Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Endothelial progenitor cells (EPCs) have been isolated from peripheral blood CD34, VEGFR-2, or AC 133 (CD133) antigen-positive cells, which may home to site of neovascularization and differentiate into endothelial cells in situ. Endothelial cells contribute to tumor angiogenesis, and can originate from sprouting or co-option of neighbouring pre-existing vessels. Emerging evidence indicate that bone marrow-derived circulating EPCs can contribute to tumor angiogenesis and growth of certain tumors. This review article will summarize the literature data concerning this new role played by EPCs in tumor angiogenesis.

Free full text 


Logo of jcmmopenLink to Publisher's site
J Cell Mol Med. 2004 Jul; 8(3): 294–300.
PMCID: PMC6740146
PMID: 15491505

The involvement of endothelial progenitor cells in tumor angiogenesis

Abstract

Endothelial progenitor cells (EPCs) have been isolated from peripheral blood CD34, VEGFR‐2, or AC 133 (CD133) antigen‐positive cells, which may home to site of neovascularization and differentiate into endothelial cells in situ. Endothelial cells contribute to tumor angiogenesis, and can originate from sprouting or co‐option of neighbouring pre‐existing vessels. Emerging evidence indicate that bone marrow‐derived circulating EPCs can contribute to tumor angiogenesis and growth of certain tumors. This review article will summarize the literature data concerning this new role played by EPCs in tumor angiogenesis.

