Supplementary information

Supplementary Fig. 1 Identification of interacting proteins with m¹A modified probes. a The m¹A and m⁶A contents of m¹A probes from human 28S rRNA gene were quantified by LC-MS/MS. **b** PAGE gel resolution of immunoprecipitated m¹A probes and its associated proteins from Raw264.7 and HEK293T by silver staining. Different bands were analyzed by MS. **c** PAGE gel resolution of immunoprecipitated YTHDF3 proteins from HEK293T by silver staining. Red * indicates the YTHDF3 bands. **d-f** Overlap of control probes and m¹A probes associated proteins in Raw264.7 (**d**), HEK293T (**e**), and overlap of common associated protein between Raw264.7 and HEK293T (**f**). **g** IP and immunoblot analyses of the indicated probes in trophoblast HTR8/SVneo transfected with YTHDF3 plasmid. Data are shown as representative photographs.

Supplementary Fig. 2 Transcriptome analysis of trophoblast upon YTHDF3 knockdown.

Graphs of the significantly changed genes in HTR-8/SVneo upon YTHDF3 knockdown.

Supplementary Fig. 3 Gene Ontology (GO) and KEGG analysis of YTHDF3-binding mRNAs. a Confocal microscopy of HTR-8/SVneo treated in hypoxia for 12 h or stimulated with LPS (100ng/mL) for 6 h as indicated, then stained with YTHDF3 antibodies. Scale bar, 10 μm. **b** Gel electrophoresis analysis of cDNA treated as indicated for removing free RT primers and size selection. **c** Gel image of amplified cDNA libraries and extraction of the indicated size

ranges. **d,e** Overlap of two biological replicates for iCLIP in normoxia (**d**) or hypoxia (**e**) HTR-8/SVneo cells. **f** Overlap of transcripts identified by iCLIP of YTHDF3 in normoxia or hypoxia HTR-8/SVneo cells. Numbers in **d,e,f** show the sum of genes identified in each sample. **g,h** GO and KEGG analysis of the enriched YTHDF3-binding RNAs in normoxia cells but not in that of the hypoxia cells. **i,j** GO and KEGG analysis of the enriched YTHDF3-bound RNAs in hypoxia cell but not in that of normoxia cell. Red * indicates the enriched signaling pathway changed upon hypoxia. Data are representative of three independent experiments with similar results (**a,b,c**).

Supplementary Fig. 4 m¹A map of trophoblast induced by hypoxia identified by m¹A-seq. a Histograms showing the changes in m¹A enrichment in the hypoxia versus normoxia treated HTR-8/SVneo cells. b Metagene plots showing the average distribution of m¹A peaks identified across all transcripts in HTR8/SVneo treated with or without hypoxia for 12 h. c,d GO and KEGG analysis of the transcripts with disappeared m¹A modification in HTR-8/SVneo cells upon hypoxia. e,f GO and KEGG analysis of the transcripts of the transcripts with new occurred m¹A modification in HTR-8/SVneo cells upon hypoxia. g Enrichment fold of the indicated RNA transcripts in m⁶A IP versus RNA input control. Red * indicates the enriched signaling pathway upon hypoxia. NS: not significant; **p<0.01 (Student's t-test). Data are representative of three independent experiments (mean and s.d. of

technical triplicates (g)).

Supplementary Fig. 5 ALKBH5 knockdown did not affect the expression of IGF1R. a RNA lifetime for IGF1R in HTR-8/SVneo transfected with shControl or shALKBH3 was determined by monitoring transcript abundance after transcription inhibition (TI). **b** qRT-PCR and immunoblot analysis of IGF1R mRNA in HTR-8/SVneo transfected with shControl or shALKBH5 for 72 h. NS: not significant. *p<0.05 (Student's t-test). Data are representative of three independent experiments (mean and s.d. of technical triplicates (**a**,**b**)).

Supplementary Fig. 6 IGF1R mRNA was efficiently knocked down by RNA interfering. a qRT-PCR analysis of the IGF1R mRNA in HTR8/SVneo transfected with IGF1R siRNA #1 or #2 as indicated for 48 h. **b** qRT-PCR analysis of the MMP2 mRNA in HTR8/SVneo transfected with IGF1R siRNA #1 for 48 h. **c** Immunoblot analysis of the IGF1R protein in HTR8/SVneo transfected with IGF1R plasmid for 48 h. **d** qRT-PCR analysis of the MMP2 mRNA in HTR8/SVneo transfected with IGF1R plasmid for 48 h. **d** qRT-PCR analysis of the MMP2 mRNA in HTR8/SVneo transfected with IGF1R plasmid for 48 h. **e** main and s.d. of technical triplicates (**a**, **b**, **d**)).

	Raw264.7			HEK293T		
Gene Name	Score	Matches	emPAI	Score	Matches	emPAI
ATP synthase subunit alpha,	380	24(17)	0.8	41	4(2)	0.11
mitochondrial (ATP5A1)	309	24(17)	0.8	41	4(2)	0.11
78 kDa glucose-regulated protein	265	20(12)	0.56	20	4(2)	0.00
(HSPA5)	265 20(12)	0.30	32	4(2)	0.09	
Transcriptional activator protein	122	7(6)	0.44	38	$\mathbf{Q}(\mathbf{A})$	0.44
Pur-alpha (PURA)	132	7(0)	7(6) 0.44	30	0(4)	0.44
Heterogeneous nuclear	116	$\mathbf{Q}(\mathbf{A})$	0.19	22	2 (2)	0.00
ribonucleoprotein M (HNRNPM)	116 8(4)	8(4)	0.18	23	2(2)	0.09
ADP/ATP translocase 2 (SLC25A5)	90	14(4)	0.33	39	4(1)	0.1
RNA-binding protein 28 (RBM28)	65	6(2)	0.08	17	6(1)	0.04
Poly(rC)-binding protein 1 (PCBP1)	65	7(3)	0.18	152	6(5)	0.4
YTH domain-containing family		0.16	165	12(10)	0.40	
protein 3 (YTHDF3)	33	5(3)	0.10	103	13(10)	0.49
RuvB-like 2 (RUVBL2)	34	3(2)	0.06	28	5(1)	0.06

Supplementary Table S1 Overlap of proteins pulled down by m¹A probe between Raw264.7 and HEK293T.

