
Supplement to
"RAxML-NG: A fast, scalable, and user-friendly tool for

maximum likelihood phylogenetic inference"

Alexey M. Kozlov, Diego Darriba, Tomáš Flouri,
Benoit Morel, and Alexandros Stamatakis

April 23, 2019

1 New features and improvements
In this Section, we briefly describe the most important improvements of RAxML-NG compared
to RAxML/ExaML. A detailed, and up-to-date user manual is available at https://github.com/
amkozlov/raxml-ng/wiki.

1.1 Evolutionary model extensions
1.1.1 New DNA models with flexible parametrization

For DNA data, RAxML/ExaML fully supports only one model of nucleotide substitution: the general
time-reversible (GTR) model. In RAxML, there is also only limited support for the JC69 (Jukes
and Cantor, 1969) and K80 (Kimura, 1980) models. Note that, for partitioned analyses, it is not
possible to assign different models to distinct partitions (e.g., JC69 to one partition and GTR to
another).

In RAxML-NG, we added full support for all 22 ’classical’ GTR-derived models (Felsenstein,
2004), which can be used in any combinations (i.e., different models can be assigned to distinct
partitions). Furthermore, substitution rates as well as equilibrium/stationary frequencies can be
fixed to user-specified values, if desired.

1.1.2 Flexible models for multi-state data

Apart from classical DNA, protein, and binary data, RAxML can also analyze arbitrary multi-state
sequence data that is commonly used to encode morphological traits. RAxML supported up to 32
such states which had to be encoded via a pre-defined set of characters (0-9 and A-V).

RAxML-NG now extends this functionality by allowing for up to 64 states and a more flexible
user-defined encoding. For instance, a 5-state model can be specified by MULTI5_GTR+M{ABCDE}{-}.
Here, characters A through E encode the 5 states of the model, and - represents the gap character
(unknown state/missing data). Furthermore, it is now also possible to define ambiguous characters
for multi-state models to capture sequence uncertainty. For instance, one can use the character X to
represent an ambiguous state A or C. In this case, the corresponding mapping between characters
and models states needs to be defined in an appropriate file:

7 5
ABCDEX-
stateA stateB stateC stateD stateE
A 1,0,0,0,0
B 0,1,0,0,0
C 0,0,1,0,0
D 0,0,0,1,0
E 0,0,0,0,1
X 1,0,1,0,0
- 1,1,1,1,1

For instance, we recently used this new functionality of RAxML-NG to implement a 55-state
model that can account for amino acid side-chain conformation (Perron et al., 2019).

1

https://github.com/amkozlov/raxml-ng/wiki
https://github.com/amkozlov/raxml-ng/wiki

1.1.3 Rate heterogeneity across sites

ExaML only supports the Γ model model of rate heterogeneity across sites (RHAS) with a fixed
number of 4 rate categories. RAxML additionally supports a proportion of invariant sites model (I).
Both, RAxML, and ExaML do not allow for specifying distinct RHAS models for different partitions
(e.g., all partitions have to be assigned either a Γ model, or a I model, or a Γ + I model, or none).

In addition to Γ and I, RAxML-NG now also supports the FreeRate RHAS model (Yang, 1995),
which does not rely on any a priori rate distribution. The free rate models has been shown to better
fit empirical datasets (Kalyaanamoorthy et al., 2017) tha the Γ model. Furthermore, RAxML-NG
provides full flexibility for partitioned analyses: each partition can be assigned its own, best-fit
RHAS model, number of discrete rate categories. Corresponding parameter values (e.g., the α
shape parameter of the Γ distribution) can also be specified and fixed by the user.

1.1.4 Branch length linkage across partitions

In partitioned analyses, there are three common ways to estimate branch lengths (sometimes called
branch linkage models):

• linked: all partitions share a common set of (global) branch lengths. This is the most
simple model with the lowest number of free parameters (#branches). However, it is often
considered as being unrealistic, as it is known that, genes (or genomic regions) evolve at
different speeds.

• unlinked: each partition has its own, independent set of branch lengths. This model allows
for the highest flexibility, but it also introduces an extremely large number of additional free
parameters (#branches ∗ #partitions), which yields it prone to overfitting.

• scaled (proportional): a global set of branch lengths is estimated as for the linked mode.
However, each partition has an individual scaling factor. The per-partition branch lengths are
obtained by multiplying the global branch length values with these individual per-partition
scalers. This approach represents a compromise that allows to model distinct evolutionary
rates across partitions while, at the same time, only moderately increasing the number of
free parameters (#branches+ #partitions).

While RAxML/ExaML only supported linked and unlinked linkage, RAxML-NG now supports all
three branch linkage models described above. The linkage model can be selected via the --brlen
option. A recent simulation study by Duchene et al. (2018) showed that the scaled branch
linkage model offers the best fit across a large number of representative datasets. This confirms
the intuition about its ’good’ flexibility versus complexity trade-off. Hence, RAxML-NG uses the
scaled branch linkage model for partitioned analyses by default.

