Antibody cross-reactivity accounts for widespread appearance of m¹ A in 5'UTRs

Grozhik et al.

Supplementary Information

Supplementary Figure 1. m¹ A mapping by immunoprecipitation and its effect on base-pairing

a, Earlier strategy for mapping m¹A. Earlier transcriptome-wide m¹A mapping approaches^{3,4} generated sequencing libraries from RNA fragments containing m¹A. To achieve this, RNA (black lines) was fragmented, immunoprecipitated using a m¹A antibody, and reverse transcribed using primers (green bars). $m¹A$ (red circles) predominantly causes termination of standard reverse transcription, and only a small fraction of cDNAs (grey lines) go through the m¹A residue. Although the termination site marks the position of the m¹A, the exact site of the reverse transcription termination is not preserved in these methods. This is because during cloning of the cDNA library, the second-strand cDNA is generated in a manner that uses RNase-H to nick the RNA template. This RNAse-H-generated nick produces an RNA primer (short black line) for second-strand synthesis. Following second-strand synthesis, the RNA primer and the 3' end of the first-strand cDNA are lost during end repair (i.e. blunting) of doublestranded cDNA ends. Thus, in earlier m¹A mapping approaches, the site where the reverse transcriptase terminates is lost, preventing m¹A residues from being detected at nucleotide resolution.

b, Peaks generated by earlier m¹A mapping approaches can be displaced from the m¹A site. Although the precise sites of reverse transcription terminations are not preserved in earlier m¹A mapping approaches, peaks (grey) were used to infer the presence of m¹A (red circles) in transcripts (black bar). If the m¹A is at an internal site, reads will be generated on either side of the m¹A. The resulting peak is likely to cover the m¹A site (right). The "peak midpoint," which was previously reported for these peaks³, is likely to be near the m¹A site. A different result happens if the modification is at the 5' end of mRNAs (left). In this case, because cDNA ends are not preserved (see **a**), peaks will be displaced downstream of the m¹A site and the peak midpoint will not reflect the location of the modified residue. Since the cDNA termination site is lost, there will be no way to identify modified sites at the 5' ends of transcripts. In contrast, $m¹A-miCLIP$ can detect either an both internal and 5' terminal modifications of the mRNA since the termination sites are preserved.

c, Peak troughs proposed to enhance m¹A mapping resolution in earlier approaches³. If an m¹A is located at an internal site in the mRNA (i.e. not at the transcription-start site), regions containing m¹A residues (red circle) can be narrowed down based on the regions of reduced read coverage, or "troughs," (box) within peaks (grey). Troughs are thought to occur at m¹A residues because cDNA generated by reverse transcription can be primed upstream of the m¹A residue, or downstream of the m¹A residue. However, troughs are a relatively nonspecific feature of RNA-seq and are especially difficult to distinguish from noise in low abundance or low coverage mRNAs.

d, Mechanism of the effect of N^1 -methylated adenine on reverse transcription. N^1 -methylated adenine leads to termination of reverse transcription or misincorporation of nucleotides because the *N*¹ methyl on the adenine base blocks formation of a hydrogen bond that is necessary to pair with thymine. As a result, N¹-methylated adenine and m¹A cause termination of reverse transcription, and any readthrough of reverse transcriptase through this modification is often accompanied by misincorporation of the complementary nucleotide.

37,286 **a** *28S rRNA* Unique reads Termination rate: 87% $0 -$ 1,122 $\frac{1}{2}$ 1,522 5,799 52% 25% A $\overline{\text{c}}$ $6%$ 0 ACCCGTCTTGAAACACGGACC G m A 1 17% A 1,322 **b** 12,213 *18S rRNA* 42,167 *28S rRNA* Unique reads 0^{\cdot} 0 AGCCTGCGGCTTAATTTGACTCAACAC **GGGAAACCTCA** AATAGGGAACGTGAGCTGGGTTTAGACCGTCGTGAGACAGGT m1acp3Y m 3 U Position 1,248 Position 4,530 **c** 56,422 *18S rRNA 18S rRNA 28S rRNA* 12,076 23,066 Unique reads 0 0 **GTTTTAT CGGTAAAG CAATGATTAGAGGTCTTGGGGCCGA** CCGTGGGTGGTGGTGCATGGCCGTTCTTAGTTGGTGGAGCGA **Pseudouridine** ac4C $\mathsf{m}^6\mathsf{A}$ Position 1,831 Position 1,337 Position 1,744 *28S rRNA* 58,013 *18S rRNA* 37,050 0 AACTTTGAAGGCGAAGTGGAGAAGGGTTCCATGTGAACAGC 0 Am m⁷G Position 2,401 Position 1,639 **d** Standard Standard Dimroth rearrangement position position $CH₃$ **HN** 1,200 $NH₂$ Non-treated Base, $CH₃$ 0 heat 1,200 50°C, water Absorbance (mAU) Absorbance (mAU) 0 R *N* -methylated ¹-methylated ^H N⁶-methylated adenine 1,200 adenine 50°C, base 0 1,200 75°C, water 0 1,200 75°C, base $0\frac{L}{0}$