Keywords: angiogenesis, endothelial progenitor cells, tumor

References

1. Ribatti D., Vacca A., Roncali L., Dammacco F., Hematopoiesis and angiogenesis: a link between two apparently independent processes. J. Hematother. Stem Cell Res., 9: 13–19, 2000. [Abstract] [Google Scholar]
2. Shalaby F., Rossant J., Yamaguchi T.P., Gertsenstein M., Wu X.F., Breitman M.L., Schuh A.C., Failure of blood‐island formation and vasculogenesis in FLK‐1 deficient mice. Nature, 376: 62–66, 1995. [Abstract] [Google Scholar]
3. Shalaby F., Ho J., Stanford W.L., Fisher K.D., Schuh A.C., Schwartz L., Bernstein N.A., Rossant J., A requirement for flk‐1 in primitive and definitive hematopoiesis and vasculogenesis. Cell, 89: 981–990, 1997. [Abstract] [Google Scholar]
4. Eichmann A., Corbel C., Nataf V., Vaigot P., Breant C., Le Douarin N.M., Ligand‐dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor‐2. Proc. Natl. Acad. Sci. USA, 94: 5141–5146, 1997. [Europe PMC free article] [Abstract] [Google Scholar]
5. Nishikawa S.I., Nishikawa S., Hirashima M., Matsuyoshi N., Kodama H., Progressive lineage analysis by cell sorting and culture identifies FLK+ VE‐cadherin+ cells at a diverging point of endothelial and hematopoietic lineages. Development, 125: 1747–1757, 1998. [Abstract] [Google Scholar]
6. Ribatti D., Vacca A., Nico B., Ria R., Dammacco F., Cross‐talk between hematopoiesis and angiogenesis signaling pathways. Curr. Mol. Med., 2: 537–547, 2002. [Abstract] [Google Scholar]
7. Asahara T., Murohara T., Sullivan A., Kalka C., Pastore C., Silver M., Kearne M., Magner M., Isner J.M., Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275: 964–967, 1997. [Abstract] [Google Scholar]
8. Asahara T., Masuda H., Takahashi T., Kalka C., Pastore C., Silver M., Kearne M., Magner M., Isner J.M., Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res., 85: 221–228, 1999. [Abstract] [Google Scholar]
9. Peschle C., Botta R., Muller R., Valtieri M., Ziegler B.L., Purification and functional assay of pluripotent hematopietic stem cells. Rev. Clin. Exp. Hematol., 5: 3–14, 2001. [Abstract] [Google Scholar]
10. Kennedy L.J., Weissmann I.L., Dual origin of intimal cells in cardiac‐allograft arteriosclerosis. N. Engl. J. Med., 285: 884–887, 1971. [Abstract] [Google Scholar]
11. Frazier O.H., Baldwin R.T., Eskin S.G., Duncan J.M., Immunochemical identification of human endothelial cells on the lining of a ventricular assist device. Tex Heart. Inst. J., 20: 78–82, 1993. [Europe PMC free article] [Abstract] [Google Scholar]
12. Grefte A., Blom N., van der Giessen M., van Son W., The T.H., Ultrastructural analysis of circulating cytomegalic cells in patients with active cytomegalovirus infection: evidence for virus production and endothelial origin. J. Infect. Dis., 168: 1110–1108, 1993. [Abstract] [Google Scholar]
13. Hladovec J., Prerovsky I., Stanek V., Fabian J., Circulating endothelial cells in acute myocardial infarction and angina pectoris. Klin. Wochenschr., 56: 1033–1036, 1978. [Abstract] [Google Scholar]
14. Lefevre P., George F., Durand J.M., Sampol J., Detection of circulating endothelial cells in thrombotic thrombocytopenic purpura. Thromb. Haemost., 69: 522, 1993. [Abstract] [Google Scholar]
15. Solovey A., Lin Y., Browne P., Choong S., Wayner E., Hebbel R.P., Circulating activated endothelial cells in sickle cell anemia. N. Engl. J. Med., 337: 1584–1590, 1997. [Abstract] [Google Scholar]
16. Lin Y., Weisdorf D.J., Solovey A., Hebbel R.P., Origins of circulating endothelial cells and endothelial outgrowth from blood. J. Clin. Invest., 105: 71–77, 2000. [Europe PMC free article] [Abstract] [Google Scholar]
17. Rafii S., Circulating endothelial precursors: mystery, reality, and promise. J. Clin. Invest., 105: 71–77, 2000. [Europe PMC free article] [Abstract] [Google Scholar]
18. Poole T.J., Finkelstein E.B., Cox C.M., The role of FGF and VEGF in angioblast induction and migration during vascular development. Dev. Dyn., 220: 1–17, 2001. [Abstract] [Google Scholar]
19. Peichev M., Naiyer A.J., Bereira D., Zhu Z., Lane W.J., Williams M., Oz M.C., Hicklin D.J., Witte L., Moore M.A., Rafii S., Expression of VEGFR‐2 and AC 133 by circulating human CD34 (+) cells identifies a population of functional endothelial precursors. Blood, 95: 952–958, 2000. [Abstract] [Google Scholar]
20. Gehling U.M., Ergun S., Schumacher U., Wagener C., Pantel K., Otte M., Schuch G., Schafhausen P., Mende T., Kilic N., Kluge K., Schafer B., Hossfeld D.K., Fiedler W., In vitro differentiation of endothelial cells from AC 133‐positive progenitor cells. Blood, 95: 3106–3112, 2000. [Abstract] [Google Scholar]
21. Quirici N., Soligo D., Caneva L., Servida F., Bossolasco P., Deliliers G.L., Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. Br. J. Haematol., 115: 186–194, 2001. [Abstract] [Google Scholar]
22. Shi Q., Rafii S., Wu M.H., Wijelath E.S., Yu C., Ishida A., Fujita Y., Kothari S., Mohle R., Suavage L.R., Moore M.A., Storb R.F., Hammond W.P., Evidence for circulating bone marrow‐derived endothelial cells. Blood, 92: 362–367, 1998. [Abstract] [Google Scholar]
23. Asahara T., Takahashi T., Masuda H., Kalka C., Chen D., Iwaguro H., Inai Y., Silver M., Isner J.M., VEGF contributes to postnatal neovascularization by mobilizing bone‐marrow derived endothelial progenitor cells. EMBO J, 18: 3964–3972, 1999. [Europe PMC free article] [Abstract] [Google Scholar]
24. Gill M., Dias K., Hattori M.L., Rivera D., Hicklin L., Witte L., Girardi L., Yurt R., Himel H., Rafii S, Vascular trauma induces rapid but transient mobilization of VEGFR2(+) AC133(+) endothelial precursor cells. Circ. Res., 88: 167–174, 2001. [Abstract] [Google Scholar]