1.1.5 Per-rate Γ scalers

In RAxML/ExaML, inferences of extremely large trees with thousands of taxa under the Γ model
of rate heterogeneity frequently induced numerical underflow (Izquierdo-Carrasco et al., 2011) in
the likelihood calculations. In RAxML-NG, this problem is solved by introducing so-called per-rate
scalers (see Section 4.2.2 in (Kozlov, 2018) for details). As the usage of per-rate scalers induces
a small, yet observable computational overhead (typically 5% to 10% of overall run time), their
use is automatically enabled for analyses of large trees comprising > 2000 taxa, where this specific
numerical underflow problem is likely to occur. The user can override this default behavior with
the rate-scalers flag.

1.2 Search algorithm modifications
The RAxML-NG tree search heuristic is based on the greedy hill-climbing algorithm previously
used in RAxML/ExaML. In short, it iteratively prunes every subtree of the thus far best-scoring
tree, and evaluates possible re-insertions of each subtree into neighboring branches, up to a cer-
tain maximum distance (re-insertion radius) from the original pruning position (see (Stamatakis,
2006) and Section 4.2.3 in (Kozlov, 2018) for further details). The subtree enumeration procedure
employed by RAxML/ExaML can occasionally skip promising tree moves: even if both subtrees
adjacent to a branch are ’good’ (have a better likelihood score than the subtrees assessed so far),
only one of those two subtrees (the one with the higher score) will be saved for further evaluation
(see Figure 1, left). In RAxML-NG, we modified the subtree enumeration procedure to ensure that
promising moves, that is, both subtrees, are never skipped (see Figure 1, right).

2

T
1

T
2

T
1

T
2

T
3

RAxML-NGRAxML/ExaML

1) Prune, regraft and score three subtrees
adjacent to each internal node

T
1
 → L(T

1
) T

2
→ L(T

2
) T

3
→ L(T

3
)

1) Prune, regraft and score two subtrees
adjacent to each internal branch

T
1
 → L(T

1
) T

2
→ L(T

2
)

3) Store up to 3 subtrees per node in the list
of promising moves

2) Consider each subtree individually

3) Store T
best

 in the global list of promising

moves →at most 1 subtree per branch!

2) Select best-of-pair:

T
best

 = argmax L(T)
 {T

1
, T

2
}

Figure 1: Subtree enumeration strategies in RAxML/ExaML and RAxML-NG.

1.3 Transfer bootstrap
The classical branch support metric used in phylogenetics, Felsenstein’s bootstrap (FBP), relies on
the strict presence/absence of bipartitions from replicate trees in the best-known ML tree. FBP
typically yields low support values for deep branches in extremely large trees with hundreds or
thousands of taxa. This is because bipartitions that exactly match those in the best-known ML
tree are rarely present in the replicates.

The recently introduced Transfer Bootstrap Expectation (TBE) metric (Lemoine et al., 2018)
attempts to alleviate this problem via a gradual ’transfer’ distance. The transfer distance between
two branches is defined as the minimum number of taxa that have to be transferred (or removed) to
yield the two branches identical (i.e., both branches split the taxon set into identical subsets). The
TBE support for a branch in the ML tree is computed based on the minimum transfer distance
between this branch and any branch in a BS replicate tree. In other words, we compare each ML
tree branch to its respective closest branch (w.r.t., the transfer distance) in the BS replicate tree
(please see Lemoine et al. (2018) for further details).

In RAxML-NG, we implemented a highly optimized computation of TBE support values. At
present, it is 100×−500× faster and requires 10×−40× less memory than the original implemen-
tation in Booster (https://github.com/evolbioinfo/booster).

1.4 Phylogenetic terraces
After conducting a tree inference on a partitioned alignment with unlinked branch lengths, RAxML-NG
will automatically check if the resulting tree resides on a phylogenetic terrace (Sanderson et al.,
2011). Furthermore, the --terrace command allows to check whether a user-specified topology
lies on a terrace. Finally, all trees on a terrace can be enumerated and saved in either NEWICK
or a compressed NEWICK format (Biczok et al., 2017).

3

https://github.com/evolbioinfo/booster

1.5 Performance and scalability
1.5.1 Fine-grained parallelization with MPI and pthreads

RAxML, ExaML, and RAxML-NG all support a fine-grained parallelization of likelihood calculations on
a single cadidate tree across alignment sites, that is, alignment sites are distributed across multiple
threads/cores. However, in RAxML, this type of parallelization is implemented with pthreads using a
fork-join approach, and is thus limited to a single shared-memory node. This precludes the analysis
of large concatenated matrices which might require more memory than is available on a single
node. This problem was solved in ExaML, which supports a fine-grained parallelization of likelihood
calculations across multiple nodes with MPI. Furthermore, ExaML implements an alternative, more
efficient parallelization approach which requires fewer synchronizations than the fork-join model.
In ExaML, each MPI process runs its own consistent copy of the tree search algorithm, and they
only synchronize at two points: 1) tree likelihood evaluation at the virtual root, and 2) likelihood
derivative computation during branch length optimization using the Newton-Raphson procedure.

