the projection of the ith eMERGE individual onto these top two PCs, then
we compute D2

i = (Pxi −Mx)2/S2
x + (Pyi −My)2/S2

y , the square of the standardized distance between the individual and the median.
We will exclude individuals with D2

i > 5.99, the 95th percentile of the χ2(2) distribution. Panel 2 shows the distribution of D2
i for the

eMERGE individuals. Panel 3 plots D2
i for all eMERGE individuals; the numbers indicate how many of the individuals have D2

i < 5.99

(these individuals are marked in green). Panels 4-12 plot the same for each of the nine cohorts separately; we decided to exclude individuals
from Mount Sinai and CHOP (Children’s Hospital of Philadelphia), as for these two cohorts, fewer than 25% of individuals pass our test. In
addition to filtering based on D2

i , we excluded 125 individuals reported as having “Hispanic or Latino" ethnicity, then filtered individuals so
that no pair remained with allelic correlation14 >0.05, (which left 25 875 individuals).
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Supplementary Figure 20: Comparing implementations of LDSC for the 12 eMERGE GWAS. In general, we obtained all LDSC-
Zero and LDSC estimates using SumHer instead of the LDSC software;21 doing so allowed us to ensure consistency between comparisons,
compute model likelihoods, and was more convenient when running multiple analyses for tens of GWAS. Here, we show that LDSC-Zero
and LDSC estimates from SumHer closely match those from the LDSC software (LDSC is equivalent to running the LDSC software with
the default options, LDSC-Zero is equivalent to adding the option -intercept-h2 1). For computational reasons we focus on the
eMERGE traits (as these use the same SNPs we need only compute LD Scores once). When performing an analysis using either SumHer
or the LDSC software, it is necessary to decide the sets of reference and regression SNPs (the reference SNPs are used for computing the
expected heritability tagged by each SNP, but only the regression SNPs are used when estimating coefficients). We recommend that the two
SNP sets are the same, achieved by reducing the reference panel to SNPs for which summary statistics are available. LDSC recommends that
the reference panel is as large as possible, but that only HapMap 322 SNPs with MAF ≥0.05 are used when performing the regression.10, 21

aaaHere we report estimates of confounding bias (top row), h2SNP (middle row) and functional enrichments averaged across the 12 traits
(bottom row). For Columns 1 & 2, the reference SNPs match the reference SNPs; for Columns 3 & 4, the reference SNPs are all those with
MAF≥0.01 in the 1000 Genome Project data,1 while the regression SNPs are those in HapMap 3 with MAF≥0.05. Columns 1 & 3 compare
LDSC-Zero and LDSC estimates from the SumHer implementation to those from the LDSC software. When estimating confounding bias
and h2SNP (plots with red points) we see near-perfect concordance (correlations>0.999, mean absolute differences<0.001). When estimating
enrichments (plots with blue points), we observe some discordance (the correlations are 0.92 and 0.94, the mean absolute differences 0.74
and 0.57), indicating differences between how SumHer and the LDSC software estimate coefficients for multi-part models (we suspect these
arise when dealing with extreme values, and because for multi-part models the LDSC software uses one-step weighted least-squares rather
than iterative weighted least-squares10). However, we see that the discordance is slight compared to that between estimates from the LDSC
software and those from our favored method, SumHer-GC (correlations 0.35 and 0.25, mean absolute differences 1.8 and 2.0; plots with
green points), and does not affect our overall conclusion that SumHer produces far more modest estimates of enrichment. ∗Note that the
SumHer-Zero and SumHer-GC estimates in Column 4 are obtained using matching reference and regression SNPs (i.e., the same as those
in Column 2), as it is not clear how to apply the LDAK Model when the reference and regression SNPs differ.
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1000 Genomes (8 598 885 SNPs) eMERGE Data (4 555 718 SNPs)
Average Expected share Percent Average Expected share Percent

Category Annotation LD GCTA LDAK Coding LD GCTA LDAK Coding
Coding29, 30 124.8 0.015 0.020 100 121.9 0.011 0.014 100
Conserved31, 32 104.0 0.027 0.032 19.0 109.7 0.025 0.029 14.6
CTCF33 112.9 0.024 0.028 2.8 107.8 0.021 0.025 2.1
Digital Genomic Footprint30, 34 111.9 0.137 0.150 3.3 108.0 0.128 0.148 2.4
DNase I Hypersensitive Site34–36 108.6 0.166 0.175 2.8 107.1 0.162 0.184 2.0
FANTOM5 Enhancer37 105.8 0.004 0.006 0.0 95.1 0.004 0.005 0.0
Enhancer33 106.5 0.042 0.050 3.4 99.7 0.036 0.047 2.4
Fetal DHS34–36 104.5 0.084 0.093 3.4 103.2 0.079 0.095 2.5
H3K27ac (Hnisz)35, 38 108.8 0.391 0.438 2.5 101.3 0.362 0.439 1.9
H3K27ac (PGC2)35, 39 114.3 0.272 0.314 2.8 103.6 0.248 0.301 2.1
H3K4me135, 36 110.3 0.425 0.458 2.6 106.5 0.410 0.476 2.0
H3K4me335, 36 138.7 0.136 0.157 4.3 127.9 0.119 0.140 3.2
H3K9ac35, 36 105.8 0.127 0.150 4.6 102.4 0.109 0.140 3.5
Intronic29, 30 120.7 0.391 0.405 0.5 119.0 0.397 0.408 0.4
Promoter Flanking33 133.4 0.009 0.009 2.4 122.5 0.008 0.009 1.6
Promoter29, 30 142.6 0.032 0.036 17.5 131.5 0.026 0.030 15.7
Repressed33 139.9 0.456 0.425 0.5 133.4 0.475 0.450 0.4
Super Enhancer38 104.1 0.169 0.200 2.9 90.7 0.147 0.197 2.2
Transcription Factor Binding Site30, 34 115.9 0.132 0.147 3.7 107.2 0.120 0.143 2.7
Transcribed33 132.1 0.350 0.353 2.7 129.5 0.355 0.343 2.0
Transcription Start Site33 132.4 0.018 0.021 9.8 110.9 0.014 0.018 8.2
3’ Untranslated Region29, 30 134.3 0.012 0.014 68.0 114.7 0.009 0.012 67.2
5’ Untranslated Region29, 30 129.9 0.006 0.007 50.3 118.4 0.004 0.005 48.6
Weak Enhancer33 94.8 0.021 0.026 2.3 95.8 0.018 0.025 1.6

Supplementary Table 1: Details of the 24 functional annotations. When estimating enrichments of SNP categories, we use the same
annotations as Finucane et al., which can be downloaded from https://data.broadinstitute.org/alkesgroup/LDSCORE/baseline_bedfiles.tgz.
This table summarizes the 24 categories, first based on all autosomal SNPs with MAF ≥0.01 across the 404 non-Finnish Europeans in the
1000 Genome Project1, then based on just those SNPs also present in the eMERGE data. We measure the LD of SNP j by

∑
l∈Nj

r2jl, where
Nj indexes the SNPs within 1 cM and r2jl is (an estimate of) the squared correlation between SNPs j and l. Given a heritability model, the
expected proportion of h2SNP contributed by Category k is (

∑
j Ijkqj)/(

∑
j qj), where Ijk indicates whether SNP j belongs to that category

(under the GCTA Model, this fraction represents the proportion of SNPs in the category). To demonstrate the gene-centric nature of many of
the annotations, for each category we report the proportion of SNPs also in coding regions. The majority of categories (those marked in red)
contain SNPs whose average LD is lower than the average LD of all SNPs (136.9 if considering all 1000 Genome Project SNPs or 130.1 if
restricting to those in the eMERGE data), which is why most categories are expected to contribute more under the LDAK Model than under
the GCTA Model. However, for no category is the expectation under the LDAK Model more than 40% higher than that under the GCTA
Model (for the majority, the difference is less than 20%), and so these differences are not the primary reason why estimates of enrichments
under the two models are so different (Supplementary Tables 8 & 14).

27



LDSC-Zero LDSC SumHer-Zero SumHer-GC
Trait (Disease Prevalence, %) n m GIF GIF’ h2

SNP (SD) h2
SNP (SD) 1 +A (SD) h2

SNP (SD) h2
SNP (SD) C (SD)

W
el

lc
om

e
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us
tC

as
e

C
on

tr
ol

C
on

so
rt

iu
m

Bipolar Disorder (0.5) 4788 2220776 1.111 1.037 0.24 (0.03) 0.13 (0.03) 1.048 (0.008) 0.47 (0.04) 0.54 (0.08) 0.988 (0.013)

Coronary Artery Disease (6) 4857 2230330 1.068 1.023 0.21 (0.04) 0.12 (0.05) 1.021 (0.007) 0.37 (0.07) 0.55 (0.13) 0.982 (0.011)

Crohn’s Disease (0.5) 4653 2213243 1.064 1.041 0.14 (0.03) 0.03 (0.04) 1.047 (0.009) 0.34 (0.04) 0.34 (0.09) 1.000 (0.013)

Hypertension (6) 4865 2230864 1.056 1.046 0.21 (0.04) 0.10 (0.04) 1.029 (0.009) 0.50 (0.07) 0.64 (0.11) 0.985 (0.010)

Rheumatoid Arthritis (0.5) 4781 2226840 1.048 1.027 0.06 (0.02) 0.00 (0.02) 1.024 (0.007) 0.16 (0.04) 0.20 (0.07) 0.993 (0.011)

Type 1 Diabetes (0.5) 4890 2225102 1.046 1.021 0.09 (0.02) 0.04 (0.03) 1.024 (0.009) 0.23 (0.04) 0.38 (0.08) 0.971 (0.013)

Type 2 Diabetes (8) 4841 2225452 1.074 1.039 0.29 (0.05) 0.15 (0.05) 1.032 (0.007) 0.61 (0.07) 0.69 (0.14) 0.994 (0.011)

Barrett’s Oesophagus (1.6) 7049 3400133 1.054 1.039 0.16 (0.03) 0.06 (0.04) 1.031 (0.006) 0.37 (0.05) 0.34 (0.09) 1.004 (0.010)

Celiac Disease (1) 9946 2064172 1.106 1.028 0.13 (0.02) 0.07 (0.02) 1.041 (0.009) 0.28 (0.03) 0.37 (0.06) 0.980 (0.013)

Ischaemic Stroke (2) 8982 3363337 1.078 1.076 0.20 (0.02) -0.00 (0.02) 1.079 (0.006) 0.46 (0.03) 0.07 (0.06) 1.069 (0.010)

Parkinson’s Disease (0.2) 6871 3386927 1.039 1.017 0.11 (0.02) 0.09 (0.04) 1.008 (0.008) 0.21 (0.03) 0.28 (0.07) 0.987 (0.010)

Psoriasis (0.5) 7474 3380977 1.101 1.074 0.20 (0.03) 0.04 (0.02) 1.064 (0.007) 0.44 (0.04) 0.28 (0.07) 1.029 (0.010)

Ulcerative Colitis (0.2) 8020 3541951 1.066 1.025 0.13 (0.02) 0.04 (0.02) 1.049 (0.007) 0.29 (0.03) 0.31 (0.05) 0.997 (0.010)

eM
E

R
G

E
N

et
w

or
k

Age-related Macular Disease (2.5) 8475 4555346 1.022 1.006 0.13 (0.04) -0.02 (0.07) 1.027 (0.007) 0.38 (0.07) 0.16 (0.14) 1.017 (0.009)

Heart Failure (2) 9005 4555718 1.019 1.028 0.10 (0.03) -0.04 (0.03) 1.036 (0.006) 0.26 (0.04) -0.02 (0.08) 1.032 (0.008)

Peripheral Arterial Disease (4) 10541 4555718 1.043 1.038 0.17 (0.03) 0.03 (0.04) 1.029 (0.007) 0.36 (0.05) 0.10 (0.10) 1.024 (0.009)

Shingles (Herpes Zoster) (25) 13961 4555718 1.025 1.006 0.14 (0.08) 0.19 (0.10) 0.996 (0.007) 0.08 (0.13) 0.25 (0.24) 0.993 (0.009)

Venous Thromboembolism (5) 11966 4555718 1.035 1.023 0.12 (0.04) 0.07 (0.05) 1.012 (0.008) 0.29 (0.06) 0.31 (0.11) 0.998 (0.010)

Triglyceride 12137 4555339 1.046 1.023 0.17 (0.03) 0.08 (0.04) 1.025 (0.007) 0.29 (0.04) 0.28 (0.09) 1.002 (0.010)

LDL Cholesterol 13420 4555718 1.033 1.029 0.09 (0.02) 0.02 (0.03) 1.026 (0.007) 0.20 (0.03) 0.09 (0.06) 1.018 (0.009)

HDL Cholesterol 13788 4555684 1.061 1.058 0.21 (0.03) 0.08 (0.03) 1.042 (0.008) 0.39 (0.04) 0.29 (0.06) 1.015 (0.010)

Systolic Blood Pressure 15058 4555718 1.028 1.025 0.06 (0.02) 0.00 (0.02) 1.024 (0.007) 0.17 (0.03) 0.12 (0.06) 1.010 (0.009)

Diastolic Blood Pressure 15062 4555718 1.018 1.030 0.06 (0.02) 0.01 (0.03) 1.022 (0.006) 0.17 (0.03) 0.06 (0.05) 1.020 (0.009)

Height 18152 4555718 1.103 1.046 0.31 (0.03) 0.22 (0.04) 1.036 (0.009) 0.48 (0.03) 0.68 (0.08) 0.961 (0.012)

Body Mass Index 19309 4555718 1.110 1.062 0.26 (0.02) 0.17 (0.02) 1.040 (0.008) 0.40 (0.03) 0.48 (0.06) 0.984 (0.010)

