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Supplementary Information 

 
Additional participant information 

Prior to participation, all subjects were screened according to the following inclusion criteria: age 

range 40-75 years old, normal/corrected-to-normal vision, and a prior diagnosis of PD in patients. 

Exclusion criteria were: current psychotropic medication usage (other than dopamine-/Parkinson-

related medication in patients), major somatic disorder or psychosis, dementia diagnosis, or a history 

of head injury, stroke or any other neurological diseases. Patients were furthermore not included if 

they took selective serotonin reuptake inhibitors (SSRIs), in order to primarily examine the effects of 

dopamine, as serotonin has also been implicated in learning mechanisms (Daw et al., 2002; den 

Ouden et al., 2013). 

 All participants provided written informed consent in accordance with the Declaration of 

Helsinki. Payment for participation was a minimum of €100 (PD patients, three sessions) or €70 

(HCs, two sessions) for participation. A reward bonus was additionally paid out based on performance 

during the reinforcement learning task (PD ON mean= €8.86 ± 0.99, PD OFF mean= €8.85 ± 1.00, 

HC mean= €9.34 ± 1.42, per learning run).  

 The study was set up to capture both within-subject effects of dopaminergic medication in 

Parkinson's disease as well as across-subject effects of disease (patients compared to healthy 

controls), across multiple behavioral and fMRI measurements. Since within-subject comparisons 

require a smaller sample size than across-subject, we aimed to collect sample sizes based on the 

lower-powered across-subjects (HC vs. PD) comparisons. We expected medium effect sizes of 

disease status, so to achieve 80% power, with a type 1 error of .05 (two-tailed), this required a sample 

size of 24 participants in each group. 

 

Computational model estimation 

The model was estimated using Markov Chain Monte Carlo (MCMC) inference. Models were 

implemented using the Stan programming language (Stan Development Team, 2015; Hoffman and 

Gelman, 2016). We ran three chains of 5000 samples each (discarding the first 2500 of each chain for 

burn-in), and ensured convergence using manual examination of the trace plots (hairy caterpillars, 

easily moving around the parameter space) and evaluation of 𝑟̂ statistics, which were all <1.1 (Gelman 

and Rubin, 1992). We additionally generated a number of quantities of interest from the model, 

including individual subjects’ trial-by-trial RPE for inclusion in fMRI whole-brain and deconvolution 

analyses. Simulations displayed in Supplementary Fig. 2 show adequate data recovery, along with the 

fitted mean group-level posterior distributions. Further assessment of model suitability demonstrates 

that the model is identified, as indicated by only weakly correlated parameter estimates 
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(Supplementary Fig. 11) and satisfactory parameter recovery of the modes of the fitted parameter 

distributions for each participant (Supplementary Fig. 12).  

 

Behavioural analysis of AB trials 

We carried out an additional analysis on AB trials to examine medication- or disease-related 

differences in AB choice behaviour associated with receiving either positive or negative feedback. 

Data were separated into trials in which positive feedback was received on the previous trial of that 

pair (for regression 1) and trials in which negative feedback was received on the previous trial (for 

regression 2). These were divided into separate subsets since including a regressor for each of them in 

the same GLM would lead to rank deficiency (i.e. one is (necessarily) a linear combination of the 

other). We carried out a mixed-effects logistic regression analysis on each subset. In regression 1, the 

dependent variable (DV) was a binary indicator for choosing A (DV=1) or choosing B (DV=0) on the 

current trial. The first independent variable (IV1) coded for whether the A (optimal) or B (suboptimal) 

stimulus was chosen on the previous trial (IV1 = 1 or -1, respectively). In this way, a large positive 

beta estimate from the regression represented choosing A on the previous trial, receiving positive 

feedback, and choosing A again on the next trial. Medication and disease status were included as 

covariates, as in the other mixed-effects regressions, along with a varying subject intercept to account 

for individual differences. In regression 2 (trials following negative feedback), we used the same DV 

and covariates, but with IV1 coding the opposite sign to that in regression 1, i.e., choosing optimal A 

(IV1= -1) and choosing suboptimal B (IV1=1) on the previous trial. This inversion of sign means that 

a large positive beta estimate from the regression captured choosing B on the previous trial, receiving 

negative feedback, and switching to the optimal A stimulus on the next trial. For trials following 

positive feedback (regression 1), we found a main effect of IV1 (β (SE) = 0.84 (0.05), z = 17.33, p 

<.001), i.e. in general, participants stuck with the optimal A stimulus if rewarded for that choice on 

the previous trial. For trials following negative feedback, we found a large effect of medication (β 

(SE) = 0.52 (0.13), z = 3.96, p <.001), with a trend effect of disease (β (SE) = 0.64 (0.33), z = 1.95, p 

= .051) and IV_1 (β (SE) = −0.17 (0.09), z = 1.92, p = .055). The main effect of medication shows that 

in trials following negative feedback, PD ON chose the optimal A stimulus more often than PD OFF, 

regardless of what they chose in the previous trial. This suggests that, for the AB pair at least, PD ON 

were less inclined to use negative feedback to influence subsequent choice behaviour. 