Retention time (min)

0 m^1A and m^6A and m^1A and $\text{m}^1\text$

 $\mathsf{m}^1\mathsf{A}$ and $\mathsf{m}^6\mathsf{A}$

Supplementary Figure 2. Validation of misincorporation mapping

a, Misincorporation mapping detects m¹A in the 28S rRNA. Shown is the quantification of misincorporations described in **Fig. 1b**. As expected, the m¹ A residue at this position was marked by a high rate of misincorporations. 17% of the reads (grey) at this position showed an $A \rightarrow G$ transition, 6% of reads contained an $A \rightarrow C$ transition and most reads—52%—contained an $A \rightarrow T$ transition. Together, this misincorporation profile is characteristic of the reverse transcription signature of m¹A⁹. The detection of misincorporations was important for our study because the RNA-seq dataset we used for misincorporation mapping was cloned in a manner that did not preserve m¹A-induced reverse transcription terminations¹¹. Thus, we relied on misincorporations to map hard stop modifications like $m¹A$. This result demonstrates that misincorporation mapping can be used to map m¹A residues using a misincorporation profile that is typical of m^1A .

We considered that in our misincorporation mapping dataset, Dimroth rearrangement could have occurred, preventing the detection of m¹A residues. However, given our ability to identify m¹A in the 28S rRNA using this strategy, this appears unlikely. To estimate how much m¹A was lost during library preparation, we measured the termination rate seen in the *28S* rRNA. As can be seen, there is high coverage downstream of the m¹A. This drops substantially at the m¹A site, reflecting a read termination rate of ~87%. This is consistent with a near complete preservation of m¹A in this RNA. Thus, we reasoned that Dimroth rearrangement would not substantially impair our ability to detect m¹A in this dataset.

b, Misincorporation mapping detects other hard stop modifications. In addition to detecting the m¹A residue in the *28S* rRNA, misincorporation mapping reliably identified other hard stop modifications in rRNA. In the 18S rRNA, 1-methyl-3-(3-amino-3-carboxypropyl)pseudouridine (m¹Acp3Y) was marked by reads (grey) containing a high rate of misincorporations. Likewise, another hard stop modification, m³U, in the 28S rRNA, was also marked by misincorporations. Thus, misincorporation mapping can identify a variety of hard stop modifications.

c, Misincorporation mapping does not detect modifications that do not affect reverse transcription. To validate that modification mapping specifically detected hard stop modifications, we examined the misincorporation profiles of modifications in rRNA that are known not to affect reverse transcription. As expected, we found that four modifications that do not affect reverse transcription, including m⁶A and 2'-*O*-methyladenosine (Am) in the *18S* rRNA, and pseudouridine and m⁷ G in the *28S* rRNA, produced no misincorporations in the reads (grey) at their respective positions. Thus, misincorporation mapping is specific to hard stop modifications, and not modifications that do not affect reverse transcription.

d, m¹A is relatively stable under routine laboratory conditions, but unstable in the presence of base and heating. Shown is the m¹A to m⁶A conversion via the Dimroth rearrangement (left mechanism). Under basic conditions and high temperatures, m¹A can convert to m⁶A (right). Shown is an HPLC assay to detect conversion of m¹A (0.5 mM) to m⁶A in the following conditions: 25°C (water, 30 min), 50°C (water, 30 min), 75^oC (water, 30 min), 50^oC (10 mM sodium bicarbonate, pH 9.0, 30 min), 75^oC (10 mM sodium bicarbonate, pH 9.0, 30 min). Minimal conversion was seen except at 75° C in basic conditions. Under these conditions, \sim 50% conversion was seen. HPLC assay conditions were as previously described²³.