Average 9716 3575117 1.058 1.035 0.15 (0.01) 0.05 (0.01) 1.033 (0.001) 0.31 (0.01) 0.27 (0.02) 1.005 (0.002)
Relative 1 0.39 (0.04) 1.94 (0.05) 1.81 (0.09)
Relative 0.49 (0.02) 0.17 (0.02) 1 0.87 (0.05)

Supplementary Table 2: Details of the 25 raw GWAS, and estimates of h2SNP and confounding bias. n denotes the number of sam-
ples, m the number of SNPs, GIF the (naïve) genomic inflation factor and GIF’ the genomic inflation factor computed across a thinned
subset of SNPs (within 1 cM and r2jl > 0.1). For each trait, we report estimates of h2SNP from LDSC-Zero, LDSC, SumHer-Zero and
SumHer-GC, as well as estimates of confounding bias from LDSC and SumHer-GC (LDSC measures bias via the intercept, 1 + A, while
SumHer-GC estimates the scaling factor, C). For binary traits, estimates of h2SNP have been converted to the liability scale assuming the
stated prevalence.40, 41 The 22 traits with significant h2SNP (P < 0.05/25) from both LDSC-Zero and SumHer-Zero are marked in red (these
are the ones we restricted to when estimating genetic correlations).
aaa Wellcome Trust Case Control Consortium data were applied for and downloaded from https://ebi.ac.uk/ega; the accession codes
are EGAD00000000001, EGAD00000000002, EGAD00000000003, EGAD00000000004, EGAD00000000005, EGAD00000000006,
EGAD00000000007, EGAD00000000008, EGAD00000000009 (WTCCC 1 studies) and EGAD00000000021, EGAD00000000022,
EGAD00000000023, EGAD00000000024, EGAD00000000025, EGAD00000000057, EGAD00010000124, EGAD00010000264,
EGAD00010000506, EGAD00010000634, EGAS00001000672 (WTCCC 2 studies). eMERGE Network data were applied for and
downloaded from https://ncbi.nlm.nih.gov/gap; the accession codes are phs000888.v1.p1.c1, phs000888.v1.p1.c3, phs000888.v1.p1.c4,
phs000888.v1.p1.c5.
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Trait Type n̄j m MM Correction of test statistics GIF GIF’ 1 + A (SD) C (SD)
Alzheimer’s Diseases2 Meta 54162 4347171 GC within cohorts (average GIF 1.03) 1.09 1.07 1.07 (0.02) 1.03 (0.01)
Coronary Artery Disease42 Meta 79409 1683418 GC within cohorts (average GIF 1.06) 1.10 1.07 1.06 (0.01) 0.99 (0.01)
Crohn’s Disease43 Mega 20883 4737260 None 1.14 1.09 1.08 (0.01) 0.97 (0.02)
Ever Smoked?44 Meta 74053 1685473 GC within cohorts (average GIF 1.03) 1.11 1.05 1.02 (0.01) 0.96 (0.01)
Inflammatory Bowel43 Mega 34652 4906109 None 1.17 1.13 1.13 (0.01) 0.98 (0.01)
Rheumatoid Arthritis45 Meta 58284 4544987 GC within cohorts and after meta-analysis 1.05 1.00 1.00 (0.01) 0.90 (0.02)
Schizophrenia39 Meta 82315 5292675 None 1.57 1.30 1.16 (0.01) 0.91 (0.01)
Type 2 Diabetes46 Meta 157328 4563431 GC within cohorts (average GIF unknown) 1.17 1.08 1.07 (0.01) 0.95 (0.01)
Ulcerative Colitis43 Mega 27432 5037937 None 1.12 1.08 1.10 (0.01) 0.99 (0.01)
Bone Mineral Density47 Meta 32965 4140623 X None 1.11 1.06 1.07 (0.01) 1.00 (0.01)
Body Mass Index25 Meta 229902 1721589 GC within cohorts and after meta-analysis 1.13 0.90 0.80 (0.01) 0.55 (0.02)
Depressive Symptoms48 Meta 161460 4236802 Corrected using LDSC 1.12 1.06 1.03 (0.01) 0.96 (0.01)
Fasting Glucose49 Meta 58074 1750529 GC within cohorts (average GIF 1.06) 1.08 1.05 1.04 (0.01) 0.99 (0.01)
Glycated Hemoglobin50 Meta 46368 1721586 GC within cohorts (average GIF 1.03) 1.04 1.04 1.03 (0.01) 0.99 (0.01)
HDL Cholesterol51 Meta 95671 1686373 X GC within cohorts and after meta-analysis 1.03 0.95 1.04 (0.07) 0.68 (0.03)
Height4 Meta 245753 1718207 GC within cohorts (average GIF 1.03) 2.09 1.69 1.69 (0.06) 0.98 (0.04)
LDL Cholesterol51 Meta 90946 1684750 X GC within cohorts and after meta-analysis 1.03 0.94 1.00 (0.04) 0.73 (0.04)
Menarche Age52 Meta 252514 4563412 GC within cohorts (average GIF 1.03) 1.66 1.33 1.21 (0.02) 0.89 (0.02)
Menopause Age53 Meta 69360 1684637 X Unclear whether GC was performed 1.10 1.05 1.06 (0.02) 0.92 (0.02)
Neuroticism48 Meta 170911 4236700 Corrected using LDSC 1.26 1.13 1.06 (0.01) 0.90 (0.02)
Subjective Well-Being48 Meta 298420 1625391 Corrected using LDSC 1.16 1.08 1.03 (0.01) 0.97 (0.02)
Triglyceride Levels51 Meta 92130 1685101 X GC within cohorts and after meta-analysis 1.02 0.96 0.92 (0.03) 0.70 (0.04)
Waist-Hip Ratio54 Meta 142286 4548618 GC within cohorts and after meta-analysis 1.05 0.95 0.92 (0.01) 0.76 (0.01)
Years Education3 Meta 328917 1716059 GC within cohorts (average GIF 1.02) 1.54 1.22 1.11 (0.01) 0.83 (0.01)

Average 121008 3146618 1.21 1.09 1.04 (0.00) 0.93 (0.00)

Supplementary Table 3: Details of the 24 summary GWAS and estimates of confounding bias. Type reports whether the GWAS
performed a mega-analysis (all individuals analyzed together) or meta-analysis (cohorts analyzed separately, then their results combined).
n̄j denotes average sample size; numbers in red mark the eight traits for which per-SNP sample sizes were available (else we set nj = n,
the total sample size). m denotes the number of SNPs after filtering; for the four traits marked in red, we excluded SNPs with imputation
info score < 0.95; for the remaining traits, for which info scores were not available, we instead restricted to the 4 555 718 SNPs present in
the eMERGE data, on the basis that these are SNPs likely to be well-imputed in Caucasian GWAS (Supplementary Table 4). MM indicates
traits where mixed-model association analysis was used for one or more analyses (this list is not exhaustive, as for some of the meta-analysis
GWAS, it was unclear what analyses were used within cohorts). Column 6 summarizes any correction of test statistics, either using genomic
control (GC) or dividing by the LDSC intercept. The 11 traits marked in red are those where correction was lowest; specifically, those where
classical linear regression was performed, correction was only within cohorts, and the average correction was 1.03 or less (we decided to
include bone mineral density even though mixed-model association analysis was performed, because classical linear regression was used for
the majority of cohorts). GIF and GIF’ are the genomic inflation factors computed, respectively, from all SNPs and from a thinned subset
of SNPs (within 1 cM and r2jl > 0.1). 1 + A and C are estimates of the intercept from LDSC and the scaling factor from SumHer-GC,
respectively. The low estimates of C for Menarche Age (0.89) and Years Education (0.83) indicate that although genomic control had a
relatively small impact on test statistics for individual cohorts, its impact on the combined test statistics was substantial.
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Crohn’s Disease Inflammatory Bowel Disease Ulcerative Colitis Schizophrenia
Number Average Percent Number Average Percent Number Average Percent Number Average Percent

Filtering SNPs Info <0.95 SNPs Info <0.95 SNPs Info <0.95 SNPs Info <0.95
All SNPs 11002658 0.863 52 11555662 0.860 52 11113952 0.870 49 9444230 0.942 35

1000 Genome Project 8125415 0.909 41 8139841 0.913 39 8129688 0.916 37 7709782 0.941 31

Wellcome Trust Controls 4108338 0.973 15 4108554 0.975 13 4108472 0.977 11 4096361 0.983 8

HRS (Info ≥0.8) 7195748 0.937 34 7196494 0.940 32 7196184 0.943 30 7136612 0.953 26

HRS (Info ≥0.99) 3459954 0.975 13 3460058 0.977 11 3459986 0.979 10 3445395 0.985 6

eMerge Network 4573808 0.980 10 4573830 0.982 8 4573817 0.984 6 4572847 0.987 3

HapMap 3 1176981 0.962 22 1177105 0.966 19 1177004 0.969 17 1171395 0.977 13

Supplementary Table 4: Proxies for info scores. When possible, we advise restricting analyses to only high-quality SNPs, for example,
those with imputation info score ≥0.95. However, info scores were only available for four of our 24 summary GWAS (Crohn’s Disease, in-
flammatory bowel disease, schizophrenia and ulcerative colitis), so for the remaining traits, we restricted to SNPs well-imputed in alternative
datasets (in addition to excluding SNPs not in our reference panel, 404 non-Finnish Europeans from the 1000 Genome Project1 data). We
considered five proxies: SNPs with info score ≥0.99 across the 7 906 individuals in the three Wellcome Trust55 control datasets; SNPs with
info score ≥0.8 across the 10 563 Caucasian individuals in the Health and Retirement Study27 (HRS); SNPs with info score ≥0.99 across
the 10 563 Caucasian HRS individuals; SNPs with info score≥0.95 across the 52 572 (multi-ethnic) individuals in the eMERGE data; SNPs
present in HapMap 3.22 For the four traits for which info scores were provided, we assessed how effective each of these filterings based on the
number of SNPs which remained, their average info score and the proportion of these with info score <0.95 (note that the high correlation
between the results for Crohn’s Disease, inflammatory bowel disease and ulcerative colitis reflects that these three traits were analyzed by
the same authors; Supplementary Table 3). Of the five proxies considered, we find that restricting to SNPs present in the eMERGE data is
most effective; it produces the highest average info score, the lowest proportion of SNPs with info <0.95, and results in the removal of only
25-35% of 1000 Genome Project SNPs. The authors of LDSC have recommended restricting to SNPs in HapMap 3.10, 21, 23, 56, 57 These re-
sults indicate that this is an inefficient proxy; although restricting to HapMap 3 SNPs does improve the average info score, the improvement
is less than restricting to high-quality Wellcome Trust, HRS or eMERGE SNPs, and leads to the exclusion of over 80% of 1000 Genome
Project SNPs. While it appears that reducing to eMERGE SNPS is an effective way of performing quality control for GWAS which do not
provide info scores, it is important to note that it will not be perfect and some poorly-genotyped SNPs will not be filtered out (evidenced by
the fact that 3-10% of the remaining SNPs have info score <0.95).
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L(S|ĥ2
SNP,D

0) L(S|ĥ2
SNP,D

ĥ2

SNP)−L(S|0,Dĥ2

SNP) Proportion
Trait GCTA LDAK GCTA LDAK of LDAK, p (SD)
Bipolar Disorder -89184.8 -89153.5 41.0 69.1 0.91 (0.07)
Coronary Artery Disease -86637.0 -86630.6 12.1 16.3 0.89 (0.13)
Crohn’s Disease -88431.9 -88408.3 15.3 36.6 1.08 (0.13)
Hypertension -87332.9 -87317.7 14.0 30.4 1.03 (0.10)
Rheumatoid Arthritis -86830.9 -86823.3 3.4 10.8 1.22 (0.11)
Type 1 Diabetes -87808.4 -87796.7 8.5 21.3 1.07 (0.14)
Type 2 Diabetes -87862.3 -87849.7 18.2 33.0 0.94 (0.10)
Barrett’s Oesophagus -125123.3 -125108.0 14.4 30.9 1.08 (0.11)
Celiac Disease -95275.2 -95250.5 26.2 48.3 0.98 (0.09)
Ischaemic Stroke -126967.2 -126923.1 39.0 88.7 1.08 (0.06)
Parkinson’s Disease -124082.7 -124087.5 13.1 20.4 0.66 (0.29)
Psoriasis -128981.6 -128938.6 38.7 81.6 1.08 (0.06)
Ulcerative Colitis -127867.0 -127823.5 32.9 69.3 1.15 (0.06)

Age-related Macular Disease -136043.5 -136037.9 3.6 13.9 1.27 (0.20)
Heart Failure -135762.6 -135755.1 5.8 15.4 1.30 (0.15)
Peripheral Arterial Disease -135768.7 -135762.8 10.1 20.1 1.05 (0.15)
Shingles (Herpes Zoster) -133490.8 -133491.7 1.5 0.2 -1.30 (5.37)
Venous Thromboembolism -135590.7 -135587.2 6.4 15.8 1.02 (0.25)
Triglyceride -140091.2 -140084.9 19.6 28.4 0.88 (0.16)
LDL Cholesterol -136366.2 -136360.2 8.7 18.8 1.10 (0.16)
HDL Cholesterol -141591.3 -141569.0 35.3 59.3 1.04 (0.10)
Systolic Blood Pressure -134966.3 -134960.7 4.7 17.5 1.20 (0.18)
Diastolic Blood Pressure -135031.6 -135027.4 5.3 17.2 1.14 (0.22)
Height -143344.5 -143305.7 111.0 139.1 0.85 (0.08)
Body Mass Index -141368.6 -141326.2 94.0 119.4 0.89 (0.07)