In RAxML-NG, we also implemented this efficient ExaML-style parallelization. It can be used in
three configurations: pthreads-only (single shared-memory node), MPI-only, or hybrid MPI+pthreads.
Typically, on modern clusters with multicore CPUs, a hybrid configuration with one MPI rank per
node and one thread per core yields better parallel efficiency than a pure MPI run with one MPI
rank per core.

For ’short’ alignments with few sites, a subtatially more coarse-grained parallelization across
distinct starting trees or bootstrap replicates could be more efficient. Since RAxML-NG does not
natively support such a coarse-grained parallelization (as of version 0.8.1), we recommend using
our ParGenes pipeline (Morel et al., 2018) for this purpose which implements an elaborate and
efficient resource allocation strategy. Alternatively, one can use custom scripting as shown in the
on-line example: https://github.com/amkozlov/raxml-ng/wiki/Parallelization.

1.5.2 Load balancing

In ExaML, we introduced an efficient load balancing algorithm for partitioned alignments (Kobert
et al., 2014) which minimizes both, the number of alignment sites, and the number of partitions
per CPU core. RAxML-NG implements an extended version of this algorithm that includes site
weighting support. Site weighting support is necessary to account for partitions with distinct
rate heterogeneity models and therefore a varying amount of computations per site. For instance,
using a GTR+G4 model on one partition requires approximately 4× more memory and floating point
operations than a plain GTR model on another partition. Hence weighting is required to avoid
suboptimal parallel load balance.

1.5.3 Checkpointing

Yet another feature that was available in ExaML but not in RAxML is checkpointing, that is, the
ability to resume a tree search following termination prior to completion for whatever reason, from
the stage at which the program was interrupted. This ability is particularly important for long-
running analyses in cluster environments where jobs have limited execution time slots (typically,
24 to 48 hours). Compared to ExaML, checkpointing in RAxML-NG is easier to use: it is sufficient
to re-run the program without any command line modifications as it will automatically find the
latest checkpoint, if present.

1.5.4 Hardware autodetection and resource estimation

In RAxML, a separate binary had to be compiled for every combination of vector instruction set
(e.g., AVX) and parallelization type (e.g. pthreads). Albeit the compilation process is described
in the RAxML manual, selecting the optimal version was still challenging for users without a strong
computational background. Hence, in RAxML-NG we radically simplified the user interface and now
only provide a single executable which supports all three parallelization types (pthreads, MPI,
and hybid MPI+pthreads) and can also auto-detect the most advanced vector instruction set
supported by the CPU it is running on. Furthermore, RAxML-NG can automatically estimate the
required amount of memory and the recommended number of threads for the dataset at hand
(using --parse command).

4

https://github.com/amkozlov/raxml-ng/wiki/Parallelization

2 Evaluation

2.1 Experimental setup
2.1.1 Test system configuration

We executed all benchmarking runs on our institutional cluster at the Heidelberg Institute for
Theoretical Studies. It consists of 224 compute nodes with dual-slot Intel Haswell CPUs (see
Table 1). We compared RAxML-NG to three competing state-of-the-art ML tree inference tools:
IQTree, RAxML, and ExaML (see Table 2).

System HITS cluster

Hardware Software
CPU model 2 × Xeon E5-2630 v3 OS CentOS Linux
CPU architecture Haswell release 7.2.1511
Cores 16 @ 2.40 GHz Compiler GCC 6.4.0
Memory size 64GB DDR4 MPI Open MPI 2.1.1

Table 1: Hardware and software specifications of the test system used for benchmarking.

Tool Version Release date References

ExaML 3.0.19 May 2017 (Kozlov et al., 2015; Stamatakis and Aberer, 2013)

IQTree 1.6.7 August 2018 (Chernomor et al., 2016; Nguyen et al., 2015)

RAxML 8.2.10 March 2017 (Stamatakis, 2014)

RAxML-NG 0.6.0 June 2018 (Kozlov, 2018)

Table 2: ML inference tools including vesion numbers and release dates used for benchmarking.

5

2.1.2 Datasets

For evaluating RAxML-NG, we selected 22 empirical protein and DNA datasets with varying number
of taxa (36 up to 1, 879), alignment length (18, 328 up to 37, 350, 521 sites), and partition count (1
to 4, 116, see Table 3). In particular, we re-analyzed 19 datasets from a recent ML inference tool
benchmarking study by Zhou et al. (2018) as well as three additional taxon-rich alignments from
(Gitzendanner et al., 2018; Shi and Rabosky, 2015; Stamatakis et al., 2010).

For all datasets, we used the original partitioning scheme and substitution models as provided
and used in the respective studies.