Supplementary Figure 3. Misincorporation mapping in mRNA

a, Selection of read depth criteria for misincorporation mapping. To detect modification-induced misincorporations throughout the transcriptome, we first examined the coverage depth of the ultra-deep RNA-seq dataset at all genomic positions. At positions that had coverage, many positions were covered by 50 to 500 unique reads. However, for our analysis, we chose to analyze the subset of nucleotides that were covered by 500 or more unique reads in order to maximize the sensitivity of detecting hard stop modifications in mRNA. Here, in total, approximately 8 million positions of each type of nucleotide were covered by 500 or more reads. Thus, many nucleotides throughout the transcriptome were able to be evaluated for hard stop modifications.

b, Examination of misincorporations in putative m¹A-containing mitochondrial transcripts. The indicated positions in *MT-ND5*, *MT-CO1*, *MT-CO2* and *MT-CO3* were identified as putative m¹ A sites in two previous studies. A robust m¹A misincorporation signature was seen for the *MT-ND5* site but not at the m¹A sites in the other genes. Thus, with the exception of *MT-ND5*, misincorporation mapping indicates that these mRNAs lack high stoichiometry m¹A sites. Of note, the read coverage in all genes was exceptionally high, allowing for sufficient read depth needed to identify low stoichiometry m¹A sites. The exact misincorporation rate at each m¹ A site is listed in **Supplementary Table 3** for each putative $m¹A$ -containing mitochondrial mRNA. Position of putative m¹A sites for each transcript is indicated with a red dot.

c, Examination of misincorporations on high-stoichiometry m¹ A-containing transcripts. Previously identified m¹ A containing transcripts, *CCDC7*, *DLST*, and *STK16*, were shown in an earlier study to contain m¹A residues of greater than 50% stoichiometry. However, no adenosines in these transcripts showed misincorporation profiles that met our filtering criteria (see **Methods**), despite high depth of coverage (black, transcript models; white arrows, direction of transcription). Thus, misincorporation mapping did not detect m¹A residues in the transcripts previously reported to contain m¹A at high stoichiometry.

Supplementary Figure 4. m¹ A-miCLIP validation with the MBL m¹ A antibody

a, The MBL m¹A antibody detects m¹A RNA. Although the specificity of the m¹A antibody was previously validated^{3,4}, we wanted to validate its specificity in the context of the m¹A-miCLIP protocol. To do this, we incubated the antibody with total fragmented RNA from HEK293T cells in the presence of 100 µM of various competitor nucleotides. Then, the antibody was crosslinked to the RNA and the crosslinked antibody-RNA complexes were radiolabeled and purified by SDS-PAGE and membrane transfer. While some competitor nucleotides weakly inhibited antibody-RNA crosslinking, only m¹A abolished all crosslinking. Moreover, we did not readily detect binding of the antibody to these other nucleotides when the RNA was subjected to sequencing (see **b**).

b, m¹A-miCLIP detects the m¹A residue in the 28S rRNA. To further assess the specificity of m¹AmiCLIP, we aligned unique reads from m¹A-miCLIP (light blue) or earlier m¹A mapping approaches (m¹A-seq³, grey; m¹A-ID-seq⁴, yellow) to rRNA. Like earlier m¹A mapping approaches, the m¹AmiCLIP protocol resulted a striking accumulation of unique reads at the m¹A residue at position 1,322 (red circle) of the 28S rRNA. Notably, no enrichment of reads was observed at the m⁶A residue at position 4,220 (purple circle), or anywhere else, confirming a lack of cross-reactivity of the antibody to N^6 -methylated adenine or other modified nucleotides, which are abundant in rRNA. Moreover, while all protocols resulted in read accumulations at the m¹A residue, the m¹A-miCLIP peak was markedly narrower than the peaks produced by earlier strategies. Furthermore, in m¹A-miCLIP, this m¹A residue was marked by many read terminations (dark blue) at the +1 position of the m¹A residue. Thus, $m¹A$ -miCLIP marks $m¹A$ residues with high specificity and resolution.

c, m^1 A-miCLIP detects m^1 A in tRNAs. To validate the specificity of m^1 A-miCLIP further, we examined tRNAs (black bars; white arrows, direction of transcription), which contain conserved m¹A residues (red circles, MODOMICS annotations⁴⁵). Here, two example tRNAs are shown. Like in the 28S rRNA, in these tRNAs, m¹A-miCLIP reads (light blue) and terminations (dark blue) marked m¹A residues with high specificity and resolution.

d, miCLIP does not cause rearrangement of m¹A to m⁶A. To determine whether the miCLIP protocol may miss detection of m¹A residues due to Dimroth rearrangement of m¹A to m⁶A, we examined the presence of potential m⁶A at the 28S rRNA m¹A residue position. While the conserved m⁶A residue was marked by a high enrichment of accumulated m⁶A-miCLIP reads (purple circle), reads found at the position of the m¹A residue (red circle) were present at background level. This suggests minimal conversion of $m¹A$ to $m⁶A$ during the miCLIP protocol.