Average -119672.0 -119655.2 23.3 40.9 1.03 (0.02)
Difference 0 16.9

Supplementary Table 5: Comparing heritability models for the 25 raw GWAS using SumHer. L(S|h2SNP, D) is the (weighted) log
likelihood, defined in Online Methods. SumHer provides two likelihood-based metrics for comparing heritability models. Our preferred
metric is L(S|ĥ2SNP, D

0), where ĥ2SNP is the final estimate of h2SNP, and D0 is the initial weight matrix (obtained by setting 1/Djj =∑
l∈Nj

r2jl). The second metric is L(S|ĥ2SNP, D
ĥ2

SNP)−L(S|0, Dĥ2

SNP), where Dĥ2

SNP is the weight matrix after the final iteration; while it

might seem natural to compare heritability models based on L(S|ĥ2SNP, D
ĥ2

SNP), this is not valid because Dĥ2

SNP depends on the heritability

model, hence why we normalize by subtracting L(S|0, Dĥ2

SNP), the null likelihood calculated using the same weights (the likelihood
ratio test statistic reported by SumHer is twice this metric). We see that regardless of which metric is used, the relative performances
of the GCTA and LDAK Models are very similar to when we compare models using the log likelihood from REML (Supplementary
Table 6). An alternative way to compare the GCTA and LDAK Models is using Hybrid-Zero, which assumes the heritability model qj =

(1 − p) × 1/m + p × [fj(1 − fj)]0.75 wj/Q′, where Q′ =
∑
j [fj(1 − fj)]0.75 wj . The final column reports estimates of p, the LDAK

proportion. The imprecise estimate for Shingles reflects that this trait does not have significant h2SNP (Supplementary Table 2).

aaa Note that when comparing heritability models based on L(S|ĥ2SNP, D
0), we must ensure that the same SNPs are used for each model

(so that D0 is constant). When calculating the tagfile (which contains qj +
∑
l∈Nj

qlr
2
jl for each SNP), by default SumHer excludes SNPs

with qj = 0. This is not relevant for the GCTA Model (qj = 1), but is for the LDAK Model (qj = wj [fj(1− fj)]0.75), as many SNPs will
have wj = 0 (these are SNPs whose variation is perfectly tagged by their neighbors). To prevent SumHer ignoring SNPs with qj = 0, use
the option -reduce NO.
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GCTA Model LDAK Model
Trait (Disease prevalence, %) h2

SNP (SD) Log Likelihood h2
SNP (SD) Log Likelihood

Bipolar Disorder (0.5) 0.21 (0.02) -3247.4 0.35 (0.03) -3221.0
Coronary Artery Disease (6) 0.19 (0.04) -3147.2 0.33 (0.06) -3142.9
Crohn’s Disease (0.5) 0.13 (0.02) -3143.9 0.28 (0.03) -3121.7
Hypertension (6) 0.20 (0.04) -3365.7 0.41 (0.05) -3348.8
Rheumatoid Arthritis (0.5) 0.05 (0.02) -3184.2 0.15 (0.03) -3175.7
Type 1 Diabetes (0.5) 0.09 (0.02) -3417.8 0.18 (0.03) -3406.6
Type 2 Diabetes (8) 0.26 (0.04) -3338.5 0.51 (0.06) -3324.8
Barrett’s Oesophagus (1.6) 0.16 (0.03) -3873.2 0.31 (0.04) -3857.8
Celiac Disease (1) 0.13 (0.02) -5503.9 0.25 (0.02) -5478.3
Ischaemic Stroke (2) 0.18 (0.02) -5611.3 0.35 (0.03) -5562.1
Parkinson’s Disease (0.2) 0.11 (0.02) -3882.5 0.19 (0.03) -3878.0
Psoriasis (0.5) 0.17 (0.02) -4434.4 0.33 (0.03) -4388.7
Ulcerative Colitis (0.2) 0.13 (0.01) -5225.7 0.24 (0.02) -5187.3
Age-related Macular Disease (2.5) 0.12 (0.04) -2988.6 0.35 (0.06) -2976.0
Heart Failure (2) 0.10 (0.03) -4767.5 0.23 (0.04) -4756.4
Peripheral Arterial Disease (4) 0.17 (0.04) -4593.9 0.38 (0.05) -4572.9
Shingles (Herpes Zoster) (25) 0.14 (0.08) -2394.3 0.10 (0.12) -2395.5
Venous Thromboembolism (5) 0.12 (0.03) -5636.3 0.30 (0.05) -5621.8
Triglyceride 0.17 (0.02) -71355.4 0.26 (0.03) -71348.0
LDL Cholesterol 0.09 (0.02) -64285.5 0.20 (0.03) -64271.8
HDL Cholesterol 0.20 (0.02) -56028.7 0.35 (0.03) -56000.5
Systolic Blood Pressure 0.06 (0.02) -60424.0 0.17 (0.03) -60404.8
Diastolic Blood Pressure 0.06 (0.02) -52669.7 0.17 (0.03) -52652.8
Height 0.29 (0.02) -60490.5 0.42 (0.02) -60464.1
Body Mass Index 0.23 (0.02) -64084.7 0.35 (0.02) -64062.6

Average 0.15 (0.00) -20043.8 0.28 (0.01) -20024.8
Difference 0 19.0

Supplementary Table 6: Comparing heritability models for the 25 raw GWAS using REML. For each trait, we report estimates
of h2SNP and log likelihoods from REML assuming the GCTA and LDAK Models;8 for consistency with our SumHer analyses, when
calculating kinship matrices we excluded SNPs not in our reference panel (even though that is not used for this analysis) and those in the
major histocompatibility complex (Chromosome 6: 25-34 Mb), as well as SNPs which individually explain >1% of phenotypic variation
and SNPs in LD with these (within 1 cM and r2jl > 0.1). For binary traits, estimates of h2SNP have been converted to the liability scale
assuming the stated prevalence.40, 41 For each trait, the higher likelihood is marked in red.
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log likelihood L(S|ĥ2
SNP,D

0) Proportion of LDAK, p (SD)
Trait LDSC SumHer-GC LDSC-Zero SumHer-Zero Hybrid-GC Hybrid-Zero
Alzheimer’s Disease -155870 -155861 -155900 -155863 1.05 (0.18) 1.05 (0.14)
Coronary Artery Disease -126004 -125985 0.99 (0.06)
Crohn’s Disease -156340 -156288 -156374 -156293 0.95 (0.06) 0.93 (0.07)
Ever Smoked? -120324 -120323 -120328 -120326 0.74 (0.08) 0.62 (0.10)
Inflammatory Bowel -166746 -166678 -166824 -166679 1.00 (0.04) 1.00 (0.05)
Rheumatoid Arthritis -156691 -156638 1.02 (0.04)
Schizophrenia -186224 -185879 -186497 -185924 0.81 (0.02) 0.77 (0.02)
Type 2 Diabetes -170951 -170904 0.91 (0.05)
Ulcerative Colitis -155970 -155920 -156039 -155919 1.07 (0.04) 1.07 (0.04)
Bone Mineral Density -145355 -145337 -145396 -145337 0.93 (0.06) 0.93 (0.06)
Body Mass Index -168672 -168574 0.73 (0.03)
Depressive Symptoms -127467 -127445 0.89 (0.05)
Fasting Glucose -150936 -150929 0.93 (0.11)
Glycated Hemoglobin -122114 -122110 -122119 -122110 1.02 (0.11) 1.01 (0.13)
HDL Cholesterol -203754 -203713 0.91 (0.15)
Height -219673 -219485 -220089 -219494 0.86 (0.03) 0.85 (0.04)
LDL Cholesterol -192567 -192537 0.89 (0.13)
Menarche Age -216546 -216351 -216750 -216377 0.76 (0.03) 0.71 (0.03)
Menopause Age -149661 -149617 1.06 (0.06)
Neuroticism -137431 -137355 0.82 (0.03)
Subjective Well-Being -115635 -115647 0.61 (0.10)
Triglyceride -201576 -201571 0.64 (0.13)
Waist-Hip Ratio -128195 -128097 0.84 (0.04)
Years Education -170237 -169873 -170404 -169959 0.84 (0.02) 0.75 (0.03)

Average -160206 -160130 -165156 -164935 0.85 (0.01) 0.82 (0.01)

Supplementary Table 7: Comparing heritability models for the 24 summary GWAS using SumHer. Columns 2 to 5 report the log
likelihood L(S|ĥ2SNP, D

0) (see Supplementary Table 5), first calculated from LDSC and SumHer-GC, then, for the 11 traits least impacted
by genomic control (Supplementary Table 3), calculated from LDSC-Zero and SumHer-Zero (the higher value in each pair is marked in
red). The final two columns report estimates of p, the LDAK proportion, for each trait from Hybrid-GC and, for the 11 traits least impacted
by genomic control, from Hybrid-Zero.
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LDSC-Zero (53-part model) SumHer-Zero (25-part model)
Category Share (SD) Expected Av. Enrich. (SD) Share (SD) Expected Av. Enrich. (SD)
Coding 0.052 (0.020) 0.012 4.54 (1.72) 0.027 (0.005) 0.014 1.84 (0.32)
Conserved 0.247 (0.039) 0.025 9.74 (1.54) 0.044 (0.007) 0.030 1.46 (0.23)
CTCF 0.026 (0.033) 0.020 1.29 (1.65) 0.013 (0.006) 0.024 0.53 (0.25)
Digital Genomic Footprint 0.337 (0.083) 0.122 2.77 (0.68) 0.205 (0.014) 0.147 1.40 (0.09)
DNase I Hypersensitive Site 0.342 (0.089) 0.156 2.21 (0.57) 0.234 (0.015) 0.186 1.25 (0.08)
FANTOM5 Enhancer 0.038 (0.015) 0.003 11.29 (4.39) 0.006 (0.003) 0.005 1.28 (0.56)
Enhancer 0.118 (0.034) 0.033 3.55 (1.01) 0.075 (0.008) 0.045 1.69 (0.17)
Fetal DHS 0.139 (0.064) 0.075 1.87 (0.84) 0.130 (0.011) 0.095 1.37 (0.12)
H3K27ac (Hnisz) 0.606 (0.031) 0.345 1.76 (0.09) 0.583 (0.015) 0.428 1.36 (0.04)
H3K27ac (PGC2) 0.511 (0.053) 0.237 2.17 (0.22) 0.413 (0.016) 0.294 1.40 (0.05)
H3K4me1 0.757 (0.065) 0.396 1.92 (0.16) 0.607 (0.017) 0.471 1.29 (0.04)
H3K4me3 0.283 (0.045) 0.114 2.50 (0.39) 0.204 (0.013) 0.135 1.52 (0.10)
H3K9ac 0.271 (0.045) 0.102 2.72 (0.44) 0.235 (0.013) 0.133 1.78 (0.10)
Intronic 0.507 (0.024) 0.402 1.25 (0.06) 0.477 (0.013) 0.410 1.16 (0.03)
Promoter Flanking -0.009 (0.020) 0.008 -1.25 (2.64) 0.013 (0.004) 0.008 1.58 (0.44)
Promoter 0.023 (0.022) 0.025 1.02 (0.89) 0.044 (0.006) 0.029 1.57 (0.22)
Repressed 0.348 (0.066) 0.478 0.73 (0.14) 0.334 (0.018) 0.455 0.73 (0.04)
Super Enhancer 0.314 (0.018) 0.135 2.29 (0.13) 0.302 (0.011) 0.188 1.60 (0.06)
Transcription Factor Binding Site 0.277 (0.065) 0.114 2.43 (0.57) 0.182 (0.014) 0.141 1.30 (0.10)
Transcribed 0.347 (0.059) 0.363 0.95 (0.16) 0.430 (0.017) 0.347 1.23 (0.05)
Transcription Start Site 0.043 (0.021) 0.012 3.68 (1.69) 0.031 (0.005) 0.016 1.91 (0.31)
3’ Untranslated Region 0.046 (0.015) 0.009 4.74 (1.61) 0.019 (0.004) 0.012 1.65 (0.35)
5’ Untranslated Region 0.001 (0.013) 0.004 0.09 (2.85) 0.011 (0.003) 0.005 2.11 (0.57)
Weak Enhancer 0.060 (0.032) 0.016 3.62 (1.97) 0.036 (0.006) 0.023 1.58 (0.25)