All multiple sequence alignments used in this study as well as analysis results are available
under https://figshare.com/s/6123932e0a43280095ef

Designator Data # taxa # alignment # unique # parti- Reference

type sites patterns tions

SongD1 DNA 37 1,338,678 746,408 1 (Song et al., 2012)

MisoD2a DNA 144 1,240,377 1,142,662 100 (Misof et al., 2014)

MisoD2b DNA 144 413,459 371,434 50 (Misof et al., 2014)

WickD3a DNA 103 436,077 422,676 14 (Wickett et al., 2014)

WickD3b DNA 103 290,718 277,375 8 (Wickett et al., 2014)

XiD4 DNA 46 239,763 165,781 1 (Xi et al., 2014)

PrumD6 DNA 200 394,684 236,674 75 (Prum et al., 2015)

TarvD7 DNA 36 21,410,970 8,520,738 1 (Tarver et al., 2016)

PeteD8 DNA 174 3,011,099 2,248,590 4,116 (Peters et al., 2017)

ShiD9 DNA 815 20,364 13,311 29 (Shi and Rabosky, 2015)

StamD10 DNA 436 1,371 1,011 1 (Stamatakis et al., 2010)

NagyA1 AA 60 172,073 156,312 594 (Nagy et al., 2014)

MisoA2 AA 144 413,459 406,963 479 (Misof et al., 2014)

WickA3 AA 103 145,359 144,342 11 (Wickett et al., 2014)

ChenA4 AA 58 1,806,035 1,547,914 1 (Chen et al., 2015)

StruA5 AA 100 189,193 178,600 1 (Struck et al., 2015)

BoroA6 AA 36 384,981 376,803 831 (Borowiec et al., 2015)

WhelA7 AA 70 59,725 58,419 210 (Whelan et al., 2015)

YangA8 AA 95 504,850 476,259 1,122 (Yang et al., 2015)

ShenA9 AA 96 609,899 573,199 1 (Shen et al., 2016)

KatzA10 AA 798 34,991 34,937 1 (Katz and Grant, 2014)

GitzA12 AA 1,897 18,328 18,303 1 (Gitzendanner et al., 2018)

Table 3: Characteristics of the datasets used for evaluating RAxML-NG.

2.1.3 Evaluation strategy

For each dataset and ML inference tool, we conducted 10 independent searches for the best-
known ML tree either using distinct random number seeds (for IQTree) or distinct starting trees
(for RAxML, ExaML, and RAxML-NG; here we used 5 random and 5 parsimony-based starting trees).
Thereby we obtained 40 ML trees for each dataset (10 per inference tool). Subsequently, we re-
calculated the ML score (after re-optimizing branch lengths and model parameters on fixed tree
topologies) of all final trees with IQTree to ensure that all the ML scores of all 40 trees are compa-
rable. Note that, ML values typically differ among distinct inference tools due to different round-off
error propagation or subtle differences in the numerical implementation of model parameter opti-
mization routines. Thus, in order to avoid a possible bias toward ML scores obtained by our ML
inference tools, we chose to re-evaluate all final trees with IQTree.

6

https://figshare.com/s/6123932e0a43280095ef

The ML tree with the (re-evaluated) highest log-likelihood score for a particular dataset is
denoted as the best-known (tree) topology for that dataset. We assess the relative tree search
efficiency of the four ML inference tools by comparing the ML scores of their respective final trees
against this best-known ML tree (see Section 2.2.1).

The command lines used for the tree searches and the ML score re-evaluation are provided in
Table 4.

Due to technical limitations, we were unable to evaluate some dataset/inference tool combina-
tions. In particular, on the larger benchmark datasets the RAxML searches failed to converge within
the cluster job time limit of 24 hours. Given the lack of checkpointing capabilities in RAxML, this
prevented us from completing the respective tree inferences. Further, we were not able to analyze
the StruA5 dataset with ExaML, since ExaML does not support models with a proportion of invariant
sites. This model, more specifically, LG + Γ + I, was used in the original study by Struck et al.
(2015). As RAxML and ExaML showed highly similar search efficiencies on the remaining datasets,
excluding few aforementioned data points does therefore not affect the overall results.

Mode Tool Command line

Search IQTree iqtree -s <MSA> -q <PARTITIONS> -seed <RSEED> -nt 16 -pre
<OUTDIR>

Search RAxML raxmlHPC-PTHREADS-AVX2 -T 16 -m GTRGAMMA -p <RSEED>
-n <RUNNAME> -s <MSA> -q <PARTITIONS> -t
<START_TREE> -w <OUTDIR>

Search ExaML examl-AVX -m GTRGAMMA -n <RUNNAME> -s <BINARY_MSA>
-t <START_TREE> -w <OUTDIR>

Search RAxML-NG raxml-ng –search –msa <MSA> –model <PARTITIONS> –tree
<START_TREE> –seed <RSEED> –prefix <OUTDIR> –threads 16
–site-repeats on

Evaluation IQTree iqtree -s <MSA> -q <PARTITIONS> -te <ML_TREE> -seed
<RSEED> -nt 16 -pre <OUTDIR>

Table 4: Specific command lines used for tree search and log-likelihood evaluation.