 

Session order effects  

Experimental sessions were performed twice on PD patients and once on HCs. PD ON/OFF 

medication status was counterbalanced across first/second session in patients, so any session order 

effects on performance would be expected only in relation to HCs. We therefore carried out additional 

analyses on the behavioral data of the learning and transfer phases, to include session (“Sess”) as a 

separate binary covariate in the mixed effects regression analyses reported in the Methods and 
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materials section. We coded this as Sess=0 for HC since they only had one session, with Sess=0 for a 

patient’s first session and Sess=1 for a patient’s second session. The interaction between this variable 

and stimulus pair was also included, with the rest of the regression set up as in Equation 5 in 

manuscript. 

 For the learning phase, the effects already reported in the manuscript were also significant 

after carrying out this analysis; there was a main effect of stimulus pair (β (SE) = 0.37 (0.04),  z = 

8.75, p << .001), medication (β (SE) = 0.14 (0.04), z = 3.41, p < .001), an interaction between 

medication and stimulus pair (β (SE) = 0.21 (0.05), z = 4.27, p <.001), and an interaction between 

disease and stimulus pair (β (SE) = 0.18 (0.06), z = 3.11, p=.002) (see Supplementary Fig. 3A). This 

analysis revealed an additional interaction between session and stimulus pair (β (SE) = −0.11 (0.05), z 

= 2.30, p=.02), which suggests that when patients were in their second session, the difference in 

accuracy between the AB and EF pair was smaller than when participants were in their first session. 

There were no interactions between session and medication or disease. 

 For the transfer phase, the previously reported significant effects were again present; there 

was an interaction between medication (PD ON or OFF) and Approach A/Avoid B trial type (β (SE) = 

0.35 (0.06), z = 5.78, p < .001) and an interaction between disease (HC or PD OFF) and Approach 

A/Avoid B trial type (β (SE) = 0.30 (0.07), z = 4.25, p < .001) (see Supplementary Fig. 3B). There 

was also a main effect of session (β (SE) = -0.13 (0.06), z = 2.15, p = .03), with patients in their 

second session performing worse in general than participants in their first session. There were no 

interactions between session and medication or disease. 

 

fMRI preprocessing 

The following information was generated from FMRIPREP based on the preprocessing pipeline used 

in this study. Each T1w (T1-weighted) volume was corrected for INU (intensity non-uniformity) 

using N4BiasFieldCorrection v2.1.0 (Tustison et al., 2010) and skull-stripped using 

antsBrainExtraction.sh v2.1.0 (using the OASIS template). Brain surfaces were reconstructed using 

recon-all from FreeSurfer v6.0.1 (Dale et al., 1999), and the brain mask estimated previously was 

refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived 

segmentations of the cortical gray-matter of Mindboggle (Klein et al., 2017). Spatial normalization to 

the ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov et al., 2009) was performed 

through nonlinear registration with the antsRegistration tool of ANTs v2.1.0 (Avants et al., 2008), 

using brain-extracted versions of both T1w volume and template. Brain tissue segmentation of 

cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-

extracted T1w using fast (Zhang et al., 2001) (FSL version 5.0.9). Functional data was motion 

corrected using mcflirt (FSL version 5.0.9) (Jenkinson et al., 2002)."Fieldmap-less" distortion 

correction was performed by co-registering the functional image to the same-subject T1w image with 

intensity inverted (Huntenburg et al., 2012; Wang et al., 2017) constrained with an average fieldmap 
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template (Treiber et al., 2016), implemented with antsRegistration (ANTs). This was followed by co-

registration to the corresponding T1w using boundary-based registration (Greve and Fischl, 2009) 

with 9 degrees of freedom, using bbregister (FreeSurfer version 6.0.1). Slice timing correction was 

not performed on the data. Motion correcting transformations, field distortion correcting 

warp, BOLD-to-T1w transformation and T1w-to-template (MNI) warp were concatenated and applied 

in a single step using antsApplyTransforms (ANTs version 2.1.0) using Lanczos interpolation. 

Physiological noise regressors were extracted applying CompCor (Behzadi et al., 2007). Principal 

components were estimated for the two CompCor variants: temporal (tCompCor) and anatomical 

(aCompCor). A mask to exclude signal with cortical origin was obtained by eroding the brain mask, 

ensuring it only contained subcortical structures. Six tCompCor components were then calculated 

including only the top 5% variable voxels within that subcortical mask. For aCompCor, six 

components were calculated within the intersection of the subcortical mask and the union of CSF and 

WM masks calculated in T1w space, after their projection to the native space of each functional run. 