	Normoxia			Нурохіа		
	Replicate 1	Replicate 2		Replicate 1	Replicate 2	
Input	62,513,192	76,072,511		71,932,433	40,094,128	
Mapped	47,366,424	56,910,397		55,228,446	28,010,060	
Mapped/input	75.77%	74.81%		76.78%	69.86%	
Peaks	889	1,076		589	567	
Genes	168	240		156	170	

Supplementary Table S2 Flowchart of YTHDF3 iCLIP-seq alignment and processing pipeline, resulting in peaks and genes.

	Normoxia		Нурохіа		
	Replicate 1 IP	Replicate 2 IP	Replicate 1 IP	Replicate 2 IP	
Input	50,822,999	42,879,965	68,974,324	70,008,453	
Mapped	48,913,621	41,257,415	66,451,984	67,095,701	
Mapped/input	96.24%	96.22%	96.34%	95.84%	
Peaks	580		190		
Genes	489		181		

Supplementary Table S3 Flowchart of m¹A-seq alignment and processing pipeline, resulting in peaks and genes.

Human Genes		siRNA sequences (5' to 3')
IGF1R	sense #1	GCGGAGAGAUGUCAUGCAATT
	antisense #1	UUGCAUGACAUCUCUCCGCTT
	sense #2	GCUUCACCGUUUACUACAATT
	antisense #2	UUGUAGUAAACGGUGAAGCTT
Negative control	sense	UUCUCCGAACGUGUCACGUTT
	antisense	ACGUGACACGUUCGGAGAATT

Supplementary Table S4 siRNA sequences used for RNA interference

Human Genes		shRNA sequences (5' to 3')
V.1 102	target seq #1	CCTATGGACAAATGAGTAA
тпајз	target seq #2	GCAGTGGTATGACTAGCAT
Alkbh3	target seq	GGAACAGCTTTGTCAAGAT
Alkbh5	target seq	TCGTGTCCGTGTCCTTCTT
Trmt6	target seq	CTGAAACGTGAAGATGTGT
Negative control	target seq	TTCTCCGAACGTGTCACGT

Supplementary Table S5 Lentiviral shRNA sequences used for gene interference

Human Genes		Primer sequences (5' to 3')
YTHDF3	Forward	TGACAACAAACCGGTTACCA
	Reverse	TGTTTCTATTTCTCTCCCTACGC
MMDO	Forward	CCCACTGCGGTTTTCTCGAAT
	Reverse	CAAAGGGGTATCCATCGCCAT
MMDO	Forward	TCCACCCTTGTGCTCTTCCC
MMP9	Reverse	CTGCCACCCGAGTGTAACCAT
	Forward	AGTGCTGTATGCCTCTGTGAACC
IGFIK	Reverse	ATAGACCATCCCAAACGACCC
19CDN/A	Forward	ACCCGTTGAACCCCATTCGTGA
	Reverse	GCCTCACTAAACCATCCAATCGG
UDDT	Forward	CCTGGCGTCGTGATTAGTGAT
	Reverse	AGACGTTCAGTCCTGTCCATAA
TNIC2	Forward	CAGGGGTGGTAAAGGACGC
11055	Reverse	GGAGGGCTCCATTAAAGCTGAA
COV18	Forward	AAAGCGTGGAAGGAGCTGAA
50710	Reverse	CGGTACTTGTAGTTGGGGTGGT
NEATC2	Forward	TATTTCGCACATCTTCATTACC
MFAICS	Reverse	CCCTCGGCTACCTTCAGT
САРДИ	Forward	GCCAAGGTCATCCATGACAACTTTGG
GAPDH	Reverse	GCCTGCTTCACCACCTTCTTGATGTC
Acth	Forward	CATGTACGTTGCTATCCAGGC
ACID	Reverse	CTCCTTAATGTCACGCACGAT

Supplementary Table S6 Primers used for qRT-PCR

Human	Genes	Primer sequences (5' to 3')
YTHDF3 —	Forward	CCGCTCGAGATGTCAGCCACTAGCGTGGA
	Reverse	GGGAAGCTTTTATTGTTTGTTTCTATTTCTCTCC
VTUDE2	Forward	CCGCTCGAGATGTCGGCCAGCAGCCTCTT
Reverse	Reverse	GCCGGTACCTTATTTCCCACGACCTTGACGT
YTHDF1 Forv Rev	Forward	CCGCTCGAGATGTCGGCCACCAGCGTGGA
	Reverse	GCCGGTACCTCATTGTTTGTTTCGACTCTGCC
	Forward	CCGGAATTCATGAAGTCTGGCTCCGGAGGAGG
Re	Reverse	CGCGGATCCTCAGCAGGTCGAAGACTGGGGC
ALKBH3	Forward	ATAAGAATGCGGCCGCCAATGGAGGAAAAAAGAC
		GGCGAG
	Reverse	CACGGGAAGCTTTCACCAGGGTGCCCCTCGAG

Supplementary Table S7 PCR primers used for human genes cloning