7

2.2 Results
2.2.1 Search Efficiency

Table 5, Figure 3, and Figure 2 show the relative tree search performance of RAxML-NG in compar-
ison to other state-of-the-art programs (RAxML, ExaML, and IQTree).

For the MisoD2a dataset, we were unable to reliably determine the best-known tree using our
tree scoring procedure (see Section 2.1.3). More specifically, model parameter and branch length
re-optimization with IQTree on the respective final ML topologies yielded substantially worse log-
likelihood scores than those that were originally reported at the end of the tree searches by the tree
inference tools. Most importantly, this inconsistency in log-likelihood scores after re-optimization
altered the tree ranking. This even holds for ML trees inferred with IQTree itself. Interestingly,
this issue is not specific to IQTree optimization procedure, since we observed similar behavior with
ExaML and RAxML-NG as well. This phenomenon warrants further in-deep investigation, but for the
sake of this paper, we simply consider the MisoD2a dataset to be inconclusive and exclude it from
our search efficiency analysis.

For 10 out of 21 conclusive datasets, all tested tree inference tools find the best-known ML
tree in at least one tree search. Moreover, for five out of those 10 ’easy’ datasets (SongD1, XiD4,
BoroA6, WhelA7, and YangA8), the phylogenetic signal was so strong that the best-known ML tree
was recovered in every single tree search by any tool.

The remaining datasets are more challenging and thus allow to assess the performance dif-
ferences between the tools. None of the tools was able to find best-known tree for all 21 con-
clusive datasets. RAxML-NG showed the best result (19/21), followed by IQTree (17/21). In gen-
eral, RAxML-NG (and, to a lesser extent, RAxML/ExaML) tends to outperform IQTree on taxon-rich
datasets (ShiD9, KatzA10, and GitzA12). This may indicate that the lazy SPR moves employed by
RAxML-NG, RAxML, and ExaML might be better suited to explore larger tree search spaces than the
more local NNI moves of IQTree, despite the randomized perturbations steps used in IQTree for
escaping local NNI optima. On the other hand, IQTree shows better result stability: it found the
best-known ML tree in all 10 tree searches for 14 datasets (RAxML-NG: 7). This could be attributed
to the fact that IQTree uses multiple starting trees and maintains a collection of promising trees
during each individual search, which allows it to more efficiently navigate out of local optima.

In order to reduce the probability of getting stuck in a local optimum, RAxML-NG v0.8.0 and
later will conduct 20 independent searches by default, using 10 random and 10 parsimony-based
starting trees. Despite substantially longer runtimes, this strategy is much more reliable than a
single tree search for most datasets (see Figure 3 and Figure 2).

2.2.2 Inference Times

Absolute tree inference times for all datasets and tools are shown in Figure 4. Furthermore, we
provide the relative speedup of RAxML-NG compared to other tools in Table 6.

RAxML-NG was the fastest tool on 20 out of 22 datasets, with speedups ranging from 1.07
(vs. IQTree on GitzA12) to 4.53 (vs. RAxML on WhelA7). On the remaining 2 datasets, RAxML-NG
was slower than ExaML and/or RAxML, but found trees with better ML scores (see Figure 2, Figure 3,
and Table 5). Conversely, on the datasets where all four tools found the best-scoring tree in every
replicate search, RAxML-NG was consistently faster: 1.74×–4.53× compared to RAxML, 1.36×–2.00×
compared to ExaML, and 2.38×–3.20× compared to IQTree.

RAxML-NG is able to outperform the competing tools because it relies on highly optimized
phylogenetic likelihood kernels (implemented in libpll), as well as efficient parallelization and load
balancing techniques (see main text).

Finally, we should note that although IQTree is consistently slower than RAxML-NG for an
individual tree search, this is somewhat compensated by its higher stability. In other words, a
single tree search with IQTree has a higher probability of finding the best-scoring tree compared
to RAxML-NG. Still, on taxon-rich datasets (ShiD9, StamD10, KatzA10 and GitzA12) even IQTree
shows substantial variation in inference results. Therefore, relying on the results from a single tree
search is a risky strategy for all tools evaluated in this study.

2.2.3 Scalability

On large partitioned multi-gene alignments, RAxML-NG scales almost linearly up to 1,024 cores (see
Figure 5). On DNA datasets (TarvD7 and PeteD8), we measured superlinear speedups of > 120%
in the optimal parallelization regime (5, 000−8, 000 DNA alignment patterns per core). On protein

8

datasets, this effect is less pronounced, but there is still a noticeable increase of parallel efficiency
when 1, 500 − 2, 000 AA alignment patterns are assigned to each core.

It is worth noting that, the parallel efficiency of RAxML-NG is similar (and partially superior)
to ExaML, our previous dedicated tree inference tool for large clusters and supercomputers. This is
noteworthy as the absolute runtimes of RAxML-NG are ≈ 1.5× lower and hence, for instance I/O,
startup, and communication costs contribute more to overall run-time according to Amdahl’s law.