Frame-wise displacement (Power et al., 2014) was calculated for each functional run using the 

implementation of Nipype. Many internal operations of FMRIPREP use Nilearn (Abraham et al., 

2014), principally within the BOLD-processing workflow. For more pipeline details, please refer to 

https://fmriprep.readthedocs.io/en/latest/workflows.html. 

 

Single-trial whole-brain analysis  

We were interested in estimating trial-by-trial representations of learning (e.g. RPEs) in the brain. For 

this, we carried out a single-trial whole-brain analysis to capitalize on the variability in BOLD signal 

across trials, using Nipype’s FSL interface (Gorgolewski et al., 2011, 2017). A Least Squares All 

(LSA) GLM was fit to each subject’s brain data, per learning run (see Mumford et al., 2012). The 

feedback onset of each trial was included as a separate regressor, all in one model. We included 13 

confound regressors to remove nuisance effects that might have contributed to the brain signal: 

Framewise Displacement (FD), 6 rigid-body transform motion parameters (3 translational, 3 

rotational), and 6 aCompCor physiological noise regressors (to help exclude physiological noise in the 

CSF and WM). Spatial smoothing was performed using a Gaussian kernel with a full width at half 

maximum of 4 mm. A Savitsky-Golay filter was used for high-pass filtering, with a window length of 

120 seconds and polynomial order of 3. The first-level design was set up using the Nipype interface to 

FMRI Expert Analysis Tool (FEAT) from FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). 

Delta functions of all regressors in the model were convolved with the canonical hemodynamic 

response function (HRF) and regressed against each subject’s fMRI data, using Nipype’s FSL 

FILMGLS interface. From this, a contrast of parameter estimates (COPE) was obtained for each trial 

of every subject. Next, we performed a second-stage analysis on the single-trial copes, to model per 

trial feedback valence and RPE. The feedback regressor was coded as +1 or -1 for positive and 

negative feedback trials respectively, to model brain activity that co-varied with valence. A single 
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RPE covariate regressor was constructed by taking the per-trial RPE (retaining its positive or negative 

sign), de-meaning this distribution across trials, and convolving these events with the HRF. Since 

feedback valence and RPE are correlated, i.e. positive feedback is accompanied by a positive RPE, 

this allowed us to assign brain activity co-varying specifically with valence or RPE. This was run as a 

fixed effects multiple regression model using FLAMEO on a per subject basis. Fixed effects multiple 

regression models for collapsing across runs and deriving within-patient medication difference 

COPEs were carried out in a similar way. Medication difference COPEs of feedback and RPE were 

then brought to the group level in a random effects model, using FSL’s FLAME 1+2 and outlier 

detection procedures. All group level Z (Gaussianized T) statistic images were thresholded using 

clusters of z > 2.3 and a cluster-corrected significance threshold of p < 0.01. Group-level analyses 

were carried out in this way for each regressor (feedback valence and RPE) on each separate group 

(HC, PD ON, PD OFF), on the within-subject medication differences ON > OFF and OFF > ON, and 

on across-subject disease differences HC vs PD (OFF or ON). All group-level z-statistic contrasts can 

be viewed at https://doi.org/10.6084/m9.figshare.6989024.v2. The MNI152_T1_1mm_brain standard 

brain was converted to functional space using FSL FLIRT, eroded by 1 voxel, and used as a brain 

mask for all of the analyses described above.  

 

ROIs 

We obtained high-resolution probabilistic atlas masks from a recent open-source dataset (Pauli et al., 

2018). These sub-cortical ROIs have been well-established in playing an important role in 

reinforcement learning (Schultz et al., 1997; Brown et al., 1999; Hazy et al., 2010; O’Doherty et al., 

2017). We focused on striatal ROIs (caudate nucleus, putamen, and nucleus accumbens) for the 

learning phase deconvolution analysis, as these have been most extensively studied in the past (Frank, 

2005; Cools et al., 2007; Cox et al., 2015; Jahfari et al., 2018). FSL FLIRT was used to register the 

masks to FMRIPREP output space. BOLD percent signal change during the transfer phase was 

extracted from ROIs informed by the learning phase of the task. We took the cluster-corrected RPE 

medication difference (OFF-ON) z-statistic COPE from the learning phase and multiplied it by 

independent striatal ROIs from the Pauli et al. (2018) dataset. These masks were thresholded to 

exclude the lowest 25% of voxels and then binarized. The masks are available on figshare, at: 

https://doi.org/10.6084/m9.figshare.6989024.v2. 