Supplementary Table 8: Average estimates of functional enrichments across the 25 raw GWAS. We estimate enrichments using either
LDSC-Zero with a 53-part model or SumHer-Zero with a 25-part model. For the 25-part model, we divide the genome into a set for each of
the 24 categories, plus a set containing all SNPs, while for the 53-part model, we divide the genome into a set for each of the 24 categories, a
set for each of 28 buffer regions (see Finucane et al.,10), plus a set containing all SNPs. For each trait, we calculate the estimated enrichment
of each category, obtained by dividing the estimated share of h2SNP contributed by the category by its expected share; for each category, we
then report the (inverse-variance-weighted) average estimated enrichment across the 25 traits. Average estimated enrichments significantly
different from one (P < 0.05) are marked in red.
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Genetic Correlation (SD)
Trait 1 Trait 2 LDSC-Zero LDSC SumHer-Zero SumHer-GC
Bipolar Disorder Crohn’s Disease 0.21 (0.10) 0.51 (0.36) 0.41 (0.14) 0.41 (0.12)
Bipolar Disorder Hypertension 0.20 (0.11) 0.38 (0.20) 0.51 (0.14) 0.43 (0.10)
Bipolar Disorder Type 1 Diabetes 0.11 (0.13) 0.21 (0.24) 0.27 (0.15) 0.22 (0.11)
Bipolar Disorder Type 2 Diabetes 0.11 (0.10) 0.25 (0.18) 0.29 (0.13) 0.27 (0.11)
Bipolar Disorder Ulcerative Colitis 0.12 (0.10) 0.29 (0.25) 0.47 (0.11) 0.43 (0.10)
Coronary Artery Disease Hypertension 0.15 (0.14) 0.25 (0.24) 0.41 (0.19) 0.33 (0.13)
Coronary Artery Disease Type 1 Diabetes 0.37 (0.16) 0.66 (0.29) 0.32 (0.21) 0.23 (0.14)
Coronary Artery Disease Type 2 Diabetes 0.20 (0.15) 0.38 (0.22) 0.36 (0.19) 0.30 (0.14)
Coronary Artery Disease Psoriasis 0.14 (0.14) 0.28 (0.30) 0.66 (0.18) 0.66 (0.17)
Coronary Artery Disease Ulcerative Colitis 0.12 (0.14) 0.24 (0.35) 0.45 (0.19) 0.39 (0.15)
Crohn’s Disease Hypertension -0.10 (0.16) -0.25 (0.60) 0.38 (0.15) 0.36 (0.13)
Crohn’s Disease Ulcerative Colitis 0.26 (0.12) 1.01 (0.51) 0.86 (0.14) 0.87 (0.14)
Hypertension Type 1 Diabetes 0.14 (0.16) 0.30 (0.29) 0.37 (0.16) 0.27 (0.11)
Hypertension Type 2 Diabetes 0.13 (0.15) 0.24 (0.26) 0.37 (0.17) 0.32 (0.13)
Hypertension Ulcerative Colitis 0.09 (0.13) 0.18 (0.35) 0.55 (0.14) 0.48 (0.12)
Type 1 Diabetes Celiac Disease 0.52 (0.16) 1.51 (1.23) 0.43 (0.18) 0.37 (0.15)
Type 1 Diabetes Parkinson’s Disease 0.38 (0.24) 0.82 (0.49) 0.72 (0.26) 0.53 (0.16)
Type 1 Diabetes Psoriasis 0.21 (0.15) 0.62 (0.53) 0.49 (0.17) 0.51 (0.17)
Type 1 Diabetes Ulcerative Colitis 0.21 (0.15) 0.64 (0.45) 0.39 (0.18) 0.31 (0.14)
Type 2 Diabetes Psoriasis 0.10 (0.12) 0.30 (0.28) 0.33 (0.13) 0.38 (0.14)
Type 2 Diabetes Ulcerative Colitis 0.14 (0.12) 0.29 (0.30) 0.27 (0.13) 0.26 (0.12)
Type 2 Diabetes Body Mass Index 0.16 (0.09) 0.27 (0.18) 0.45 (0.13) 0.42 (0.13)
Celiac Disease Parkinson’s Disease 0.08 (0.13) 0.15 (0.21) 0.39 (0.21) 0.28 (0.14)
Celiac Disease Psoriasis 0.04 (0.09) 0.13 (0.20) 0.34 (0.13) 0.34 (0.13)
Parkinson’s Disease Ulcerative Colitis 0.19 (0.14) 0.46 (0.29) 0.36 (0.16) 0.31 (0.12)
Psoriasis Ulcerative Colitis 0.15 (0.10) 0.58 (0.42) 0.32 (0.12) 0.40 (0.14)
Ulcerative Colitis Venous Thromboembolism 0.16 (0.16) 0.35 (0.43) 0.45 (0.20) 0.38 (0.17)
Venous Thromboembolism Height 0.24 (0.12) 0.39 (0.22) 0.31 (0.15) 0.23 (0.12)
Triglyceride HDL Cholesterol -0.35 (0.12) -0.69 (0.23) -0.42 (0.15) -0.49 (0.16)
Triglyceride Body Mass Index 0.30 (0.10) 0.47 (0.18) 0.40 (0.14) 0.37 (0.14)
LDL Cholesterol HDL Cholesterol 0.18 (0.13) 0.58 (0.48) 0.35 (0.15) 0.59 (0.28)
LDL Cholesterol Body Mass Index -0.16 (0.11) -0.40 (0.33) -0.36 (0.15) -0.48 (0.23)
HDL Cholesterol Body Mass Index -0.27 (0.08) -0.52 (0.15) -0.50 (0.11) -0.55 (0.12)

Supplementary Table 9: Estimates of genetic correlation for the 25 raw GWAS. In general, it is only possible to get a meaningful
estimate of genetic correlation when both traits have substantial h2SNP, so for this analysis we only use the 22 traits for which both LDSC-
Zero and SumHer-Zero find significant h2SNP (P < 0.05/25); this filtering excludes rheumatoid arthritis, age-related macular disease and
shingles (Supplementary Table 2). Of the 22C2 = 231 pairs of traits we considered, this table reports genetic correlation for the 33 pairs
with significant correlation P < 0.05) from either LDSC or SumHer-GC. Nominally significant estimates (P < 0.05) are marked in red,
while Bonferroni significant estimates (P < 0.05/231) are also in bold.
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Original Controls — Confounding (SD) 2 000 POBI Controls — Confounding (SD) 2 000 1000G Controls — Confounding (SD)
Trait GIF LDSC (SD) SumHer-GC (SD) GIF LDSC (SD) SumHer-GC (SD) GIF LDSC (SD) SumHer-GC (SD)
Bipolar Disorder 1.092 1.029 (0.008) 0.976 (0.013) 1.095 1.056 (0.009) 1.010 (0.013) 0.984 0.951 (0.008) 0.650 (0.012)
Coronary Artery 1.074 1.016 (0.008) 0.990 (0.012) 1.079 1.044 (0.009) 1.026 (0.012) 0.988 0.935 (0.009) 0.682 (0.011)
Crohn’s Disease 1.047 1.044 (0.009) 1.003 (0.013) 1.052 1.070 (0.009) 1.026 (0.014) 0.992 0.970 (0.008) 0.697 (0.011)
Hypertension 1.062 1.028 (0.009) 0.985 (0.012) 1.052 1.064 (0.008) 1.024 (0.013) 0.966 0.960 (0.009) 0.670 (0.011)
Rheumatoid Arthritis 1.035 1.020 (0.008) 0.995 (0.013) 1.038 1.062 (0.008) 1.034 (0.013) 0.963 0.948 (0.008) 0.683 (0.011)
Type 1 Diabetes 1.029 1.024 (0.010) 0.977 (0.014) 1.070 1.073 (0.009) 1.027 (0.013) 0.945 0.945 (0.007) 0.674 (0.011)
Type 2 Diabetes 1.062 1.026 (0.007) 0.988 (0.012) 1.076 1.037 (0.009) 0.994 (0.013) 0.987 0.953 (0.008) 0.657 (0.010)
Barrett’s Oesophagus 1.046 1.036 (0.007) 1.015 (0.010) 1.048 1.034 (0.007) 1.019 (0.010) 1.019 0.984 (0.007) 0.796 (0.010)
Celiac Disease 1.073 1.041 (0.010) 0.980 (0.013) 1.094 1.045 (0.009) 0.984 (0.014) 1.062 1.009 (0.009) 0.829 (0.012)
Ischaemic Stroke 1.071 1.065 (0.006) 1.058 (0.010) 1.074 1.067 (0.007) 1.063 (0.010) 1.375 1.312 (0.009) 1.081 (0.012)
Parkinson’s Disease 1.046 1.010 (0.008) 0.998 (0.011) 1.034 1.010 (0.007) 0.996 (0.010) 0.985 0.946 (0.007) 0.751 (0.010)
Psoriasis 1.078 1.054 (0.007) 1.026 (0.010) 1.079 1.074 (0.007) 1.044 (0.010) 1.107 1.078 (0.008) 0.831 (0.011)
Ulcerative Colitis 1.060 1.047 (0.008) 0.997 (0.012) 1.062 1.057 (0.007) 1.006 (0.011) 1.016 0.993 (0.007) 0.761 (0.010)

Average 1.060 1.036 (0.002) 1.003 (0.003) 1.066 1.052 (0.002) 1.022 (0.003) 1.030 0.993 (0.002) 0.746 (0.003)

Original Controls — h2
SNP (SD) 2 000 POBI Controls — h2

SNP (SD) 2 000 1000G Controls — h2
SNP (SD)

Trait LDSC-Zero LDSC SH-Zero SH-GC LDSC-Zero LDSC SH-Zero SH-GC LDSC-Zero LDSC SH-Zero SH-GC
Bipolar Disorder 0.18 (0.02) 0.12 (0.03) 0.34 (0.04) 0.47 (0.08) 0.22 (0.02) 0.09 (0.03) 0.43 (0.04) 0.38 (0.08) 0.08 (0.02) 0.18 (0.03) 0.29 (0.03) 3.16 (0.16)
Coronary Artery 0.20 (0.04) 0.14 (0.05) 0.32 (0.06) 0.42 (0.12) 0.31 (0.04) 0.14 (0.05) 0.56 (0.07) 0.33 (0.11) 0.09 (0.04) 0.34 (0.05) 0.30 (0.07) 4.73 (0.24)
Crohn’s Disease 0.12 (0.03) 0.03 (0.03) 0.29 (0.04) 0.28 (0.08) 0.17 (0.02) 0.01 (0.03) 0.40 (0.04) 0.26 (0.08) 0.06 (0.02) 0.12 (0.02) 0.28 (0.04) 2.67 (0.14)
Hypertension 0.22 (0.04) 0.12 (0.04) 0.48 (0.06) 0.62 (0.11) 0.26 (0.04) 0.01 (0.04) 0.61 (0.06) 0.40 (0.12) 0.02 (0.03) 0.17 (0.04) 0.41 (0.06) 4.94 (0.25)
Rheumatoid Arthritis 0.06 (0.02) 0.02 (0.02) 0.15 (0.03) 0.18 (0.07) 0.13 (0.02) -0.01 (0.02) 0.33 (0.03) 0.16 (0.07) 0.00 (0.02) 0.10 (0.02) 0.16 (0.03) 2.55 (0.14)
Type 1 Diabetes 0.09 (0.02) 0.05 (0.03) 0.22 (0.04) 0.33 (0.08) 0.17 (0.03) 0.01 (0.03) 0.38 (0.04) 0.25 (0.07) -0.01 (0.02) 0.09 (0.02) 0.12 (0.03) 2.52 (0.14)
Type 2 Diabetes 0.27 (0.05) 0.16 (0.05) 0.52 (0.07) 0.65 (0.14) 0.28 (0.04) 0.13 (0.05) 0.64 (0.07) 0.70 (0.16) 0.06 (0.05) 0.23 (0.05) 0.45 (0.08) 6.00 (0.29)
Barrett’s Oesophagus 0.16 (0.03) 0.04 (0.03) 0.36 (0.05) 0.24 (0.09) 0.17 (0.03) 0.06 (0.04) 0.36 (0.05) 0.21 (0.09) 0.13 (0.03) 0.18 (0.04) 0.43 (0.05) 2.66 (0.15)
Celiac Disease 0.13 (0.02) 0.07 (0.02) 0.28 (0.03) 0.36 (0.06) 0.14 (0.02) 0.07 (0.02) 0.30 (0.03) 0.36 (0.07) 0.12 (0.02) 0.10 (0.02) 0.29 (0.03) 1.16 (0.08)
Ischaemic Stroke 0.17 (0.02) 0.01 (0.02) 0.37 (0.03) 0.07 (0.06) 0.20 (0.02) 0.04 (0.02) 0.42 (0.03) 0.08 (0.05) 1.25 (0.04) 0.20 (0.03) 2.22 (0.05) 1.62 (0.09)
Parkinson’s Disease 0.10 (0.02) 0.08 (0.04) 0.19 (0.03) 0.20 (0.07) 0.10 (0.02) 0.08 (0.03) 0.19 (0.03) 0.21 (0.07) 0.06 (0.03) 0.17 (0.03) 0.19 (0.03) 2.11 (0.11)
Psoriasis 0.17 (0.02) 0.05 (0.02) 0.37 (0.04) 0.22 (0.06) 0.20 (0.02) 0.02 (0.02) 0.45 (0.04) 0.21 (0.07) 0.37 (0.03) 0.16 (0.03) 0.86 (0.04) 2.18 (0.12)
Ulcerative Colitis 0.12 (0.02) 0.04 (0.02) 0.26 (0.03) 0.28 (0.05) 0.13 (0.02) 0.03 (0.02) 0.29 (0.03) 0.27 (0.05) 0.09 (0.02) 0.11 (0.02) 0.28 (0.03) 1.58 (0.08)

Average 0.14 (0.01) 0.05 (0.01) 0.29 (0.01) 0.28 (0.02) 0.17 (0.01) 0.04 (0.01) 0.36 (0.01) 0.25 (0.02) 0.11 (0.01) 0.14 (0.01) 0.39 (0.01) 2.11 (0.03)
Relative 1 0.38 (0.05) 1.19 (0.05) 0.31 (0.05) 0.89 (0.05) 0.99 (0.05)
Relative 1.91 (0.10) 1 2.24 (0.10) 0.74 (0.11) 1.11 (0.10) 1.92 (0.11)
Relative 1 0.90 (0.07) 1.23 (0.03) 0.80 (0.07) 1.52 (0.04) 7.02 (0.11)
Relative 0.88 (0.03) 1 1.11 (0.03) 0.88 (0.07) 0.93 (0.03) 7.12 (0.11)