Finally, we assess the scalability of the MPI-enabled version of IQTree on the same four large
datasets. Please note that the IQTree-MPI parallelization strategy (across tree moves) is conceptu-
ally different from the parallelization strategies implemented in ExaML/RAxML-NG (across alignment
sites). For this reason, a direct scalability comparison between the tools is difficult. Furthermore,
even if IQTree-MPI is run with identical random number seeds, using different numbers of cores
can yield distinct final ML trees. Thus, as the results of parallel runs with different core counts
may defer, it is unclear how to quantify parallel efficiency.

Dataset ML trees searches which found the best-known tree

IQTree RAxML ExaML RAxML-NG

SongD1 10 10 10 10

MisoD2a* NA NA NA NA

MisoD2b 10 0 0 5

WickD3a 10 0 0 10

WickD3b 10 0 0 9

XiD4 10 10 10 10

PrumD6 10 0 0 6

TarvD7 10 8 8 9

PeteD8 0 0 0 4

ShiD9 0 0 0 1

StamD10 1 0 0 0

NagyA1 10 4 4 5

MisoA2 10 NA 0 5

WickA3 10 8 8 4

ChenA4 10 7 7 10

StruA5 2 0 NA 9

BoroA6 10 10 10 10

WhelA7 10 10 10 10

YangA8 10 8** 10 10

ShenA9 10 9 9 8

KatzA10 0 NA 1 0

GitzA12 0 NA 0 1

Datasets for which the best-known tree was found

17 10 11 19

Table 5: Number of ML tree searches (out of 10) which yielded the best-known tree per dataset
and inference tool. * Best-known tree cannot be determined for this dataset (see explanation in
text). ** Two RAxML tree searches exceeded the cluster job runtime limit.

9

ShenA9 KatzA10 GitzA12

BoroA6 WhelA7 YangA8

WickA3 ChenA4 StruA5

StamD10 NagyA1 MisoA2

TarvD7 PeteD8 ShiD9

WickD3b XiD4 PrumD6

SongD1 MisoD2b WickD3a

IQ
−

Tr
ee

R
A

xM
L

E
xa

M
L

R
A

xM
L−

N
G

IQ
−

Tr
ee

R
A

xM
L

E
xa

M
L

R
A

xM
L−

N
G

IQ
−

Tr
ee

R
A

xM
L

E
xa

M
L

R
A

xM
L−

N
G

−800

−600

−400

−200

0

−4000

−3000

−2000

−1000

0

−150

−100

−50

0

−1000

−500

0

−300

−200

−100

0

−0.050

−0.025

0.000

0.025

0.050

−1250
−1000
−750
−500
−250

0

−3000

−2000

−1000

0

−0.100

−0.075

−0.050

−0.025

0.000

−10000

−5000

0

−12

−9

−6

−3

0

−400

−300

−200

−100

0

−0.050

−0.025

0.000

0.025

0.050

−750

−500

−250

0

−0.050

−0.025

0.000

0.025

0.050

−30

−20

−10

0

−6000

−4000

−2000

0

−15

−10

−5

0

−100

−50

0

−0.050

−0.025

0.000

0.025

0.050

−1000

−750

−500

−250

0

Lo
g−

lik
el

ih
oo

d
sc

or
e

ML inference tool IQ−Tree RAxML ExaML RAxML−NG

Figure 2: Log-likelihood difference to the best-known tree (normalized log-likelihood score).

10

ShenA9 KatzA10 GitzA12

BoroA6 WhelA7 YangA8

WickA3 ChenA4 StruA5

StamD10 NagyA1 MisoA2

TarvD7 PeteD8 ShiD9

WickD3b XiD4 PrumD6

SongD1 MisoD2b WickD3a

IQ
−

Tr
ee

R
A

xM
L

E
xa

M
L

R
A

xM
L−

N
G

IQ
−

Tr
ee

R
A

xM
L

E
xa

M
L

R
A

xM
L−

N
G

IQ
−

Tr
ee

R
A

xM
L

E
xa

M
L

R
A

xM
L−

N
G

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

 R
F

 d
is

ta
nc

e
to

 th
e

be
st

−
ob

se
rv

ed
 tr

ee
N

orm
alized R

F
 distance to the best−

observed tree

ML inference tool IQ−Tree RAxML ExaML RAxML−NG

Figure 3: Normalized Robinson-Foulds (RF) distance to the best-known ML tree.

11

Dataset RAxML-NG speedup (x) compared to

RAxML ExaML IQTree

SongD1 1.79 1.37 3.20

MisoD2a NA 2.16 2.47

MisoD2b 2.77 1.73 4.04

WickD3a 1.68 1.25 2.59

WickD3b 1.82 1.33 1.64

XiD4 1.74 1.46 2.72

PrumD6 1.86 1.24 2.53

TarvD7 1.86 1.57 3.55

PeteD8 NA 1.14 1.95

ShiD9 1.47 0.94 3.86

StamD10 0.91 0.57 6.58

NagyA1 3.73 1.65 1.53

MisoA2 NA 1.93 1.54

WickA3 1.66 1.43 2.11

ChenA4 2.11 1.40 2.18

StruA5 3.11 NA 1.09

BoroA6 2.36 1.36 2.88

WhelA7 4.53 2.00 2.50

YangA8 2.95 1.86 2.38

ShenA9 1.78 1.32 1.18

KatzA10 NA 1.71 1.12

GitzA12 NA 1.09 1.07

Table 6: Average RAxML-NG speedups relative to RAxML, ExaML, and IQTree. NA = this dataset
cannot be analyzed due to job runtime limit (RAxML) or lack of Γ+I model support (ExaML).