 

Deconvolution analysis of feedback interval and RPEs 

Deconvolution analyses were carried out on BOLD timeseries from striatal ROIs (see ROIs for mask 

information). We extracted BOLD time courses and teased apart the covariation with BOLD signal of 

positive and negative RPEs separately, using the fMRI timeseries data as preprocessed by 

FMRIPREP. A Savitsky-Golay filter was used for high-pass filtering, with a window length of 120 

seconds and polynomial order of 3. These timeseries were then converted to percent signal change 
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(PSC). PSC was calculated by dividing the timeseries by the mean of the entire timeseries, 

multiplying by 100, and then subtracting 100, to get a mean-centered output timeseries. Data from 

each subject were weighted per voxel according to the probability of belonging to a particular striatal 

ROI, and then averaged across voxels of that ROI. We set up a model with three regressors: stimulus 

onsets (with RT duration), positive feedback onsets and negative feedback onsets. Positive and 

negative RPEs were z-scored separately and included as covariates of their respective positive or 

negative feedback event type. The deconvolution was implemented using the Python-based nideconv 

package (de Hollander and Knapen, 2017). Events and covariates were deconvolved with a Fourier 

basis set, which uses a combination of sines and cosines to model the data. This was implemented 

instead of the standard finite impulse response (FIR) function as it substantially reduces the number of 

regressors, thereby improving the robustness of parameter estimates. Five Fourier regressors (1 

intercept, 2 sine waves and 2 cosine waves) were used for each of the positive and negative feedback 

events and positive and negative RPE covariates. We also included several confound regressors in the 

model: FD, 6 rigid-body transform motion parameters (3 translational, 3 rotational), WM, stdDVARS 

(standardized derivative of RMS variance over voxels), and 6 aCompCor physiological noise 

regressors. Time courses were then estimated simultaneously using a least-squares fit, for the time 

window -2 to 13.05 seconds (7 TRs) around feedback onsets. Up-sampling during the fitting 

procedure was implemented 20-fold as part of nideconv functionality. The resulting time courses were 

then brought to the group level, and within-patient medication differences were calculated per up-

sampled timepoint of each fit. Clusters of significant intervals were identified using permutation-

based one-sample t-tests (t-threshold set at p<.05, n=5000 permutations) as implemented in mne-

python (version 0.15.2; (Gramfort et al., 2013, 2014). Shaded regions in Fig. 4 and Supplementary 

Fig. 8 represent 68% confidence intervals (±1 SEM; bootstrapped using n=5000 permutations). 

Shaded regions in Supplementary Fig. 7 represent 95% confidence intervals (±1 SEM; bootstrapped 

using n=5000 permutations), to make group differences clearly visible. 

 

Deconvolution analysis of choice interval and Q-values 

We established a separate deconvolution analysis to assess modulations of the BOLD signal by Q-

values during the choice period, i.e. while the stimulus options were presented. We set up this model 

with the same three regressors as in the previous analysis: stimulus onsets (with RT duration), positive 

feedback onsets and negative feedback onsets, all with a Fourier basis set. However, here the Q-

values of the chosen stimulus were z-scored and entered as a covariate on the stimulus onset events. 

RPEs were not included in the model. All other aspects of the analysis were the same as those 

described previously. 

 Applying the analysis to striatal ROIs, we did not find a significant medication-related 

difference in the caudate nucleus or nucleus accumbens. However, the analysis did reveal a significant 
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PD ON > OFF difference in modulation of the BOLD signal by Q-values in the putamen (see 

Supplementary Fig. 9).  

 

Transfer phase BOLD percent signal change 

A standard GLM was set up to model BOLD responses to events in the transfer phase. Stimulus 

onsets and durations for three regressors were included: Approach A trials, Approach B trials, and all 

other trials (of no interest). Similar to the steps carried out in the learning phase whole-brain analysis, 

we performed 4mm smoothing, Savitsky-Golay high-pass filtering with a window length of 120 

seconds and polynomial order of 3, and included the same 13 confound regressors in the design and 

convolved with a canonical HRF. Fixed effects analyses were performed across runs and for 

medication differences within patients. We then took the resulting two COPES for Approach A and 

Avoid B trials per subject and used FSL’s featquery to calculate the mean percent signal change in the 

striatal ROIs that showed a significant learning phase medication difference in RPE (described in 

ROIs). In a similar way to the behavioral correlation analysis between learning rate and transfer 

accuracy (see Materials and Methods and Fig. 5B), we included learning rate EVs to explain the PSC 

(OFF>ON) medication difference in Avoid B>Approach A trials in striatal ROIs using robust 

(multiple) regression, with EVs as either: both positive and negative learning rate medication 

differences (kαgain and kαloss), kαgain only, or kαloss only. Models were compared based on calculated 

