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SUMMARY
SARS-CoV-2 genomic and subgenomicRNA (sgRNA) transcripts hijack the host cell’smachinery. Subcellular
localization of its viral RNA could, thus, play important roles in viral replication and host antiviral immune
response. We perform computational modeling of SARS-CoV-2 viral RNA subcellular residency across eight
subcellular neighborhoods. We compare hundreds of SARS-CoV-2 genomes with the human transcriptome
and other coronaviruses. We predict the SARS-CoV-2 RNA genome and sgRNAs to be enriched toward the
host mitochondrial matrix and nucleolus, and that the 50 and 30 viral untranslated regions contain the stron-
gest, most distinct localization signals. We interpret the mitochondrial residency signal as an indicator of
intracellular RNA trafficking with respect to double-membrane vesicles, a critical stage in the coronavirus
life cycle. Our computational analysis serves as a hypothesis generation tool to suggest models for SARS-
CoV-2 biology and inform experimental efforts to combat the virus. A record of this paper’s Transparent
Peer Review process is included in the Supplemental Information.
INTRODUCTION

COVID-19 (coronavirus disease 2019) has become a global

pandemic, fueled by the rapid spread of the coronavirus

SARS-CoV-2 (severe acute respiratory syndrome coronavirus

2), a positive-strand RNA virus (Wu et al., 2020a; Sanche et al.,

2020). The scientific community is actively trying to understand

SARS-CoV-2’s biological mechanisms and effects. Here, we

computationally analyze the subcellular localization patterns of

SARS-CoV-2 RNA transcripts. Our results suggest potential av-

enues for experimental validation and follow-up, while providing

a template for in silico analyses of viral RNA.

RNA subcellular localization is critical to a myriad of cellular

processes (Ryder and Lerit, 2018; Chin and Lécuyer, 2017; Bux-

baum et al., 2015). Researchers have also discovered that RNA

localization plays a significant role in the life cycle of viruses, with

functions ranging from regulating sites of virion assembly

(Becker and Sherer, 2017) to disrupting host mitochondrial func-

tion (Somasundaran et al., 1994). However, the subcellular local-

ization of SARS-CoV-2 (and other conronavirus) RNA is largely

unexplored. Gaining a better understanding of the behavior

and localization of SARS-CoV-2’s RNA genome and transcripts

can lead to a better understanding of its function and pathoge-

nicity, potentially revealing targetable mechanisms.

To computationally study this aspect of SARS-CoV-2 biology,

we built upon our recent work developing RNA-GPS, a state-of-
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the-art computational model for predicting high-resolution RNA

localization in human cells (Wu et al., 2020b). RNA-GPS was

trained on transcriptome-wide localization patterns of human

RNAs across eight subcellular landmarks (Fazal et al., 2019).

RNA-GPS’s strong performance, coupled with viruses’ depen-

dence on hijacking and repurposing existing cell machinery for

reproduction, suggests that RNA-GPS could provide insights

into SARS-CoV-2’s localization behavior and can focus future

experimental efforts.

We use RNA-GPS to interrogate the dominant subcellular

residency patterns of SARS-CoV-2’s genome, which spans

approximately 30 kilobases of single-stranded positive-sense

RNA (Kim et al., 2020) (Figure 1A). RNA-GPS predicts that

SARS-CoV-2 and the transcripts it forms have enriched resi-

dency at the nucleolus and the mitochondria. We note that

our analysis may suggest potential localization mechanisms

for SARS-CoV-2, rather than direct physical localization, partic-

ularly with regard to our mitochondrial prediction. Comparison

of SARS-CoV-2’s predicted residency with that of other human

coronaviruses, including strains causing the common cold,

Middle East respiratory syndrome (MERS), and the SARS

outbreak of 2003, shows that SARS-CoV-2 exhibits a stronger

mitochondrial and nuclear residency signal than a large major-

ity of its coronavirus relatives. We additionally find that this res-

idency signal appears to be driven by the 50 and 30 ends of the

viral genome. We conclude by connecting our predictions to
blished by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Depictions of the SARS-CoV-2 Genome, the Eight Compartments that RNA-GPS Predicts Viral Transcript Residency to, and the

Predicted Residencies for SARS-CoV-2 sgRNAs and its 50/CDS/30 Sequence Segments

(A and B) The SARS-CoV-2 genome produces a series of sub-genomic RNAs (sgRNAs), each encoding one or more genes or proteins (A). These sgRNAs share a

common leader 50 sequence and a common trailing 30 UTR sequence (arrow blocks). For each sgRNA, RNA-GPS predicts residency to each compartment in (B).