12

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

KatzA10 GitzA12

BoroA6 WhelA7 YangA8 ShenA9

MisoA2 WickA3 ChenA4 StruA5

PeteD8 ShiD9 StamD10 NagyA1

WickD3b XiD4 PrumD6 TarvD7

SongD1 MisoD2a MisoD2b WickD3a

IQ
−

Tr
ee

R
A

xM
L

E
xa

M
L

R
A

xM
L−

N
G

IQ
−

Tr
ee

R
A

xM
L

E
xa

M
L

R
A

xM
L−

N
G

IQ
−

Tr
ee

R
A

xM
L

E
xa

M
L

R
A

xM
L−

N
G

IQ
−

Tr
ee

R
A

xM
L

E
xa

M
L

R
A

xM
L−

N
G

10,000

15,000

20,000

25,000

50,000

75,000

10,000

20,000

20,000

30,000

40,000

50,000

60,000

30,000

40,000

50,000

60,000

70,000

10,000

20,000

30,000

40,000

5,000

10,000

15,000

20,000

0

500

1,000

40,000

60,000

80,000

30,000

50,000

70,000

40,000

80,000

120,000

160,000

500

1,000

1,500

5,000

10,000

15,000

10,000

15,000

20,000

25,000

2,500

5,000

7,500

10,000

60,000

80,000

100,000

1,000

2,000

3,000

4,000

5,000

4,000

6,000

8,000

90,000

120,000

150,000

40,000

80,000

120,000

160,000

5,000

10,000

15,000

20,000

100,000

150,000

E
xe

cu
tio

n
tim

e
(s

)

ML inference tool IQ−Tree RAxML ExaML RAxML−NG

Figure 4: Wall-clock execution times in seconds (16 threads / 1 compute node).

13

●
●

●
● ●

●

●

●
●

● ●
● ●

●

● ●
● ●

● ●

●

● ● ●
●

● ● ●

TarvD7 ChenA4

PeteD8 YangA8

16 32 64 128 256 512 1024 16 32 64 128 256 512 1024

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

Number of CPU cores

P
ar

al
le

l e
ffi

ci
en

cy
 (

%
)

ML inference tool ● ExaML RAxML−NG IQTree

Figure 5: Strong scaling efficiency of RAxML-NG vs. ExaML on large phylogenomic datasets. On
PeteD8 dataset, IQTree-MPI runs converged to distinct final ML trees.

.

14

References
Biczok, R. et al. (2017). Two C++ libraries for counting trees on a phylogenetic terrace. bioRxiv .

Borowiec, M. L. et al. (2015). Extracting phylogenetic signal and accounting for bias in whole-
genome data sets supports the ctenophora as sister to remaining metazoa. BMC genomics,
16(1), 987.

Chen, M.-Y. et al. (2015). Selecting question-specific genes to reduce incongruence in phyloge-
nomics: A case study of jawed vertebrate backbone phylogeny. Systematic Biology , 64(6),
1104–1120.

Chernomor, O. et al. (2016). Terrace aware data structure for phylogenomic inference from super-
matrices. Systematic Biology , 65(6), 997–1008.

Duchene, D. A. et al. (2018). Linking branch lengths across loci provides the best fit for phylogenetic
inference. bioRxiv .

Felsenstein, J. (2004). Inferring phylogenies. Sinauer Associates Sunderland.

Gitzendanner, M. A. et al. (2018). Plastid phylogenomic analysis of green plants: A billion years
of evolutionary history. American Journal of Botany , 105(3), 291–301.

Izquierdo-Carrasco, F. et al. (2011). Algorithms, data structures, and numerics for likelihood-based
phylogenetic inference of huge trees. BMC bioinformatics, 12(1), 470.

Jukes, T. and Cantor, C. (1969). Evolution of protein molecules. In H. Munro, editor, Mammalian
Protein Metabolism, pages 21–132. Academic Press, New York, USA.

Kalyaanamoorthy, S. et al. (2017). Modelfinder: fast model selection for accurate phylogenetic
estimates. Nature methods, 14(6), 587.

Katz, L. A. and Grant, J. R. (2014). Taxon-rich phylogenomic analyses resolve the eukaryotic tree
of life and reveal the power of subsampling by sites. Systematic biology , 64(3), 406–415.

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions
through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2),
111–120.