Supplementary Figure 5. m¹ A-miCLIP with the MBL antibody enriches for reads close to transcription-start nucleotide

a, m¹A-miCLIP replicate correlation. The x and y axes of the scatter plots represent normalized read coverage in 100 nt bins on the human genome in replicate 1 (x) or replicate 2 (y) of m¹A-miCLIP performed in HEK293T cells. The replicates show highly reproducible read coverage across the genome (*r* = 0.89, Pearson correlation).

b, Metagene distribution of m¹A-miCLIP clusters in mouse brain transcripts. The density of m¹AmiCLIP clusters in mouse brain mRNAs was normalized to RNA-seq coverage (see **Methods**) and plotted on a virtual transcript (start, start codon; stop, stop codon). Like in human transcripts, m¹AmiCLIP clusters in mouse brain mRNA were highly enriched in the 5'UTR, and particularly, next to the transcription-start site.

c, Characterization of m¹A-miCLIP terminations at positions +2 and +5 relative to the putative site of antibody crosslinking. While many transcripts with m¹A-miCLIP clusters (light blue) in their 5'UTR showed enrichment of read terminations (dark blue) at the +1 position relative to the initiating nucleotide, certain transcripts had additional terminations between positions +2 and +5. We considered the possibility that these terminations reflect arrests of cDNA synthesis due to the presence of crosslinked antibody peptide on adenosine. Indeed, this was likely the case, as we observed that on certain transcripts like *HNRNPC* and *COX8A*, even though terminations occurred between positions +2 and +5 relative to the initiating adenosine, the only adenosine near terminations was at position 0 (green circles). Indeed, antibody crosslinks at transcription-start sites have been previously shown to generate read terminations at positions +2 to +5 relative to the transcription-start site, while the antibody crosslinking site was only at the transcription-start site¹⁹.

Supplementary Figure 6. Comparison of m¹ A-miCLIP (MBL antibody) and earlier m¹ A mapping strategies

a, m¹A-miCLIP and the earlier m¹A-Seq mapping strategy mark similar mRNAs. To compare m¹AmiCLIP with previous maps, we first identified unique transcripts containing m¹A-miCLIP or m¹A-Seq unique read coverage. Of the 20,790 transcripts containing m¹A-miCLIP coverage, more than ~70% also showed m¹A-Seq coverage. This demonstrates that overall, the m¹A-miCLIP profile of the transcriptome is similar to that of m 1 A-Seq.

b, m¹A-miCLIP read distribution differs from earlier mapping methods. Here, we wanted to demonstrate that while m¹A-miCLIP (light blue) and earlier methods (m¹A-Seq, dark grey; m¹A-ID-Seq, yellow) have coverage on similar transcripts, m¹A-miCLIP marks transcription-start sites (green circles) due to differences in read distribution. The m¹A-miCLIP, m¹A-Seq, and m¹A-ID-Seq coverage of four HEK293T transcripts, *ATF4*, *UBB*, *COX8A*, and *MRPL9* (black bars; white arrows, direction of transcription), are shown. While all four transcripts demonstrated predominant peaks in their 5'UTRs in all three mapping protocols (see light grey RNA-Seq to note m¹A peak enrichment), m¹A-miCLIP clearly recognized adenine at transcription-start sites (see insets). This is because earlier mapping strategies did not preserve the full-length cDNA produced by reverse transcription of immunoprecipitated RNA fragments, resulting in a loss of detection of RNA 5' ends (see Supplementary Figure 1a). m¹A-miCLIP, on the other hand, preserves the full-length cDNA (see Fig. **2a**), resulting in ready detection of transcription start sties. Taken together, these data demonstrate that the peaks identified by earlier m¹A mapping approaches are likely to be derived from adeninecontaining extended cap structures in mRNAs.

c, Top, flow chart showing the filtering of non-validated m¹A sites from the Li *et al.* study. Bottom, Venn diagram showing overlap of final list of m¹A sites with transcriptional start sites inferred from CAGE-seq and m⁶A_m mapping data. Nearly 40% of putative m¹A sites are at transcriptional start sites.