25. Ikpeazu C., Davidson M.K., Halterman D., Browning P.J., Brandt S.J., Donor origin of circulating endothelial progenitors after allogenic bone marrow transplantation. Biol. Blood Marrow Transplant., 6: 301–308, 2000. [Abstract] [Google Scholar]
26. Kalka C., Masuda H., Takahashi T., Kalka‐Moll W.M., Silver M., Kearney M., Li T., Isner J.M., Asahara T., Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl. Acad. Sci. USA, 938: 3422–3427, 2000. [Europe PMC free article] [Abstract] [Google Scholar]
27. Kalka C., Masuda H., Takahashi T., Gordon R., Tepper O., Graveraux E., Pieczek A., Iwaguro H., Hayashi S.I., Isner J.M., Asahara T., Vascular endothelial growth factor (165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ. Res., 86: 1198–1202, 2000. [Abstract] [Google Scholar]
28. Kocher A.A., Schuster M.D., Szabolcs M.J., Takuma S., Burkhoff D., Wang J., Homma S., Edwards N.M., Itescu S., Neovascularization of ischemic myocardium by human bone‐marrow‐derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Med., 7: 430–436, 2001. [Abstract] [Google Scholar]
29. Lyden D., Hattori K., Dias S., Costa C., Blaikie P., Witte L., Girardi L., Yurt R., Himel H., Rafii S., Impaired recruitment of bone marrow derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med., 7: 1194–1201, 2001. [Abstract] [Google Scholar]
30. Reyes M., Dudek A., Jahagirdar B., Koodie L., Marker P.H., Verfallie C.M., Origin of endothelial progenitors in human postnatal bone marrow. J. Clin. Invest., 109: 337–346, 2002. [Europe PMC free article] [Abstract] [Google Scholar]
31. Takahashi T., Kalka C., Masuda H., Chen D., Silver M., Kearney M., Magner M., Isner J.M., Asahara T., Ischemia and cytokine‐induced mobilization of bone marrow‐derived endothelial progenitor cell for neovascularization. Nature Med., 5: 434–438, 1999. [Abstract] [Google Scholar]
32. de Palma M., Venneri M.A., Roca C., Naldini L., Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopietic stem cells. Nature Med., 9: 789–795, 2003. [Abstract] [Google Scholar]
33. Orlic D., Kajstura J., Chimenti S., Jakoniuk I., Anderson S.M., Li B., Pickel J., McKay R., Nadal Ginard, B. , Bodine D.M., Leri A., Anversa P., Bone marrow cells regenerate infarcted myocardium. Nature, 410: 701–705, 2001. [Abstract] [Google Scholar]
34. Hattori K., Dias S., Heissig B., Hackett N.R., Lyden D., Tateno M., Hicklin D.J., Zhu Z., Witte L., Crystal R.G., Moore M.A., Rafii S., Vascular endothelial growth factor and angiopoietin‐1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J. Exp. Med., 193: 1005–1014, 2001. [Europe PMC free article] [Abstract] [Google Scholar]
35. Iwaguro H., Yamaguchi J., Kalka C., Murasawa S., Masuda H., Hayashi S., Silver M., Li T., Isner J.M., Asahara T., Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation, 105: 732–738, 2002. [Abstract] [Google Scholar]
36. Yamaguchi J., Kusano K.F., Masuo O., Kawamoto A., Silver M., Murasawa S., Bosch‐Marce M., Masuda H., Losordo D.W., Isner .JM., Asahara T., Stromal cell derived factor‐1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 107: 1316–1322, 2003. [Abstract] [Google Scholar]
37. Mohle R., Bautz F., Rafii S., Moore M.A., Brugger W., Kanz L., The chemokine receptor CXCR‐4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell‐derived factor‐1. Blood, 91: 4523–4530, 1998. [Abstract] [Google Scholar]
38. Rehman J., Li J., Orschell C.M., March K.L., Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation, 107: 1164–1169, 2003. [Abstract] [Google Scholar]
39. Vu T.H., Werb Z., Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev., 14: 2123–2133, 2000. [Abstract] [Google Scholar]
40. Engsig M.T., Chen Q.J., Vu T.H., Pedersen A.C., Therkidsen B., Lund L.R., Henriksen K., Lenhard T., Foged N.T., Werb Z., Delaisse J.M., Matrix metalloproteinase‐9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J. Cell Biol., 151: 879–890, 2000. [Europe PMC free article] [Abstract] [Google Scholar]
41. Ribatti D., Vacca A., Dammacco F., The role of vascular phase in solid tumor growth: a historical review. Neoplasia, 1: 293–302, 1999. [Europe PMC free article] [Abstract] [Google Scholar]
42. Ribatti D., Vacca A., Dammacco F., New non‐angiogenesis dependent pathways for tumor growth. Eur. J. Cancer, 39: 1835–1841, 2003. [Abstract] [Google Scholar]
43. Mancuso P., Burlini A., Pruneri G., Goldhirsch A., Martinelli G., Bertolini F., Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood, 97: 3658–3661, 2001. [Abstract] [Google Scholar]
44. Monestiroli S., Mancuso P., Burlini A., Pruneri G., Dell'Agnola C., Gobbi A., Martinelli G., Bertolini F., Kinetics and viability of circulating endothelial cells as surrogate angiogenesis marker in an animal model of human lymphoma. Cancer Res., 61: 4341–4344, 2001. [Abstract] [Google Scholar]
45. Vajkoczy P., Blum S., Lamparter M., Mailhammer R., Erber R., Engelhardt B., Vestweber D., Hatzopoulos A.K., Multistep nature of microvascular recruitment of ex vivo‐expanded embryonic endothelial progenitor cells during tumor angiogenesis. J. Exp. Med., 197: 1755–1765, 2003. [Europe PMC free article] [Abstract] [Google Scholar]
46. Carmeliet P., Moons L., Luttun A., Vincenti V., Compernolle V., De Mol M., Wu Y., Bono F., Devy L., Beck H., Scholz D., Acker T., Di Palma, T. , Dewerchin M., Noel A., Stalmans I., Barra A., Blacher S., Vandendriessche T., Ponten A., Eriksson U., Plate K.H., Foidart J.M., Schaper W., Charnock‐Jones D.S., Hicklin D.J., Herbert J.M., Collen D., Persico M.G., Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nature Med, 7: 575–583, 2001. [Abstract] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/42688530
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/42688530

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1111/j.1582-4934.2004.tb00319.x

Supporting
Mentioning
Contrasting
0
97
0

Article citations


Go to all (70) article citations