Italicized text indicates the APEX2 fusion protein used to measure transcripts corresponding to each localization (see Table S1).

(C and D) (C) Heatmap of rank scores, indicating how strongly each sgRNA (rows) is predicted to exhibit subcellular residency at each compartment (columns),

compared with endogenous human transcripts measured to localize to that compartment. Colors indicate rank scores; color scale is shared across all heatmaps.

Most sgRNAs share similar residency patterns, exhibiting statistically significant enrichment toward the mitochondrial matrix and nucleolus (see Table S3). We

also computed these rank scores against a baseline of other coronavirus residency signals (D). SARS-CoV-2 exhibits a stronger mitochondrial matrix residency

signal than most other coronaviruses, along with greater overall nuclear residency, particularly at the nucleolus. For context, coronaviruses are generally pre-

dicted to have residency at the nucleolus, mitochondrial matrix, and ERmembrane (see Figure S2). These predictions are also consistent across different models

(see Figure S3) and negative-strand SARS-CoV-2 sgRNA precursors (see Figure S4).

(E) Shows the predicted residency rank scores for shared 50 and 30 segments and an averaged residency rank score for the variable coding segments. Even on

their own, the short �90–250 base pair 50 and 30 segments carry mitochondrial and nucleolar residency signals.
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known RNA and viral biology and proposing possible explana-

tory mechanisms for previously observed phenomena. Our

findings entreat experimental validation and serve as a frame-

work for applying machine learning for principled hypothesis

generation in viral biology.

RESULTS

We leverage our recent work developing RNA-GPS, a computa-

tional model predicting high-resolution RNA subcellular localiza-

tion in human cells (Wu et al., 2020b). Our model was built using

APEX-seq data, which fuses the APEX2 (engineered ascorbate

peroxidase, version 2) protein to various protein localization se-

quences (Figure 1B; Table S1) to guide APEX2 to each subcellu-

lar region for subsequent proximity biotinylation of nearby RNAs

(Fazal et al., 2019). The resultant transcripts captured and

measured at the nucleolus, for example, are transcripts proximal

to APEX2 in the nucleolus, as well as those proximal to APEX2

throughout its entire lifecycle, including its transport to the nucle-

olus. Such ‘‘en route’’ transcripts constitute a small proportion of

total transcripts, except in the notable case of the mitochondrial

matrix COX4 marker (Richter-Dennerlein et al., 2016), which

picks up a sizable proportion of nuclear-encoded transcripts

as it is imported to the mitochondria (Figure S1A). Though this

is surprising, these nuclear-encoded, mitochondrial-enriched

transcripts are reproducibly distinct from noise (Figures S1B

and S1C) and actually enrich for cytoskeletal and intracellular

transport processes (Figure S1D). For the sake of brevity, we

will refer to these measurements using their final destinations,

as confirmed by imaging: the cytosol, endoplasmic reticulum

(ER), mitochondrial matrix, outer mitochondrial membrane, nu-

cleus, nucleolus, nuclear lamina, and nuclear pore. RNA-GPS

predicts localization to each of these eight neighborhoods

(Figure 1B).

Although RNA-GPS is trained on human, not viral, RNA tran-

scripts, its ability to generalize across cell types not used in

training (Wu et al., 2020b), combined with the fact that viruses

commandeer human cellular machinery, suggests that it offers

a reasonable hypothesis of viral transcript-localization behavior

given currently available data. Nonetheless, there is inherent un-

certainty associated with generalizing our model across species,

and we use the term dominant subcellular residency to indicate

this predictive uncertainty where appropriate.

We consider viral transcript subcellular residency predictions

to each compartment averaged across all released and anno-

tated SARS-CoV-2 genomes available as of April 6, 2020 (n =

213) on GenBank (NCBI Resource Coordinators, 2018). SARS-

CoV-2 is believed to enter the cell as a positive-strand genomic

RNA, subsequently forming 11 positive-strand subgenomic RNA

(sgRNA) transcripts encoding different open reading frames and

sharing the same 50 leader sequence and 30 untranslated region

(UTR) (Figure 1A) (Kim et al., 2020). Within each viral genome, we

predict the residency of each sgRNA produced from the primary

SARS-CoV-2 genome.