BIC values (see Supplementary Table 4), and the learning to transfer PSC correlation p-value was 

obtained from the winning αloss-only model. Individual medication differences were quantified as the 

modes of the within-subject medication difference parameter distributions. 
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Supplementary Figures 

            

 

Supplementary Figure 1 | Beta parameter estimates in learning phase mixed-effects logistic regression 
model, with choice accuracy as the dependent variable. PD OFF was considered as ‘baseline’, with any 
relative increase in beta parameters for PD ON or HC representing the effect of medication and disease status, 
respectively. Here, the main effects of disease and medication on choice accuracy are presented (left), as well as 
interaction effects of stimulus pair and disease, and stimulus pair and medication, on choice accuracy (right). 
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Supplementary Figure 2 | Bayesian hierarchical computational model assessment and simulation. A) 
Group-level parameter estimate distributions. Similar to other studies using separate learning rates for positive 
and negative events, we found higher learning rates for positive compared to negative feedback, termed 
“optimism bias” (Lefebvre et al., 2017; Jahfari et al., 2018; Van Slooten et al., 2018). B) Simulation of the 
fitted model. To check whether the model sufficiently captured actual choice behavior of participants, we 
simulated the probability of choosing the best option using the posterior distributions of the fitted free 
parameters of each participant. Plots of the modeled against empirical data across each group and stimulus pair 
show that the model is a good representation of overall learning. C) Final Q-values across each stimulus and 
group from the fitted model, showing that the model did a good job in capturing declining Q-value according to 
decreasing reward contingency. 
 

 

 

Supplementary Figure 3 | Behavioral performance based on experimental session order in patients (not 
dopamine medication manipulation). See accompanying Supplementary Information: Session order effects. 
PD patients performed the task twice (ON or OFF medication, counterbalanced across first/second session). HC 
performed the task once; HC results here are the same as in manuscript Fig. 1 and Fig. 5A. A) Learning phase 
accuracy per group in choosing the better option of each stimulus pair. B) Transfer phase accuracy per group in 
correctly choosing the best A stimulus when it is presented and correctly avoiding the worst B stimulus when it 
is presented. 
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Supplementary Figure 4 | Individual medication differences in Parkinson’s patients in computational 
model parameters. Medians are displayed, with red and black horizontal bars denoting 85% and 95% highest 
density intervals (HDI), respectively. Note that wherever individual medication difference parameters are used, 
we take the mode rather than median of the distributions, as this point has the highest posterior density of all 
parameter values. 
 
 

   

Supplementary Figure 5 | Disease-related differences in computational model parameters. Parameter 
distributions are shown for HC v PD (N=46). We found moderate evidence for greater αloss negative learning in 
PD compared to HC (BF = 7.89), and strong evidence for greater exploitation in HC compared to PD patients 
(BF = 16.89). 
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Supplementary Figure 6 | Disease-related differences in computational model parameters, separately per 
PD medication status. To assess whether both PD ON and OFF contributed in a similar or differential way to 
the disease-related difference distributions shown in Supplementary Figure 4, two additional smaller models 
were run using a subset of data entered into the main model: HC vs. PD ON and HC vs. PD OFF. We ran 3000 
samples each (discarding the first 1500 of each chain for burn-in). Checks for model convergence via visual 
inspection and 𝑟̂ statistics was carried out in the same way as in the main model. The effect of disease on group-
level parameters are displayed above for HC vs. PD ON (top row) and HC vs. PD OFF (bottom row). There is 
strong evidence for greater exploitation in HC compared to both PD ON and OFF, as indicated by a rightward 
shift in the β parameter distribution and BFs > 10. 
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Supplementary Figure 7 | HC vs.  PD ON or OFF comparisons of caudate nucleus feedback-related 
BOLD response and modulation of the BOLD signal by positive and negative RPEs. A) BOLD percent 
signal change (i) and RPE modulation of BOLD (ii) for HC and PD ON. (B) BOLD percent signal change (i) 
and RPE modulation of BOLD (ii) for HC and PD OFF. The shaded regions represent 95% confidence intervals, 
so visual inspection alone is enough to detect significant differences between groups, i.e. non-overlapping 
bands. The PD ON/OFF plots are the same as those shown in Fig. 4 of the manuscript (caudate nucleus ROI). 
Similar group comparison analyses of the putamen and nucleus accumbens ROIs (not shown) also show no 
group differences. 
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Supplementary Figure 8 | BOLD percent signal change and RPE modulation of BOLD for positive and 
outcomes in striatal ROIs of PD patients (related to Fig. 4).  (A) BOLD percent signal change (i) and RPE 
modulation of BOLD (ii) in the putamen. (B) BOLD percent signal change (i) and RPE modulation of BOLD 
(ii) in the nucleus accumbens (NAc). Although no medication difference in RPE was found for ventral striatal 
NAc activity, it was included here for informational purposes since it has been implicated in several previous 
studies on the effects of dopamine on learning (Breiter et al., 2001; McClure et al., 2003; O’Doherty et al., 
2003; Cools et al., 2007). In NAc, there appears to be a quantitative PD ON > OFF group level difference in 
positive RPE, however this difference is not statistically significant when within-subject differences were 
cluster-corrected across multiple timepoints. Positive and negative RPEs in each ROI were z-scored around that 
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ROI’s BOLD response for positive and negative events, respectively. Colored bands represent 68% confidence 
intervals (±1 SEM). 
 