Supplementary Table 10: Introducing population structure for the 13 WTCCC GWAS. For each GWAS, we replace 2 000 randomly
picked controls with either 2 000 individuals from People of the British Isles12 (POBI) or 2 000 non-European individuals from the 1000
Genome Project1 (1000G). The top table compares estimates of confounding bias, measured using the genomic inflation factor (GIF), the
LDSC intercept (1 + A) or the SumHer-GC scaling factor (C); the bottom table compares (liability-scale) estimates of h2SNP from LDSC-
Zero, LDSC, SumHer-Zero and SumHer-GC. Note that the values in the first block (the analyses prior to switching out controls) are slightly
different from those in Supplementary Table 2, because here we restricted to SNPs common to the POBI and 1000G datasets.
aaaIn our original analyses of the 25 raw GWAS (Supplementary Table 2), SumHer-GC found that average confounding bias was slight,
whereas LDSC found that average bias was substantial. This analysis confirms that SumHer-GC can report substantial confounding bias (i.e.,
that it does always find that bias is slight). We note that while SumHer-GC appears to cope well with country-level population structure (that
introduced by switching in POBI individuals), it (like LDSC) fares poorly with continental-level structure (switching in 1000G individuals);
however, as it is standard to identify and exclude ancestral outliers prior to performing association analysis,13 in practice such severe
confounding is unlikely to be encountered.
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Original Filtering — Confounding (SD) Excluding Closely Related — Confounding (SD) Using All Samples — Confounding (SD)
Trait GIF LDSC (SD) SumHer-GC (SD) GIF LDSC (SD) SumHer-GC (SD) GIF LDSC (SD) SumHer-GC (SD)
AMD 1.022 1.027 (0.007) 1.017 (0.009) 1.017 1.030 (0.007) 1.027 (0.009) 1.022 1.038 (0.007) 1.031 (0.009)
Heart Failure 1.019 1.036 (0.006) 1.032 (0.008) 1.023 1.039 (0.006) 1.034 (0.008) 1.022 1.041 (0.007) 1.035 (0.008)
Peripheral Arterial 1.043 1.029 (0.007) 1.024 (0.009) 1.053 1.028 (0.007) 1.024 (0.009) 1.059 1.035 (0.007) 1.033 (0.009)
Shingles 1.025 0.996 (0.007) 0.993 (0.009) 1.025 1.005 (0.006) 1.000 (0.008) 1.023 1.009 (0.006) 1.006 (0.008)
VTE 1.035 1.012 (0.008) 0.998 (0.010) 1.033 1.011 (0.008) 0.996 (0.010) 1.034 1.020 (0.008) 1.005 (0.010)
Triglyceride 1.046 1.025 (0.007) 1.002 (0.010) 1.044 1.026 (0.008) 1.004 (0.010) 1.051 1.034 (0.008) 1.013 (0.011)
LDL Cholesterol 1.033 1.026 (0.007) 1.018 (0.009) 1.034 1.035 (0.007) 1.024 (0.009) 1.044 1.054 (0.007) 1.042 (0.009)
HDL Cholesterol 1.061 1.042 (0.008) 1.015 (0.010) 1.068 1.045 (0.009) 1.015 (0.010) 1.085 1.062 (0.009) 1.033 (0.010)
Systolic BP 1.028 1.024 (0.007) 1.010 (0.009) 1.036 1.024 (0.007) 1.007 (0.010) 1.040 1.031 (0.007) 1.016 (0.009)
Diastolic BP 1.018 1.022 (0.006) 1.020 (0.009) 1.021 1.025 (0.006) 1.020 (0.010) 1.026 1.028 (0.006) 1.021 (0.010)
Height 1.103 1.036 (0.009) 0.961 (0.012) 1.110 1.041 (0.009) 0.961 (0.012) 1.147 1.069 (0.009) 0.982 (0.013)
Body Mass Index 1.110 1.040 (0.008) 0.984 (0.010) 1.115 1.043 (0.008) 0.981 (0.010) 1.136 1.060 (0.008) 0.999 (0.010)

Average 1.045 1.026 (0.002) 1.009 (0.003) 1.048 1.028 (0.002) 1.011 (0.003) 1.057 1.037 (0.002) 1.020 (0.003)

Original Filtering — h2
SNP (SD) Excluding Closely Related — h2

SNP (SD) Using All Samples — h2
SNP (SD)

Trait LDSC-Zero LDSC SH-Zero SH-GC LDSC-Zero LDSC SH-Zero SH-GC LDSC-Zero LDSC SH-Zero SH-GC
AMD 0.13 (0.04) -0.02 (0.07) 0.38 (0.07) 0.16 (0.14) 0.14 (0.04) -0.01 (0.07) 0.38 (0.07) 0.05 (0.13) 0.18 (0.04) -0.01 (0.06) 0.45 (0.06) 0.09 (0.12)
Heart Failure 0.10 (0.03) -0.04 (0.03) 0.26 (0.04) -0.02 (0.08) 0.10 (0.02) -0.05 (0.03) 0.26 (0.04) -0.00 (0.07) 0.11 (0.02) -0.04 (0.03) 0.28 (0.04) 0.02 (0.07)
Peripheral Arterial 0.17 (0.03) 0.03 (0.04) 0.36 (0.05) 0.10 (0.10) 0.19 (0.03) 0.06 (0.04) 0.38 (0.05) 0.14 (0.10) 0.21 (0.03) 0.05 (0.04) 0.43 (0.05) 0.10 (0.10)
Shingles 0.14 (0.08) 0.19 (0.10) 0.08 (0.13) 0.25 (0.24) 0.13 (0.07) 0.07 (0.09) 0.16 (0.12) 0.16 (0.22) 0.17 (0.07) 0.08 (0.09) 0.24 (0.12) 0.11 (0.21)
VTE 0.12 (0.04) 0.07 (0.05) 0.29 (0.06) 0.31 (0.11) 0.11 (0.03) 0.07 (0.05) 0.26 (0.05) 0.30 (0.10) 0.14 (0.03) 0.06 (0.04) 0.31 (0.05) 0.27 (0.09)
Triglyceride 0.17 (0.03) 0.08 (0.04) 0.29 (0.04) 0.28 (0.09) 0.17 (0.03) 0.09 (0.03) 0.28 (0.04) 0.25 (0.08) 0.19 (0.03) 0.09 (0.03) 0.31 (0.04) 0.23 (0.08)
LDL Cholesterol 0.09 (0.02) 0.02 (0.03) 0.20 (0.03) 0.09 (0.06) 0.10 (0.02) 0.00 (0.02) 0.23 (0.03) 0.09 (0.05) 0.13 (0.02) -0.01 (0.02) 0.30 (0.03) 0.07 (0.05)
HDL Cholesterol 0.21 (0.03) 0.08 (0.03) 0.39 (0.04) 0.29 (0.06) 0.22 (0.03) 0.09 (0.03) 0.39 (0.04) 0.31 (0.06) 0.24 (0.03) 0.08 (0.03) 0.45 (0.04) 0.26 (0.06)
Systolic BP 0.06 (0.02) 0.00 (0.02) 0.17 (0.03) 0.12 (0.06) 0.06 (0.02) 0.00 (0.02) 0.16 (0.03) 0.12 (0.05) 0.07 (0.02) 0.00 (0.02) 0.18 (0.02) 0.10 (0.05)
Diastolic BP 0.06 (0.02) 0.01 (0.03) 0.17 (0.03) 0.06 (0.05) 0.07 (0.02) 0.01 (0.02) 0.19 (0.03) 0.08 (0.05) 0.08 (0.02) 0.02 (0.02) 0.20 (0.03) 0.10 (0.05)
Height 0.31 (0.03) 0.22 (0.04) 0.48 (0.03) 0.68 (0.08) 0.31 (0.03) 0.22 (0.04) 0.47 (0.03) 0.67 (0.08) 0.37 (0.03) 0.22 (0.04) 0.58 (0.03) 0.67 (0.07)
Body Mass Index 0.26 (0.02) 0.17 (0.02) 0.40 (0.03) 0.48 (0.06) 0.25 (0.02) 0.16 (0.02) 0.39 (0.03) 0.48 (0.06) 0.29 (0.02) 0.16 (0.02) 0.45 (0.03) 0.45 (0.05)

Average 0.14 (0.01) 0.06 (0.01) 0.29 (0.01) 0.22 (0.02) 0.14 (0.01) 0.05 (0.01) 0.29 (0.01) 0.22 (0.02) 0.16 (0.01) 0.05 (0.01) 0.34 (0.01) 0.21 (0.02)
Relative 1 0.51 (0.06) 1.00 (0.04) 0.50 (0.05) 1.16 (0.04) 0.48 (0.05)
Relative 1.52 (0.08) 1 1.49 (0.07) 0.96 (0.09) 1.72 (0.07) 0.94 (0.09)
Relative 1 0.86 (0.07) 1.00 (0.03) 0.85 (0.07) 1.16 (0.03) 0.81 (0.06)
Relative 0.87 (0.03) 1 0.86 (0.03) 0.99 (0.07) 1.02 (0.03) 0.94 (0.07)

Supplementary Table 11: Introducing relatedness for the 12 eMERGE GWAS. For our original analyses of the eMERGE data, we
restricted to 25 875 unrelated Caucasian individuals (obtained by filtering the Caucasian individuals so that no pair remained with allelic
correlation14 ≥0.05). Here we repeat the analysis twice, first restricting to 27 575 Caucasian individuals (obtained by filtering so that no
pair of individuals remains with allelic correlation ≥0.175), then using all 28 803 Caucasian individuals. As shown in Supplementary
Figure 5, the latter results in the introduction of approximately 1 650 pairs of relatives. The top table compares estimates of confounding
bias, measured using the genomic inflation factor (GIF), the LDSC intercept (1 +A) or the SumHer-GC scaling factor (C); the bottom table
compares estimates of h2SNP from LDSC-Zero, LDSC, SumHer-Zero and SumHer-GC (for binary traits, estimates are on the liability scale).
aaaJust as the analyses in Supplementary Table 10 demonstrate that SumHer-GC will detect confounding bias in the presence of population
structure, these analyses show that SumHer-GC will detect bias when there is familial relatedness. As it is standard to identify and exclude
closely related individuals (e.g., twins, full-sibs and half-sibs) prior to performing association analysis,13 these analyses also indicate that
for a carefully-performed GWAS, confounding bias due to relatedness is likely to be slight.
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SNPs > 1 Mb or r2jl<0.2 SNPs > 1 Mb or r2jl<0.1 SNPs > 3 Mb or r2jl<0.1

Trait Raw GC LDSC SumHer-GC Raw GC LDSC SumHer-GC Raw GC LDSC SumHer-GC
Alzheimer’s Disease 25 22 22 25 21 19 19 21 21 19 19 21
Coronary Artery Disease 10 6 7 10 10 6 7 10 10 6 7 10
Crohn’s Disease 76 62 69 77 64 52 58 64 64 52 58 64
Ever Smoked? 0 0 0 0 0 0 0 0 0 0 0 0
Inflammatory Bowel 90 69 74 92 78 59 65 80 78 59 65 80
Rheumatoid Arthritis 163 157 163 181 109 104 109 123 109 104 109 123
Schizophrenia 117 26 68 159 105 23 63 140 104 22 62 138
Type 2 Diabetes 43 30 37 47 38 25 32 42 38 25 32 42
Ulcerative Colitis 47 38 38 47 38 31 31 38 38 31 31 38
Bone Mineral Density 24 21 23 24 19 18 18 19 19 18 18 19
Body Mass Index 81 59 151 378 69 52 135 336 69 52 135 336
Depressive Symptoms 0 0 0 1 0 0 0 1 0 0 0 1
Fasting Glucose 28 25 25 29 22 20 20 23 22 20 20 23
Glycated Hemoglobin 13 13 13 13 10 10 10 10 10 10 10 10
HDL Cholesterol 158 151 149 261 130 122 121 216 130 122 121 217
Height 895 239 356 935 720 196 288 754 720 196 288 754
LDL Cholesterol 133 128 133 201 101 96 101 155 101 96 101 155
Menarche Age 345 121 223 425 289 111 190 354 289 111 190 354
Menopause Age 54 40 42 62 49 39 39 55 49 39 39 55
Neuroticism 11 4 8 19 10 4 7 18 8 3 5 15
Subjective Well-Being 0 0 0 0 0 0 0 0 0 0 0 0
Triglyceride 114 111 123 188 82 82 91 152 81 81 90 150
Waist-Hip Ratio 28 25 35 69 26 23 33 66 26 23 33 66
Years Education 80 14 53 162 70 13 46 148 70 13 46 148

Total 2535 1361 1812 3405 2060 1105 1483 2825 2056 1102 1479 2819
Average 105.6 56.7 75.5 141.9 85.8 46.0 61.8 117.7 85.7 45.9 61.6 117.5
Relative 1 0.54 0.71 1.34
Relative 1 0.54 0.72 1.37
Relative 1 0.54 0.72 1.37

Supplementary Table 12: Number of significant loci for the 24 summary GWAS after correction for confounding bias. Values report
the number of independent loci with P < 5 × 10−8 (equivalently, χ2(1) test statistic > 29.72), either based on the reported test statistics,
or after correction using genomic control (dividing test statistics by the genomic inflation factor), LDSC (dividing them by the intercept,
1 + A) or SumHer-GC (dividing them by the scaling factor, C). We consider increasingly strict definitions of independent: first we define
two SNPs as independent if they are either >1 cM apart or have correlation squared >0.2; then as independent if either >1 cM apart or have
correlation squared >0.1, and finally as independent if either >3 cM apart or have correlation squared >0.1 (for all GWAS, we estimate
correlations between SNPs using our reference panel).
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log likelihood L(S|ĥ2
SNP,D

0) Confounding, 1+A or C (SD) h2
SNP (SD)