To better understand how strong these predicted residency

probabilities are in a meaningful biological context, we frame

them relative to predictions for other relevant baseline transcript

sequences. We consider two such baselines: (1) the distribution

of model predictions on transcripts exhibiting significant locali-
104 Cell Systems 11, 102–108, July 22, 2020
zation within the human HEK293T cell line (n = 366 transcripts),

as measured by APEX-seq (Fazal et al., 2019), and (2) the distri-

bution of model predictions on transcripts derived from human

coronaviruses, excluding SARS-CoV-2 (n = 191 genomes, span-

ning diseases from the common cold to MERS, Table S2). The

human baseline quantifies the strength of RNA residency signals

in SARS-CoV-2 relative to naturally occurring human transcripts

with well-characterized localization behaviors. The coronavirus

baseline focuses on differences in the transcript residency

behavior of SARS-CoV-2 relative to similar viral specimens—dif-

ferences that may help researchers focus on the peculiarities of

this virus. For both baselines, we calculate the proportion of the

baseline distribution that the SARS-CoV-2 subcellular residency

prediction exceeds, which we refer to as a rank score. For

example, a residency rank score of 0.6 for the nucleolus relative

to human transcripts suggests that the particular viral RNA is

more likely to have been picked up by the nucleolus APEX-seq

marker compared with 60% of human RNAs that are empirically

measured to do so.

SARS-CoV-2 RNA Subcellular Residency Patterns
We find that, compared to transcripts with known localizations in

human cells, SARS-CoV-2 has a notable residency signal toward

the nucleolus, as well as the mitochondrial matrix (Figure 1C).

These residency signals are consistent across different sgRNAs

encoded by the virus (shown in each row of Figure 1C) and repre-

sent statistically significant predicted residency (Table S3). The

nucleolus is known to play a prominent role in the viral life cycle,

even for viruses that primarily replicate in the cytoplasm as

SARS-CoV-2 presumably does (Salvetti and Greco, 2014). While

someRNA viruses like human immunodeficiency virus (HIV) have

been reported to localize RNA to the mitochondria (Somasun-

daran et al., 1994), there has not been direct evidence that

SARS-CoV-2 does this. As previously discussed, since much

of the APEX-seq mitochondrial data used to train RNA-GPS

actually consists of nuclear-encoded transcripts likely picked

up as the APEX-COX4 fusion protein is transported to the mito-

chondria, we hypothesize that our predicted mitochondrial resi-

dency is alluding to similarity in localization pathways, rather

than localization destination.

In addition to framing our localization results in the context of

endogenous human transcripts, we also compare predicted res-

idency of SARS-CoV-2 sgRNAswith that of other human corona-

viruses (Figure 1D). Here, we observe similar overall trends in our

residency predictions. Consistent with the comparison with hu-

man transcripts, we find that the SARS-CoV-2mitochondrial ma-

trix residency signal is stronger than that of many other corona-

viruses. Additionally, we see an overall pattern suggesting that

SARS-CoV-2 may have a greater affinity for nuclear neighbor-

hoods (nuclear pore, nucleus, nucleolus, and nuclear lamina)

compared to other coronaviruses.

We also compared the dominant subcellular residency pat-

terns of the coronavirus family (excluding SARS-CoV-2) with

human transcripts using RNA-GPS. We found that the most

prominent residency signals for general human coronaviruses

pointed toward the nucleolus, mitochondrial matrix, and ER

membrane (Figure S2). Overall, our computational analysis sug-

gests that SARS-CoV-2’s predicted sgRNA transcript residency

enriching for the mitochondrial matrix and nucleolus may be
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Figure 2. Validation of SARS-CoV-2 Residency Predictions
(A) RNA-GPS predictions for the human cytomegalovirus b2.7 transcript,

which has been shown to localize to the inner mitochondrial membrane. RNA-

GPS correctly predicts its residency to the closest compartment it has been

trained on—the mitochondrial matrix. This provides support that RNA-GPS

can make reasonable predictions on viral RNA.

(B) To evaluate the effect of the potentially noisy mitochondrial examples in our

APEX-seq training set on predicted SARS-CoV-2 residencies, we trained a

‘‘denoised’’ variant of RNA-GPS on a subsetted dataset that excludes these

examples. This denoised model predicts the same residency pattern for the

three components of the SARS-CoV-2 sgRNAs (compare with Figure 1E). For

additional analysis of the mitochondrial dataset and predictions, see Fig-

ure S1.
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amplifications of behaviors that were already present in

coronaviruses.

While direct experimental data measuring coronavirus sgRNA

transcript localization is not currently available, we sought to vali-

date our predictions on other human viruses with known subcel-

lular localizations. After conducting a systematic literature

search, we found one such example: the human cytomegalo-

virus (CMV) b2.7 mRNA transcript, which localizes to the inner

mitochondrial membrane (Williamson et al., 2012) and is approx-

imately 2.5 kilobases long. RNA-GPS predicts this transcript to

reside at the mitochondrial matrix with a rank score of 0.81; no

other compartments have a rank score exceeding 0.5 (Figure 2A).