 
 

   
 
Supplementary Figure 9 | Modulation of BOLD signal in the putamen by Q-value of the chosen stimulus,  
time-locked to the onset of the stimulus options. Q-values were z-scored around stimulus onset events. A 
significant difference between PD ON and OFF is represented by the grey shaded region, which passed cluster-
correction for multiple comparisons across timepoints (p<.05). Colored bands represent 68% confidence 
intervals (±1 SEM). See Supplementary section “Deconvolution analysis of choice interval and Q-values” for 
analysis description. 
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Supplementary Figure 10 | Accuracy in transfer phase approach and avoid behaviour for each group and 
subject. (A) Fig. 4 from manuscript with HC group included. (B) Averages per condition and within-subject 
plots, separately for HC, PD ON and PD OFF. (B) Within-subject plots across PD medication session, 
separately per Approach/Avoid condition. 
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Supplementary Figure 11 | Correlation between fitted model parameters. Correlations between full 
posterior distributions (group-level) or the modes of the posterior distributions (individual-level) of the three 
αgain, αloss, β model parameters, at each level of the hierarchical model. (A) Correlations at the overall group 
level, i.e. using the full posterior distributions of each parameter displayed in Supplementary Fig. 2A. (B) 
Individual- (session-) level correlations, using the modes of individual parameter distributions. (C, D) Parameter 
correlations between full posteriors of disease- and medication-difference distributions, respectively. These 
evaluations show that the parameters used in the model are only weakly related (Pearson r < .4) and indicates 
that these parameters can capture different aspects of the observed behaviour during learning. 
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Supplementary Figure 12 | Parameter recovery of fitted model parameters for each participant. The mode 
of each participant’s posterior parameter distributions was taken and used to simulate 200 new datasets per 
participant. The actual parameter value (β, αgain, and αloss) used for 200 simulated sets on the x-axis (“True 
value”) is plotted against the parameter modes of the 200 simulation fits on the y-axis (“Simulated mode”) for 
each participant (denoted by a dot). Posterior modes obtained from the hierarchical Bayesian model taken for 
each participant (HC=red, PD ON=green, PD OFF=blue) represent the true value with which data was simulated 
per participant and used for recovery. As can be seen, the true and simulated modes were highly correlated 
across all three parameters (all p<.001), showing that this model is well able to recover the actual (original) 
parameters used for data simulations. 
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Supplementary Tables 

 

Characteristic Healthy Controls (HC) 

N=23 

Parkinson patients (PD) 

N=23 

HC vs. PD 

(difference) 

Age (years)  60.35 (8.72) 63.30 (8.24) t(44) = 1.182, p=.244 

Gender 8 females 6 females χ2(1) = .411, p =.522 

Education level (Verhage) 6.09 (0.85) 5.26 (1.14) t(44) = 2.793, p=.008** 

MoCA score 27.91 (1.88) 26.96 (1.92) t(44) = 1.708, p=.095 

BDI 4.09 (3.03) 6.07 (4.31) t(44) = 1.802, p=.078 

BAI 23.17 (2.27) 31.48 (6.15) t(44) = 6.077, p<.001*** 

Digit Span Backwards 7.00 (2.09) 6.35 (2.39) t(44) = .986, p=.329 

NLV reading score 90.96 (8.47) 89.57 (7.36) t(43) = .588, p=.560 

Verbal fluency 43.91 (11.26) 37.91 (11.01) t(43) = 1.808, p=.078 

Disease duration (years)                      -  4.00 (3.18)                               - 

UPDRS III on                      - 17.87 (7.77)                               - 

UPDRS III off                      - 20.65 (8.22)                               - 