Trait (Disease Prevalence, %) SH-Zero SH-Cept SH-GC SH-CEPT SH-GC SH-Zero SH-CEPT SH-GC 24 Raw
Alzheimer’s Disease (7.5) -198436 -198434 -198434 1.026 (0.013) 1.026 (0.013) 0.17 (0.02) 0.12 (0.03) 0.12 (0.03)
Coronary Artery Disease (6) -154977 -154977 -154977 0.987 (0.013) 0.987 (0.013) 0.13 (0.01) 0.15 (0.02) 0.15 (0.02) 0.37 (0.07)
Crohn’s Disease (0.5) -198886 -198883 -198883 0.971 (0.016) 0.971 (0.016) 0.39 (0.03) 0.46 (0.05) 0.47 (0.06) 0.34 (0.04)
Ever Smoked? (56) -148860 -148857 -148857 0.964 (0.011) 0.964 (0.011) 0.13 (0.01) 0.19 (0.02) 0.19 (0.02)
Inflammatory Bowel (0.7) -213135 -213135 -213135 0.982 (0.015) 0.982 (0.015) 0.30 (0.02) 0.32 (0.03) 0.33 (0.03)
Rheumatoid Arthritis (0.5) -201067 -201041 -201041 0.904 (0.017) 0.904 (0.017) 0.07 (0.01) 0.16 (0.03) 0.17 (0.03) 0.16 (0.04)
Schizophrenia (1) -240313 -240272 -240272 0.914 (0.014) 0.914 (0.014) 0.33 (0.01) 0.39 (0.01) 0.42 (0.02)
Type 2 Diabetes (8) -213748 -213743 -213742 0.947 (0.014) 0.947 (0.013) 0.16 (0.01) 0.21 (0.02) 0.23 (0.02) 0.61 (0.07)
Ulcerative Colitis (0.2) -203378 -203378 -203378 0.993 (0.013) 0.993 (0.013) 0.25 (0.02) 0.27 (0.03) 0.27 (0.03) 0.29 (0.03)
Bone Mineral Density -185834 -185834 -185834 1.004 (0.011) 1.004 (0.011) 0.29 (0.02) 0.28 (0.04) 0.28 (0.04)
Body Mass Index -198606 -198385 -198291 0.581 (0.016) 0.551 (0.016) 0.05 (0.01) 0.18 (0.01) 0.33 (0.03) 0.40 (0.03)
Depressive Symptoms -164947 -164943 -164943 0.957 (0.012) 0.957 (0.012) 0.05 (0.00) 0.07 (0.01) 0.07 (0.01)
Fasting Glucose -191499 -191499 -191499 0.987 (0.014) 0.987 (0.014) 0.12 (0.02) 0.13 (0.03) 0.14 (0.03)
Glycated Hemoglobin -152262 -152262 -152262 0.987 (0.012) 0.987 (0.012) 0.08 (0.01) 0.10 (0.02) 0.10 (0.02)
HDL Cholesterol -255266 -255260 -255217 0.888 (0.052) 0.685 (0.026) 0.12 (0.03) 0.20 (0.03) 0.50 (0.09) 0.39 (0.04)
Height -263932 -263930 -263929 0.988 (0.046) 0.981 (0.038) 0.44 (0.02) 0.45 (0.03) 0.46 (0.04) 0.48 (0.03)
LDL Cholesterol -237414 -237406 -237364 0.863 (0.036) 0.727 (0.040) 0.11 (0.03) 0.22 (0.04) 0.43 (0.10) 0.20 (0.03)
Menarche Age -266406 -266378 -266378 0.894 (0.021) 0.894 (0.021) 0.25 (0.01) 0.29 (0.01) 0.32 (0.02)
Menopause Age -179168 -179158 -179158 0.919 (0.017) 0.919 (0.017) 0.15 (0.01) 0.23 (0.03) 0.25 (0.03)
Neuroticism -175327 -175295 -175295 0.898 (0.022) 0.898 (0.022) 0.10 (0.01) 0.15 (0.02) 0.17 (0.02)
Subjective Well-Being -142252 -142248 -142248 0.965 (0.015) 0.965 (0.015) 0.03 (0.00) 0.04 (0.00) 0.04 (0.00)
Triglyceride -235250 -235231 -235174 0.825 (0.044) 0.700 (0.041) 0.10 (0.03) 0.24 (0.05) 0.45 (0.11) 0.29 (0.04)
Waist-Hip Ratio -154484 -154364 -154277 0.792 (0.014) 0.757 (0.014) 0.03 (0.01) 0.14 (0.01) 0.20 (0.02)
Years Education -214581 -214485 -214485 0.828 (0.015) 0.828 (0.015) 0.12 (0.00) 0.16 (0.01) 0.20 (0.01)
Average -199584 -199558 -199545 0.936 (0.003) 0.929 (0.003) 0.07 (0.00) 0.12 (0.00) 0.12 (0.00)
Eight-Trait Average -214209 -214162 -214121

Supplementary Table 13: Empirical support for modeling inflation due to confounding as multiplicative. SumHer allows the user to
specify not only the heritability model, but also the model used for estimating confounding bias; whereas LDSC assumes that confounding
inflation is additive (using the model E[Sj ] = 1 + anj + njv

2
j , where Sj , nj and v2j are the test statistic, sample size and heritability tagged

by SNP j), we prefer to assume it is multiplicative (using the model E[Sj ] = C(1 +njv
2
j )). While it is straightforward to compare different

heritability models based on likelihood (Supplementary Table 7), it is more difficult to test different confounding models; this is because
when nj is constant (as is typically the case), whether we model confounding inflation as additive or multiplicative does not affect the model
likelihood (to appreciate why, note that C(1 + njv

2
j ) = 1 +A+ Cnjv

2
j , where A = anj = C − 1).

aaaHere we empirically assess the two confounding models in two ways. First, we compare model likelihoods for the eight traits (those
marked in red) for which nj does vary across SNPs; on average the log likelihood is 41 nats higher if we assume multiplicative inflation
(SumHer-GC) rather than additive inflation (SumHer-CEPT). Second, we compare estimates of h2SNP for the ten traits also present in the 25
raw GWAS (for the five binary traits, estimates have been converted to the liability scale assuming the stated prevalence40, 41). If we assume
additive inflation, 6 out of 10 pairs of estimates are consistent (P > 0.05/10) with the corresponding estimate from the 25 raw GWAS
(obtained using SumHer-Zero), but if we assume multiplicative inflation, 8 out of 10 pairs of estimates are consistent (consistent estimates
are marked in red).
aaaWhile both assessments support using the multiplicative model, we realize that for the 24 summary GWAS, most of the confounding
is likely due to genomic control (evidenced by the many estimates of confounding less than one), which by definition affects test statistics
multiplicatively. Therefore, it remains uncertain whether inflation due to other causes (i.e., population structure or relatedness) is best
modeled as additive or multiplicative. Also, for the second analysis, there are phenotypic differences for the GWAS in common (for
example, for the three GWAS by the Global Lipids Genetics Consortium,51 individuals on lipid-lowering medication were excluded, but this
was not possible when analyzing the eMERGE data), and therefore we should expect some differences in h2SNP. Finally, we remind readers
that (when nj is constant) estimates of h2SNP using an additive model of inflation will be C = 1 +A higher than those using a multiplicative
model. Therefore, when confounding is slight (C = 1 +A is close to 1) the choice of confounding model is no longer important.
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LDSC (53-part model) SumHer-GC (25-part model)
Category Share (SD) Expected Av. Enrich. (SD) Share (SD) Expected Av. Enrich. (SD)
Coding 0.098 (0.010) 0.015 6.13 (0.66) 0.030 (0.002) 0.018 1.74 (0.09)
Conserved 0.323 (0.020) 0.033 9.39 (0.60) 0.071 (0.002) 0.036 1.95 (0.07)
CTCF -0.024 (0.015) 0.022 -1.10 (0.68) 0.027 (0.002) 0.027 1.01 (0.06)
Digital Genomic Footprint 0.312 (0.037) 0.142 2.20 (0.26) 0.203 (0.004) 0.165 1.26 (0.03)
DNase I Hypersensitive Site 0.257 (0.038) 0.189 1.32 (0.20) 0.245 (0.004) 0.214 1.18 (0.02)
FANTOM5 Enhancer 0.005 (0.006) 0.004 1.45 (1.61) 0.005 (0.001) 0.005 0.86 (0.13)
Enhancer 0.109 (0.016) 0.039 2.84 (0.42) 0.066 (0.002) 0.050 1.34 (0.05)
Fetal DHS 0.166 (0.033) 0.094 1.76 (0.36) 0.135 (0.003) 0.111 1.27 (0.03)
H3K27ac (Hnisz) 0.599 (0.015) 0.375 1.61 (0.04) 0.525 (0.005) 0.446 1.18 (0.01)
H3K27ac (PGC2) 0.466 (0.027) 0.262 1.81 (0.10) 0.381 (0.005) 0.310 1.24 (0.02)
H3K4me1 0.778 (0.030) 0.443 1.76 (0.07) 0.592 (0.005) 0.503 1.18 (0.01)
H3K4me3 0.328 (0.023) 0.125 2.68 (0.19) 0.207 (0.004) 0.148 1.41 (0.03)
H3K9ac 0.324 (0.023) 0.117 2.82 (0.20) 0.221 (0.004) 0.148 1.52 (0.03)
Intronic 0.447 (0.013) 0.403 1.12 (0.03) 0.462 (0.004) 0.408 1.13 (0.01)
Promoter Flanking 0.001 (0.009) 0.008 0.18 (1.10) 0.017 (0.001) 0.009 1.84 (0.12)
Promoter 0.052 (0.010) 0.026 1.94 (0.39) 0.045 (0.002) 0.031 1.48 (0.06)
Repressed 0.322 (0.033) 0.476 0.68 (0.07) 0.353 (0.005) 0.451 0.78 (0.01)
Super Enhancer 0.255 (0.010) 0.150 1.71 (0.07) 0.232 (0.003) 0.197 1.17 (0.02)
Transcription Factor Binding Site 0.324 (0.034) 0.130 2.50 (0.26) 0.196 (0.004) 0.155 1.29 (0.03)
Transcribed 0.413 (0.030) 0.351 1.17 (0.09) 0.405 (0.005) 0.339 1.19 (0.01)
Transcription Start Site 0.052 (0.010) 0.013 3.91 (0.75) 0.036 (0.002) 0.018 1.97 (0.09)
3’ Untranslated Region 0.053 (0.008) 0.011 4.80 (0.70) 0.022 (0.001) 0.014 1.64 (0.09)
5’ Untranslated Region 0.022 (0.006) 0.005 3.95 (1.16) 0.007 (0.001) 0.006 1.27 (0.13)
Weak Enhancer 0.074 (0.015) 0.020 3.82 (0.77) 0.033 (0.002) 0.027 1.25 (0.06)

Supplementary Table 14: Average estimates of functional enrichments across the 24 summary GWAS. We estimate enrichments using
either LDSC with a 53-part model or SumHer-GC with a 25-part model. For the 25-part model, we divide the genome into a set for each of
the 24 categories, plus a set containing all SNPs, while for the 53-part model, we divide the genome into a set for each of the 24 categories, a
set for each of 28 buffer regions (see Finucane et al.,10), plus a set containing all SNPs. For each trait, we calculate the estimated enrichment
of each category, obtained by dividing the estimated share of h2SNP contributed by the category by its expected share; for each category, we
then report the (inverse-variance-weighted) average estimated enrichment across the 24 traits. Average estimated enrichments significantly
different from one (P < 0.05) are marked in red.
aaaThis table highlights that the differences between LDSC and SumHer-GC estimates of enrichments are primarily due to differences
between the estimated shares of h2SNP contributed by each category. This is most noticeable for coding regions (9.8% versus 3.0%) and
conserved regions (32% versus 7.1%). It is not obvious to us why these differences occur, however, we suspect that when assuming the
GCTA Model, the estimated shares of h2SNP for some categories reflect not the amount of heritability the categories contribute, but rather the
amount of heritability the categories tag.
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LDSC Finucane et al. (MAF ≥0.05 SNPS) Finucane et al. (All SNPS) SumHer-GC
Category Av. Enrich. (SD) Share (SD) Expected Av. Enrich. (SD) Share (SD) Expected Av. Enrich. (SD) Av. Enrich. (SD)
Coding 6.13 (0.66) 0.089 (0.007) 0.014 6.22 (0.50) 0.102 (0.008) 0.016 6.36 (0.48) 1.74 (0.09)

Conserved 9.39 (0.60) 0.303 (0.014) 0.026 11.81 (0.53) 0.328 (0.014) 0.029 11.49 (0.49) 1.95 (0.07)

CTCF -1.10 (0.68) 0.001 (0.011) 0.024 0.03 (0.44) 0.002 (0.010) 0.024 0.09 (0.42) 1.01 (0.06)

Digital Gen. Footprint 2.20 (0.26) 0.291 (0.027) 0.136 2.14 (0.20) 0.299 (0.026) 0.138 2.16 (0.19) 1.26 (0.03)

DNase I Hyper. Site 1.32 (0.20) 0.235 (0.017) 0.125 1.90 (0.14) 0.244 (0.017) 0.127 1.94 (0.14) 1.18 (0.02)

FANTOM5 Enhancer 1.45 (1.61) 0.010 (0.005) 0.004 2.34 (1.08) 0.011 (0.005) 0.004 2.40 (1.03) 0.86 (0.13)

Enhancer 2.84 (0.42) 0.089 (0.008) 0.031 2.94 (0.24) 0.090 (0.007) 0.032 2.93 (0.23) 1.34 (0.05)

Fetal DHS 1.76 (0.36) 0.222 (0.021) 0.084 2.65 (0.26) 0.230 (0.021) 0.086 2.68 (0.24) 1.27 (0.03)

H3K27ac (Hnisz) 1.61 (0.04) 0.600 (0.010) 0.389 1.54 (0.02) 0.608 (0.009) 0.393 1.55 (0.02) 1.18 (0.01)