Kobert, K. et al. (2014). The divisible load balance problem and its application to phylogenetic
inference. In D. Brown and B. Morgenstern, editors, Algorithms in Bioinformatics, volume 8701
of Lecture Notes in Computer Science, pages 204–216. Springer Berlin Heidelberg.

Kozlov, A. M. et al. (2015). ExaML version 3: a tool for phylogenomic analyses on supercomputers.
Bioinformatics, 31(15), 2577–2579.

Kozlov, O. (2018). Models, Optimizations, and Tools for Large-Scale Phylogenetic Inference, Han-
dling Sequence Uncertainty, and Taxonomic Validation. Ph.D. thesis, Karlsruher Institut für
Technologie (KIT).

Lemoine, F. et al. (2018). Renewing Felsenstein’s phylogenetic bootstrap in the era of big data.
Nature, 556(7702), 452–456.

Misof, B. et al. (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science,
346(6210), 763–767.

Morel, B. et al. (2018). ParGenes: a tool for massively parallel model selection and phylogenetic
tree inference on thousands of genes.

Nagy, L. G. et al. (2014). Latent homology and convergent regulatory evolution underlies the
repeated emergence of yeasts. Nature communications, 5, 4471.

Nguyen, L.-T. et al. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating
maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274.

Perron, U. et al. (2019). Modelling structural constraints on protein evolution via side-chain
conformational states. bioRxiv , page 530634.

15

Peters, R. S. et al. (2017). Evolutionary history of the hymenoptera. Current Biology , 27(7), 1013
– 1018.

Prum, R. O. et al. (2015). A comprehensive phylogeny of birds (Aves) using targeted next-
generation DNA sequencing. Nature, 526(7574), 569–573.

Sanderson, M. J. et al. (2011). Terraces in phylogenetic tree space. Science, 333(6041), 448–450.

Shen, X.-X. et al. (2016). Reconstructing the backbone of the saccharomycotina yeast phylogeny
using genome-scale data. G3: Genes, Genomes, Genetics, pages g3–116.

Shi, J. J. and Rabosky, D. L. (2015). Speciation dynamics during the global radiation of extant
bats. Evolution, 69(6), 1528–1545.

Song, S. et al. (2012). Resolving conflict in eutherian mammal phylogeny using phylogenomics and
the multispecies coalescent model. Proceedings of the National Academy of Sciences, 109(37),
14942–14947.

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with
thousands of taxa and mixed models. Bioinformatics, 22(21), 2688–2690.

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of
large phylogenies. Bioinformatics, 30(9), 1312–1313.

Stamatakis, A. and Aberer, A. (2013). Novel parallelization schemes for large-scale likelihood-based
phylogenetic inference. In Parallel Distributed Processing (IPDPS), 2013 IEEE 27th Interna-
tional Symposium on, pages 1195–1204.

Stamatakis, A. et al. (2010). Maximum likelihood analyses of 3,490 rbcl sequences: Scalability of
comprehensive inference versus group-specific taxon sampling. Evolutionary Bioinformatics, 6,
EBO.S4528.

Struck, T. H. et al. (2015). The evolution of annelids reveals two adaptive routes to the interstitial
realm. Current Biology , 25(15), 1993–1999.

Tarver, J. E. et al. (2016). The interrelationships of placental mammals and the limits of phyloge-
netic inference. Genome Biology and Evolution, 8(2), 330–344.

Whelan, N. V. et al. (2015). Error, signal, and the placement of Ctenophora sister to all other
animals. Proceedings of the National Academy of Sciences, 112(18), 5773–5778.

Wickett, N. J. et al. (2014). Phylotranscriptomic analysis of the origin and early diversification of
land plants. Proceedings of the National Academy of Sciences, 111(45), E4859–E4868.

Xi, Z. et al. (2014). Coalescent versus concatenation methods and the placement of amborella as
sister to water lilies. Systematic biology , 63(6), 919–932.

Yang, Y. et al. (2015). Dissecting molecular evolution in the highly diverse plant clade caryophyl-
lales using transcriptome sequencing. Molecular Biology and Evolution, 32(8), 2001–2014.

Yang, Z. (1995). A space-time process model for the evolution of DNA sequences. Genetics,
139(2), 993–1005.

Zhou, X. et al. (2018). Evaluating fast maximum likelihood-based phylogenetic programs using
empirical phylogenomic data sets. Molecular Biology and Evolution, 35(2), 486–503.

16

	New features and improvements
	Evolutionary model extensions
	New DNA models with flexible parametrization
	Flexible models for multi-state data
	Rate heterogeneity across sites
	Branch length linkage across partitions
	Per-rate scalers

	Search algorithm modifications
	Transfer bootstrap
	Phylogenetic terraces
	Performance and scalability
	Fine-grained parallelization with MPI and pthreads
	Load balancing
	Checkpointing
	Hardware autodetection and resource estimation

	Evaluation
	Experimental setup
	Test system configuration
	Datasets
	Evaluation strategy

	Results
	Search Efficiency
	Inference Times
	Scalability