Hoehn & Yahr                      - 2.11 (0.58)                               - 

LEDD (mg)                      - 790 (629)                               - 

 
Supplementary Table 1 | Demographic and clinical characteristics of participants. Executive functioning 
was assessed using the following tests: the Montreal Cognitive Assessment (MoCA), the Dutch version (NLV) 
of the National Adult Reading Test (NART) as a measure of pre-morbid IQ, the Stroop color-word task to 
assess effects of interference, verbal (category) fluency tests, and the rule-shift cards test of the Behavioural 
Assessment of the Dysexecutive Syndrome (BADS), to assess mental flexibility (Wilson et al., 1997). The 
Complex Figure of Rey (CFR) was used as a measure of visuospatial memory. Verbal memory was assessed 
using the Dutch version of the Rey Auditory Verbal Learning Test (AVLT), testing both short- and long-term 
verbal memory (Saan and Deelman, 1986). Digit span forwards and backwards in short form (WAIS) was used 
to assess working memory. Participants also completed several self-report questionnaires: Beck Depression 
Inventory (BDI), Beck Anxiety Inventory (BAI), and Monetary Choice Questionnaire (MCQ). PD patients 
additionally completed the Wearing-Off Questionnaire (WOQ-Q10; related to the wearing off of DA 
medication), and the Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease-Rating Scale 
(QUIP-RS). The motor part of the Unified Parkinson’s Disease Rating Scale (UPDRS III) was carried out 
before each fMRI session.  An overview of several test scores is provided in the table below. These assessments 
were not examined in the current study but are discussed in greater detail elsewhere (Engels et al., 2018a, b). 
Quantities are presented as the mean across the sample, with brackets denoting 1 standard deviation. 
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Patient  
(Nr.) 

Age 
(years) 

Disease duration 
(years) 

LEDD 
(mg) 

Medication information Time to scan since 
medication (hours) 

    Levodopa DA-agonist Other OFF ON 
1 55 3.5 564 Yes     15.0 1.0 
2 73 2.0 752 Yes   17.0 1.0 

3 67 10.0 564 Yes   20.5 1.0 

4 72 3.0 375 Yes   16.5 1.5 

5 68 1.0 828 Yes   16.0 2.5 

6 56 2.0 375 Yes   26.5 2.0 

7 68 2.0 378 Yes   19.5 5.5 

8 65 8.0 850 Yes     MAO-B inhibitor  
     (Rasagiline)       
   COMT inhibitor   
    (Entacapone) 

12.5 1.5 

9 62 4.0 2780 Yes     COMT inhibitor  
    (Entacapone) 

14.5 3.0 

10 64 5.5 982 Yes   Pramipexol  14.5 2.0 

11 68 2.0 125 Yes   15.5 2.5 

12 69 1.0 500 Yes   15.0 8.0 

13 73 5.0 375 Yes   13.5 3.5 

14 70 3.0 1548 Yes     COMT inhibitor  
    (Entacapone) 

15.5 1.5 

15 71 6.0 1038 Yes   Pramipexol  8.5 5.5 

16 47 6.0 1428 Yes   Ropinirol  14.0 1.0 

17 48 0.5 1000 Yes   15.0 1.5 

18 56 6.0 935 Yes   Pramipexol    MAO-B inhibitor 
     (Rasagiline) 

13.0 1.5 

19 66 1.0 90 Yes   16.5 2.0 

20 53 5.0 615 Yes   Ropinirol  19.5 1.5 

21 72 13.0 1150 Yes   Pramipexol    MAO-B inhibitor 
      (Rasagiline) 

16.0 2.0 

22 57 1.0 106 No   Pramipexol  18.5 4.5 

23 51 6.0 1645 Yes   Ropinirol      Amantadine 14.0 2.5 
24 61 1.5 108 No   Pramipexol   27.0 12.0 

 

 
Supplementary Table 2 | Medication information for PD patients. Patient information regarding levodopa, 
dopamine agonists and any other dopaminergic medication. Levodopa Equivalent Daily Dosage (LEDD) was 
calculated according to Tomlinson et al., 2010. 
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Model Parameters LOOIC (estimate ± SE) 
1 α, β 12432 ± 778 
2 αgain, αloss, β 12167 ± 789 
3 αgain, αloss, β, π 26325 ± 1476 

 