H3K27ac (PGC2) 1.81 (0.10) 0.470 (0.018) 0.269 1.75 (0.07) 0.479 (0.017) 0.273 1.76 (0.06) 1.24 (0.02)

H3K4me1 1.76 (0.07) 0.760 (0.020) 0.424 1.79 (0.05) 0.766 (0.019) 0.429 1.79 (0.04) 1.18 (0.01)

H3K4me3 2.68 (0.19) 0.336 (0.015) 0.133 2.53 (0.11) 0.347 (0.015) 0.137 2.53 (0.11) 1.41 (0.03)

H3K9ac 2.82 (0.20) 0.347 (0.015) 0.125 2.77 (0.12) 0.357 (0.015) 0.129 2.77 (0.12) 1.52 (0.03)

Intronic 1.12 (0.03) 0.455 (0.008) 0.387 1.17 (0.02) 0.456 (0.008) 0.394 1.16 (0.02) 1.13 (0.01)

Promoter Flanking 0.18 (1.10) 0.001 (0.006) 0.008 0.13 (0.77) 0.002 (0.006) 0.009 0.23 (0.74) 1.84 (0.12)

Promoter 1.94 (0.39) 0.112 (0.010) 0.046 2.42 (0.21) 0.119 (0.010) 0.048 2.48 (0.20) 1.48 (0.06)

Repressed 0.68 (0.07) 0.266 (0.021) 0.461 0.58 (0.05) 0.257 (0.020) 0.453 0.57 (0.04) 0.78 (0.01)

Super Enhancer 1.71 (0.07) 0.280 (0.006) 0.167 1.67 (0.04) 0.286 (0.006) 0.170 1.68 (0.03) 1.17 (0.02)

T. Factor Binding Site 2.50 (0.26) 0.352 (0.023) 0.131 2.68 (0.17) 0.358 (0.022) 0.133 2.69 (0.16) 1.29 (0.03)

Transcribed 1.17 (0.09) 0.415 (0.020) 0.346 1.20 (0.06) 0.424 (0.019) 0.353 1.20 (0.05) 1.19 (0.01)

Transcription Start Site 3.91 (0.75) 0.090 (0.008) 0.018 5.05 (0.45) 0.094 (0.008) 0.019 5.03 (0.43) 1.97 (0.09)

3’ Untranslated Region 4.80 (0.70) 0.039 (0.005) 0.011 3.49 (0.48) 0.043 (0.005) 0.012 3.61 (0.45) 1.64 (0.09)

5’ Untranslated Region 3.95 (1.16) 0.027 (0.004) 0.005 4.88 (0.78) 0.030 (0.004) 0.006 5.04 (0.75) 1.27 (0.13)

Weak Enhancer 3.82 (0.77) 0.058 (0.010) 0.021 2.76 (0.50) 0.058 (0.010) 0.021 2.72 (0.47) 1.25 (0.06)

Supplementary Table 15: Average estimates of functional enrichments across the 24 summary GWAS from the LDSC software
following the recommendations of Finucane et al. For each category, values report, averaged across the 24 summary GWAS, its estimated
share of h2SNP, its expected share and its estimated enrichment, obtained using the LDSC software. We follow the recommendations of
Finucane et al.10 Therefore, we use a 53-part model (one part for each category, one for each of 28 buffer regions, and one containing all
SNPs), compute LD scores using the supplied reference panel (489 European individuals from the 1000 Genomes Project1), but for the
regression use only HapMap 3 SNPs (for Columns 3-5, we restrict to those with MAF ≥0.05, for Columns 6-8, we omit this restriction by
adding -not-M-5-50). For comparison, we also report average estimates of enrichments from LDSC (implemented within SumHer) and
from our recommended method, SumHer-GC. Average estimated enrichments significantly different from one (P < 0.05) are marked in
red.
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LDSC Gazal et al. (MAF ≥0.05 SNPS) Gazal et al. (All SNPS) SumHer-GC
Category Av. Enrich. (SD) Share (SD) Expected Av. Enrich. (SD) Share (SD) Expected Av. Enrich. (SD) Av. Enrich. (SD)
Coding 6.13 (0.66) 0.065 (0.006) 0.014 4.54 (0.44) 0.099 (0.010) 0.016 6.13 (0.60) 1.74 (0.09)

Conserved 9.39 (0.60) 0.187 (0.012) 0.026 7.29 (0.46) 0.262 (0.017) 0.029 9.18 (0.60) 1.95 (0.07)

CTCF -1.10 (0.68) 0.003 (0.010) 0.024 0.11 (0.40) -0.002 (0.013) 0.024 -0.07 (0.53) 1.01 (0.06)

Digital Gen. Footprint 2.20 (0.26) 0.226 (0.024) 0.136 1.66 (0.17) 0.264 (0.032) 0.138 1.91 (0.23) 1.26 (0.03)

DNase I Hyper. Site 1.32 (0.20) 0.183 (0.015) 0.125 1.49 (0.13) 0.216 (0.021) 0.127 1.71 (0.17) 1.18 (0.02)

FANTOM5 Enhancer 1.45 (1.61) 0.008 (0.004) 0.004 1.91 (0.96) 0.009 (0.006) 0.004 2.06 (1.28) 0.86 (0.13)

Enhancer 2.84 (0.42) 0.070 (0.007) 0.031 2.33 (0.21) 0.086 (0.009) 0.032 2.86 (0.28) 1.34 (0.05)

Fetal DHS 1.76 (0.36) 0.168 (0.019) 0.084 2.00 (0.23) 0.203 (0.026) 0.086 2.37 (0.30) 1.27 (0.03)

H3K27ac (Hnisz) 1.61 (0.04) 0.543 (0.009) 0.389 1.40 (0.02) 0.601 (0.011) 0.393 1.53 (0.03) 1.18 (0.01)

H3K27ac (PGC2) 1.81 (0.10) 0.414 (0.016) 0.269 1.54 (0.06) 0.480 (0.022) 0.273 1.76 (0.08) 1.24 (0.02)

H3K4me1 1.76 (0.07) 0.663 (0.018) 0.424 1.57 (0.04) 0.760 (0.025) 0.429 1.77 (0.06) 1.18 (0.01)

H3K4me3 2.68 (0.19) 0.274 (0.013) 0.133 2.06 (0.10) 0.337 (0.018) 0.137 2.46 (0.13) 1.41 (0.03)

H3K9ac 2.82 (0.20) 0.270 (0.014) 0.125 2.15 (0.11) 0.335 (0.019) 0.129 2.60 (0.15) 1.52 (0.03)

Intronic 1.12 (0.03) 0.445 (0.007) 0.387 1.15 (0.02) 0.457 (0.010) 0.394 1.16 (0.03) 1.13 (0.01)

Promoter Flanking 0.18 (1.10) 0.004 (0.006) 0.008 0.52 (0.69) 0.004 (0.008) 0.009 0.41 (0.89) 1.84 (0.12)

Promoter 1.94 (0.39) 0.079 (0.009) 0.046 1.70 (0.19) 0.097 (0.012) 0.048 2.01 (0.26) 1.48 (0.06)

Repressed 0.68 (0.07) 0.308 (0.019) 0.461 0.67 (0.04) 0.253 (0.025) 0.453 0.56 (0.05) 0.78 (0.01)

Super Enhancer 1.71 (0.07) 0.256 (0.005) 0.167 1.53 (0.03) 0.285 (0.007) 0.170 1.68 (0.04) 1.17 (0.02)

T. Factor Binding Site 2.50 (0.26) 0.268 (0.021) 0.131 2.05 (0.16) 0.326 (0.029) 0.133 2.45 (0.22) 1.29 (0.03)

Transcribed 1.17 (0.09) 0.425 (0.018) 0.346 1.23 (0.05) 0.455 (0.023) 0.353 1.29 (0.06) 1.19 (0.01)

Transcription Start Site 3.91 (0.75) 0.057 (0.007) 0.018 3.22 (0.42) 0.073 (0.010) 0.019 3.88 (0.55) 1.97 (0.09)

3’ Untranslated Region 4.80 (0.70) 0.029 (0.005) 0.011 2.63 (0.42) 0.039 (0.007) 0.012 3.25 (0.55) 1.64 (0.09)

5’ Untranslated Region 3.95 (1.16) 0.016 (0.004) 0.005 2.86 (0.68) 0.022 (0.005) 0.006 3.67 (0.89) 1.27 (0.13)

Weak Enhancer 3.82 (0.77) 0.041 (0.009) 0.021 1.98 (0.44) 0.050 (0.012) 0.021 2.33 (0.58) 1.25 (0.06)

Supplementary Table 16: Average estimates of functional enrichments across the 24 summary GWAS from the LDSC software
following the recommendations of Gazal et al. Details are the same as Supplementary Table 15, except when using the LDSC software we
follow the recommendations of Gazal et al.23 and use a 75-part model (this is constructed by adding to the 53-part model used by Finucane
et al.,10 3 more functional annotations, 3 extra buffers, 10 MAF tranches and 6 continuous LD-related annotations).
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LDSC SumHer-GC
Trait 1 Trait 2 Correlation (SD) Correlation (SD)
Alzheimer’s Disease Years Education -0.24 (0.08) -0.21 (0.06)
Body Mass Index Depressive Symptoms 0.19 (0.05) 0.10 (0.04)
Body Mass Index Ever Smoked? 0.20 (0.04) 0.14 (0.04)
Body Mass Index Fasting Glucose 0.33 (0.06) 0.24 (0.05)
Body Mass Index HDL Cholesterol -0.48 (0.16) -0.22 (0.03)
Body Mass Index Menarche Age -0.37 (0.03) -0.34 (0.02)
Body Mass Index Schizophrenia -0.10 (0.03) -0.07 (0.02)
Body Mass Index Triglyceride 0.24 (0.06) 0.17 (0.04)
Body Mass Index Type 2 Diabetes 0.55 (0.05) 0.40 (0.04)
Body Mass Index Waist-Hip Ratio 0.66 (0.04) 0.53 (0.03)
Body Mass Index Years Education -0.28 (0.02) -0.24 (0.02)
Coronary Artery Disease HDL Cholesterol -0.49 (0.15) -0.27 (0.05)
Coronary Artery Disease LDL Cholesterol 0.22 (0.09) 0.30 (0.05)
Coronary Artery Disease Triglyceride 0.42 (0.07) 0.33 (0.05)
Coronary Artery Disease Type 2 Diabetes 0.51 (0.07) 0.39 (0.06)
Coronary Artery Disease Waist-Hip Ratio 0.28 (0.07) 0.24 (0.05)
Coronary Artery Disease Years Education -0.26 (0.05) -0.26 (0.05)
Crohn’s Disease Inflammatory Bowel 0.92 (0.02) 0.87 (0.02)
Crohn’s Disease Ulcerative Colitis 0.65 (0.08) 0.60 (0.05)
Depressive Symptoms Neuroticism 0.79 (0.04) 0.72 (0.04)
Depressive Symptoms Schizophrenia 0.27 (0.05) 0.27 (0.04)
Depressive Symptoms Subjective Well-Being -0.80 (0.07) -0.81 (0.08)
Depressive Symptoms Waist-Hip Ratio 0.23 (0.06) 0.16 (0.05)
Depressive Symptoms Years Education -0.34 (0.05) -0.38 (0.05)
Ever Smoked? Years Education -0.33 (0.05) -0.28 (0.04)
Fasting Glucose Type 2 Diabetes 0.60 (0.10) 0.57 (0.09)
Glycated Hemoglobin Type 2 Diabetes 0.70 (0.14) 0.57 (0.09)
Glycated Hemoglobin Waist-Hip Ratio 0.43 (0.11) 0.24 (0.07)
HDL Cholesterol Menarche Age 0.20 (0.06) 0.13 (0.02)
HDL Cholesterol Triglyceride -1.02 (0.19) -0.52 (0.08)
HDL Cholesterol Type 2 Diabetes -0.50 (0.13) -0.33 (0.04)
HDL Cholesterol Waist-Hip Ratio -0.73 (0.21) -0.35 (0.04)
HDL Cholesterol Years Education 0.25 (0.06) 0.15 (0.03)
Height Menarche Age 0.14 (0.03) 0.12 (0.02)
Height Triglyceride -0.12 (0.03) -0.08 (0.02)
Height Years Education 0.13 (0.02) 0.12 (0.02)
Inflammatory Bowel Ulcerative Colitis 0.91 (0.03) 0.91 (0.02)
LDL Cholesterol Triglyceride 0.49 (0.11) 0.38 (0.05)
Menarche Age Triglyceride -0.12 (0.03) -0.10 (0.03)
Menarche Age Type 2 Diabetes -0.20 (0.03) -0.17 (0.03)
Menarche Age Waist-Hip Ratio -0.24 (0.04) -0.17 (0.03)
Menopause Age Years Education 0.20 (0.05) 0.13 (0.03)
Neuroticism Subjective Well-Being -0.72 (0.05) -0.74 (0.05)
Neuroticism Years Education -0.26 (0.04) -0.27 (0.04)
Rheumatoid Arthritis Years Education -0.26 (0.05) -0.24 (0.04)
Schizophrenia Subjective Well-Being -0.29 (0.05) -0.33 (0.05)
Schizophrenia Years Education 0.13 (0.03) 0.08 (0.02)
Triglyceride Type 2 Diabetes 0.33 (0.06) 0.36 (0.06)
Triglyceride Waist-Hip Ratio 0.49 (0.07) 0.38 (0.05)
Triglyceride Years Education -0.19 (0.04) -0.14 (0.03)
Type 2 Diabetes Waist-Hip Ratio 0.61 (0.06) 0.50 (0.05)
Type 2 Diabetes Years Education -0.21 (0.04) -0.18 (0.03)
Waist-Hip Ratio Years Education -0.35 (0.03) -0.30 (0.03)

Supplementary Table 17: Estimates of genetic correlation for the 24 summary GWAS. Of the 24C2 = 276 pairs of traits we considered,
this table reports estimates of genetic correlation for the 53 pairs with significant correlation (P < 0.05/276) from either LDSC or SumHer-
GC. Nominally significant estimates (P < 0.05) are marked in red, while Bonferonni significant estimates (P < 0.05/276) are also in
bold.
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Polygenic Risk Score h2
SNP Clump BMI Height HDL LDL TG Mean (SD) Relative

Classical YES 0.250 0.273 0.181 0.059 0.166 0.198 (0.003) 0.991 (0.016)
Classical NO 0.242 0.283 0.177 0.064 0.178 0.200 (0.003) 1

Bayesian: GCTA Model ĥ2SNP YES 0.235 0.278 0.185 0.070 0.196 0.202 (0.003) 0.999 (0.016)
Bayesian: GCTA Model ĥ2SNP NO 0.191 0.264 0.128 0.064 0.161 0.169 (0.003) 0.855 (0.016)
Bayesian: GCTA Model 0.5 YES 0.249 0.279 0.187 0.062 0.186 0.204 (0.003) 1.016 (0.016)
Bayesian: GCTA Model 0.5 NO 0.227 0.267 0.157 0.063 0.171 0.187 (0.003) 0.936 (0.016)
Bayesian: GCTA Model Adjusted YES 0.239 0.276 0.185 0.070 0.195 0.201 (0.003) 1.001 (0.016)
Bayesian: GCTA Model Adjusted NO 0.201 0.252 0.123 0.064 0.163 0.169 (0.003) 0.850 (0.016)

Bayesian: Enriched GCTA ĥ2SNP YES 0.244 0.296 0.200 0.079 0.198 0.214 (0.003) 1.052 (0.016)
Bayesian: Enriched GCTA ĥ2SNP NO 0.204 0.270 0.153 0.071 0.177 0.183 (0.003) 0.914 (0.016)
Bayesian: Enriched GCTA 0.5 YES 0.254 0.294 0.193 0.071 0.191 0.213 (0.003) 1.054 (0.016)
Bayesian: Enriched GCTA 0.5 NO 0.231 0.280 0.167 0.069 0.180 0.194 (0.003) 0.975 (0.016)
Bayesian: Enriched GCTA Adjusted YES 0.246 0.296 0.196 0.083 0.204 0.214 (0.003) 1.058 (0.016)
Bayesian: Enriched GCTA Adjusted NO 0.210 0.276 0.162 0.070 0.164 0.186 (0.003) 0.928 (0.016)

Bayesian: LDAK Model ĥ2SNP YES 0.255 0.282 0.201 0.077 0.194 0.213 (0.003) 1.047 (0.016)
Bayesian: LDAK Model ĥ2SNP NO 0.210 0.270 0.127 0.068 0.165 0.177 (0.003) 0.893 (0.016)
Bayesian: LDAK Model 0.5 YES 0.257 0.282 0.198 0.070 0.186 0.210 (0.003) 1.041 (0.016)
Bayesian: LDAK Model 0.5 NO 0.234 0.270 0.156 0.068 0.173 0.190 (0.003) 0.953 (0.016)
Bayesian: LDAK Model Adjusted YES 0.257 0.282 0.198 0.071 0.186 0.208 (0.003) 1.041 (0.016)
Bayesian: LDAK Model Adjusted NO 0.232 0.271 0.157 0.068 0.173 0.190 (0.003) 0.953 (0.016)

Bayesian: Enriched LDAK ĥ2SNP YES 0.258 0.286 0.208 0.076 0.190 0.216 (0.003) 1.061 (0.016)
Bayesian: Enriched LDAK ĥ2SNP NO 0.211 0.273 0.146 0.071 0.176 0.183 (0.003) 0.920 (0.016)
Bayesian: Enriched LDAK 0.5 YES 0.259 0.287 0.203 0.075 0.190 0.214 (0.003) 1.059 (0.016)
Bayesian: Enriched LDAK 0.5 NO 0.235 0.274 0.159 0.071 0.176 0.193 (0.003) 0.964 (0.016)
Bayesian: Enriched LDAK Adjusted YES 0.260 0.286 0.204 0.071 0.184 0.211 (0.003) 1.055 (0.016)
Bayesian: Enriched LDAK Adjusted NO 0.233 0.273 0.158 0.069 0.178 0.192 (0.003) 0.960 (0.016)

Supplementary Table 18: Comparing the predictive performance of Classical and Bayesian PRS. Each polygenic risk score (PRS) uses
a model of the form

∑
j βjXj , where the vector Xj contains genotypes for SNP j, and the βj are trained using the relevant set of summary

statistics from the 24 summary GWAS (BMI, height, HDL cholesterol, LDL cholesterol or triglycerides). Values report correlations between
predicted and observed phenotypes for the eMERGE data (which are independent of the 24 summary GWAS). For the Classical PRS, the
βj are estimates from classical linear regression. For the Bayesian PRS, the βj are posterior means, obtained using one of four prior
distributions: GCTA Model, Enriched GCTA Model, LDAK Model and Enriched LDAK Model (the enriched versions incorporate average
estimates of enrichments for the 24 functional categories). For the Bayesian PRS, it is necessary to provide a value for h2SNP: first we used
the corresponding estimates from LDSC-Zero or SumHer-Zero; second we set h2SNP = 0.5; third we used the corresponding estimates from
LDSC or SumHer-GC (in which case we trained the PRS using adjusted summary statistics, obtained by dividing the test statistics by the
corresponding estimates of confounding bias). When constructing PRS, it can be beneficial to clump6 (identify pairs of SNPs within 1 cM
with r2jl > 0.5, then discard the one with highest p-value / lowest Bayes Factor); we found that clumping had little impact for the Classical
PRS, but always benefited the Bayesian PRS. The PRS marked in red are those reported in the main text.
The accuracy of each Bayesian PRS reflects the accuracy of the corresponding prior distribution. We see that the PRS constructed from
the LDAK Model predict significantly better (P < 0.05/4) than the Classical PRS, demonstrating that the LDAK Model has value as
a heritability model; there is a suggestion that incorporating estimates of enrichment improves accuracy further, although we recognize
that the difference (approximately 1.5%) is not significant. By contrast, the performance of the PRS constructed from the GCTA Model
is no different from that of the Classical PRS, indicating that the GCTA Model is no better than an agnostic model. Now, incorporating
estimates of enrichments does lead to a significant improvement; it is difficult to disentangle how much of this improvement comes from
the identification of important categories of SNPs, or because there are systematic differences between the LD and MAF of the functional
annotations8 (Supplementary Table 1).
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LDSC Hybrid-CEPT (78-part model) Hybrid-GC (78-part model) SumHer-GC
Category Av. Enrich. (SD) Share (SD) Expected Av. Enrich. (SD) Share (SD) Expected Av. Enrich. (SD) Av. Enrich. (SD)
Coding 6.13 (0.66) 0.051 (0.006) 0.017 3.33 (0.37) 0.043 (0.005) 0.017 2.54 (0.33) 1.74 (0.09)

Conserved 9.39 (0.60) 0.135 (0.011) 0.035 4.08 (0.34) 0.120 (0.011) 0.035 3.40 (0.32) 1.95 (0.07)

CTCF -1.10 (0.68) 0.010 (0.009) 0.024 0.42 (0.36) 0.007 (0.008) 0.024 0.29 (0.34) 1.01 (0.06)

Digital Gen. Footprint 2.20 (0.26) 0.243 (0.022) 0.154 1.63 (0.14) 0.208 (0.021) 0.154 1.39 (0.14) 1.26 (0.03)

DNase I Hyper. Site 1.32 (0.20) 0.229 (0.022) 0.201 1.16 (0.11) 0.248 (0.022) 0.201 1.24 (0.11) 1.18 (0.02)

FANTOM5 Enhancer 1.45 (1.61) 0.007 (0.003) 0.005 1.61 (0.73) 0.007 (0.004) 0.005 1.50 (0.80) 0.86 (0.13)

Enhancer 2.84 (0.42) 0.086 (0.009) 0.044 1.99 (0.21) 0.079 (0.010) 0.044 1.83 (0.22) 1.34 (0.05)

Fetal DHS 1.76 (0.36) 0.137 (0.017) 0.102 1.40 (0.18) 0.164 (0.018) 0.102 1.64 (0.18) 1.27 (0.03)

H3K27ac (Hnisz) 1.61 (0.04) 0.538 (0.011) 0.411 1.33 (0.03) 0.525 (0.010) 0.411 1.29 (0.03) 1.18 (0.01)

H3K27ac (PGC2) 1.81 (0.10) 0.401 (0.015) 0.286 1.43 (0.06) 0.395 (0.015) 0.286 1.41 (0.05) 1.24 (0.02)

H3K4me1 1.76 (0.07) 0.619 (0.018) 0.473 1.34 (0.04) 0.631 (0.017) 0.473 1.35 (0.04) 1.18 (0.01)

H3K4me3 2.68 (0.19) 0.318 (0.009) 0.136 2.42 (0.07) 0.226 (0.013) 0.136 1.69 (0.10) 1.41 (0.03)

H3K9ac 2.82 (0.20) 0.224 (0.014) 0.133 1.73 (0.10) 0.224 (0.013) 0.133 1.73 (0.10) 1.52 (0.03)

Intronic 1.12 (0.03) 0.427 (0.009) 0.406 1.06 (0.02) 0.437 (0.008) 0.406 1.08 (0.02) 1.13 (0.01)

Promoter Flanking 0.18 (1.10) 0.010 (0.005) 0.008 1.15 (0.58) 0.009 (0.004) 0.008 1.11 (0.52) 1.84 (0.12)

Promoter 1.94 (0.39) 0.044 (0.006) 0.028 1.53 (0.20) 0.031 (0.006) 0.028 1.08 (0.20) 1.48 (0.06)

Repressed 0.68 (0.07) 0.383 (0.018) 0.463 0.83 (0.04) 0.396 (0.017) 0.463 0.85 (0.04) 0.78 (0.01)

Super Enhancer 1.71 (0.07) 0.223 (0.006) 0.174 1.30 (0.04) 0.233 (0.006) 0.174 1.35 (0.04) 1.17 (0.02)

T. Factor Binding Site 2.50 (0.26) 0.221 (0.017) 0.143 1.59 (0.13) 0.210 (0.018) 0.143 1.50 (0.13) 1.29 (0.03)

Transcribed 1.17 (0.09) 0.367 (0.016) 0.345 1.06 (0.05) 0.358 (0.016) 0.345 1.04 (0.04) 1.19 (0.01)

Transcription Start Site 3.91 (0.75) 0.037 (0.006) 0.016 2.35 (0.36) 0.038 (0.006) 0.016 2.41 (0.36) 1.97 (0.09)

3’ Untranslated Region 4.80 (0.70) 0.026 (0.004) 0.013 2.28 (0.35) 0.019 (0.004) 0.013 1.57 (0.33) 1.64 (0.09)

5’ Untranslated Region 3.95 (1.16) 0.013 (0.004) 0.005 2.31 (0.68) 0.006 (0.003) 0.005 0.98 (0.59) 1.27 (0.13)

Weak Enhancer 3.82 (0.77) 0.028 (0.008) 0.024 1.29 (0.33) 0.050 (0.008) 0.024 2.16 (0.35) 1.25 (0.06)

Supplementary Table 19: Average estimates of functional enrichments across the 24 summary GWAS from the hybrid model. In
order to compare the fit of the GCTA and LDAK Models, we ran SumHer using a hybrid heritability model where the fractions 1 − p and
p indicate the proportions of GCTA and LDAK, respectively. Here we report for each category, averaged across the 24 summary GWAS,
its estimated share of h2SNP, its expected share (calculated assuming p = 0.5) and its estimated enrichment, obtained using Hybrid-CEPT
(the hybrid model assuming inflation due to confounding is additive) and Hybrid-GC (the hybrid model assuming multiplicative inflation).
For comparison, we also report average estimates of enrichments from LDSC and from our recommended method, SumHer-GC; we see
that estimates obtained using the hybrid model are closer to those from SumHer-GC than those from LDSC, to be expected considering the
average estimate of p is 0.85 (for a visual comparison, see Supplementary Figure 13). Average estimated enrichments significantly different
from one (P < 0.05) are marked in red. Despite the concordance between estimates from the hybrid model and those from SumHer-GC,
we see the latter finds more categories significantly enriched; this is because using the hybrid model results in less precise estimates, as a
consequence of including 53 extra coefficients (those corresponding to the GCTA Model).
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Raw GWAS Number of loci (MHC) Summary GWAS Number of loci (MHC)
Coronary Artery Disease 1 (0) Alzheimer’s Disease 1 (0)
Crohn’s Disease 5 (0) Crohn’s Disease 2 (0)
Rheumatoid Arthritis 10 (10) Rheumatoid Arthritis 5 (5)
Type 1 Diabetes 16 (16) HDL Cholesterol 1 (0)
Celiac Disease 18 (18)
Psoriasis 6 (6)
Ulcerative Colitis 1 (1)
Age-related Macular Disease 1 (0)
Triglyceride 1 (0)
HDL Cholesterol 1 (0)

Supplementary Table 20: Numbers of large-effect loci for the 25 raw and 24 summary GWAS. For all analyses, we exclude SNPs
within the major histocompatibility complex (Chromosome 6: 25-34 Mb), as well as SNPs which individually explain >1% of phenotypic
variation, and SNPs in LD with these. This table reports for each GWAS the number of large-effect SNPs after thinning (within 1 cM and
r2jl > 0.1), and how many of these are in the MHC.
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