Supplementary Table 3 | Model comparison. In order to compare the validity of the reported model with three 
free parameters αgain, αloss, and β, we evaluated two additional hierarchical Bayesian models and used the leave-
one-out cross-validation information criterion (LOOIC) procedure for model comparisons. LOOIC is highly 
recommended for model comparisons of hierarchical Bayesian structures that use MCMC sampling (Vehtari et 
al., 2017). All models were set up in the same fully hierarchical way as the model shown in the manuscript 
(Model 2), either in a reduced form (Model 1) to include only two free base parameters (α and β), i.e. with a 
learning rate that is updated on every trial regardless of a positive or negative outcome, or in extended form 
(Model 3) to include one additional perseverance (“stickiness”) parameter (π), to account for any bias in 
choosing the same stimulus of a pair regardless of the reward outcome (Kable and Glimcher, 2007; Schönberg 
et al., 2007). π was included in the softmax equation and was bounded as [-5, 5] in accordance with previous 
research using this parameter (Wunderlich et al., 2012). A lower LOOIC score indicates a better-fitting model. 
LOOIC estimates pointwise out-of-sample prediction accuracy from a fitted Bayesian model using the log-
likelihood evaluated at the posterior simulations of the parameter values and may be extracted using the “loo” 
package in R (Gelman et al. 2013, Vehtari et al. 2017, Yao et al., 2017, Ahn et al. 2017).  The log-likelihoods 
were calculated per subject in the Stan model using the log categorical probability mass function. This was 
updated on a trial-by-trial basis to reflect whether a trial was correct given the probability of choosing that 
option. These log-likelihoods were then extracted from the fitted model on a per subject basis and used to 
calculate the LOOIC. Model 2 with three free parameters αgain, αloss, and β (as presented in the manuscript) was 
found to be the best fitting model. 
 

 

 

Explanatory variable BIC (behavior) BIC (brain) 
kαloss only       231.38      33.36  
kαgain + kαloss        234.34           36.17  
kαgain only       234.48      37.92 

 

Supplementary Table 4 | Summary of BIC values for the role of medication-related shifts in learning rate 
parameters in subsequent medication-related changes in transfer phase behavior and BOLD activity. BIC 
values relating to transfer phase behavior (second column) describe the explanatory power of within-patient 
medication-related shifts in learning rate parameters (kαgain, kαloss) in the transfer phase medication-related 
interaction in approach/avoidance behavioral accuracy. BIC values relating to brain activity (third column) 
describe the explanatory power of the same within-patient medication-related shifts in learning rate parameters 
in the transfer phase medication-related interaction in caudate nucleus BOLD activity during approach versus 
avoid trials. Overall, in both brain and behavior, the medication-related shift in only the negative learning rate, 
αloss, parameter best explained subsequent medication-related changes in approach/avoidance trials. 
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Supplementary Table 5 | Summary of learning phase PD medication differences in posterior distributions 
of the Bayesian model group parameters. Bayes factors (BF) for medication differences in learning parameter 
distributions represent the BF according to direction of the visible shift in the posterior difference, i.e., the αloss 
parameter in Fig. 2B is shifted to the left (higher OFF medication), so the BF represents the probability of OFF 
> ON being greater than zero. HDI = highest density interval. 
 

 

 

# voxels log10(p) 

MAX X 

(mm) 

MAX Y 

(mm) 

MAX Z 

(mm) 

COPE-

MAX X 

(mm) 

COPE-

MAX Y 

(mm) 

COPE-

MAX Z 

(mm) Areas included 

529 25.6 12.3 -82.8 47.4 35.2 -72.9 54 lateral occipital cortex, precuneous (R) 

233 13.7 5.71 -89.3 -15.3 2.43 -79.5 -8.7 V1, occipital fusiform gyrus,  
occ. pole (R) 

101 6.75 -33.7 -43.4 -45 -30.4 -43.4 -45 cerebellum (L) 

79 5.35 -17.3 -13.9 11.1 -7.41 9.08 4.5 caudate nucleus, putamen, glob. pallidus, 
thalamus (L) 

75 5.08 -43.5 -30.3 44.1 -27.1 -10.6 67.2 postcent. gyrus, supramarg. gyrus,  
sup. parietal lobe (L) 

64 4.31 32 -69.7 -45 -4.13 -63.1 -48.3 cerebellum (R) 

44 2.78 51.6 35.3 30.9 38.5 45.2 37.5 middle front. gyrus, frontal pole (R) 

42 2.62 61.5 -43.4 -8.7 61.5 -46.7 -8.7 middle temp. gyrus, inf. temp. gyrus (R) 

42 2.62 28.7 -7.32 50.7 32 -4.04 50.7 precent. gyrus, middle front. gyrus,  
sup. front. gyr (R) 

40 2.45 2.43 25.5 54 5.71 18.9 47.4 sup. front. gyr. (R )  

39 2.37 38.5 -4.04 44.1 38.5 2.52 37.5 precent. gyrus, middle front. gyrus.  
sup. front. gyr (R) 

 

Supplementary Table 6 | Medication difference in whole brain RPE signal. Clusters of group-level PD OFF 
> ON medication difference (p <. 01, z = 2.3, cluster-corrected). 
 

 

 
 
 
 
 
 
 
 

 
Parameter Mean SEM 95% HDI  BF10 

b 0.015 0.003 [-0.213, 0.268] 1.24 
again -0.048 0.005 [-0.505, 0.407] 1.39 
aloss -0.960 0.021 [-2.566, 0.338] 11.40 
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