Thus, the algorithm’s residency prediction is in close agreement

with experimental evidence for b2.7 mRNA localization. While

large-scale comparisons are not currently feasible due to lack

of datasets measuring viral transcript localization, this example

provides some reassurance that RNA-GPS’ predicted viral resi-

dencies are reasonable.

To further validate the robustness of these results, we also

trained a different predictive algorithm (a recurrent neural

network; see STAR Methods for additional details) on the

APEX-seq data and performed a similar set of experiments,

comparing SARS-CoV-2 dominant subcellular residency predic-

tions with human and coronavirus baselines (Figures S3A and

S3B). This alternative model also predicts strong mitochondrial
matrix and nucleolus residency for SARS-CoV-2. Since this algo-

rithm uses a very different modeling strategy from RNA-GPS and

nonetheless converges to similar findings, this suggests that the

mitochondrial matrix and nucleolus residency predictions are not

artifacts of a particular computational modeling strategy, but

rather arise from a consistent signal in the data, thus increasing

our confidence in our findings.

In addition to evaluating robustness of our results to modeling

strategies, we also evaluated robustness with respect to the

APEX-seq data used to train the models. As we previously

mentioned, many APEX-seq transcripts used to train RNA-

GPS’s mitochondrial predictions are actually nuclear encoded.

These transcripts exhibited relatively low (albeit significant)

enrichment compared with transcripts natively encoded in the

mitochondrial genome. To ensure that our results have not

been driven by potentially noisy data in this regime, we excluded

nuclear-encoded, ‘‘noncanonical’’ mitochondrial matrix tran-

scripts with relatively low APEX-seq enrichment signal (lowest

20% of log-fold-change enrichment scores) and retrained

RNA-GPS on this adjusted dataset. This ‘‘denoised’’ model reca-

pitulates the sameSARS-CoV-2 residency toward themitochon-

drial matrix and nucleolus (Figure 2B), suggesting that our pre-

dictions are robust to potential noise in the training data. In

summary, our predicted residencies are robust across different

modeling strategies and across variation in the data used to train

these models.

SARS-CoV-2 Negative-Strand RNA Also Shows
Residency to Mitochondria and Nucleolus
During their replication life cycle, coronaviruses like SARS-CoV-

2 copy their positive-strand RNA to create a negative-strand

RNA that serves as the template for viral ‘‘transcription’’ and pro-

duction of sgRNAs (Wu and Brian, 2010). We applied RNA-GPS

to the negative-strand SARS-CoV-2 sgRNA precursors and

discovered that they also exhibit residency to the mitochondrial

matrix and nucleolus (Figure S4). This result suggests that the

sequence features driving these residency patterns are indepen-

dently present in both positive- and- negative-strand RNAs,

further boosting the localization capability of SARS-CoV-2 dur-

ing different stages of its viral cycle.

SARS-CoV-2 50 and 30 UTRs Contain Strong Residency
Signals
In addition to predicting residency, our computational model can

also help us understand which regions of the transcript may be

more responsible for driving these predictions. At a high level,

this can be done by evaluating which features were most impor-

tant for RNA-GPS’s predictions. We specifically investigated the

potential contribution of the three main regions of the SARS-

CoV-2 sgRNAs: the shared 50 leader sequence, the shared

30 UTR, and the variable ‘‘coding’’ sequence in the between

(i.e. bases not in the 50 or 30 pentagon caps in Figure 1A). We pre-

dicted residency for each of these regions by itself (averaging

across all variants of the coding region) (Figure 1E). The 50 leader
sequence shows the strongest residency signal for the mito-

chondrial matrix and relatively low signal for the nucleolus. In

contrast, the 30 UTR has the strongest residency for the nucle-

olus and also has a strong signal for the mitochondrial matrix.

The coding sequence (CDS) also shows specific signals for these
Cell Systems 11, 102–108, July 22, 2020 105
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two compartments. As the 50 and 30 sequences are shared by the

different SARS-CoV-2 sgRNAs, this is likely a strong factor

behind the consistent residency patterns that we predict across

the different sgRNAs. We also performed further computational

ablation studies of RNA-binding protein (RBP) motifs in SARS-

CoV-2 (see STAR Methods). However, computational deletions

of all instances of each individual RBP motif, repeated across

all enriched RBPs, did not significantly alter the RNA-GPS resi-

dency predictions. This result suggests that the SARS-CoV-2

residency signal could be abundant in the viral genome and

may involve complex interactions not captured by relatively

short, single RBP-binding motifs.

DISCUSSION

In this work, we apply computational models of humanRNA tran-

script localization to better understand the subcellular localiza-

tion behavior of the SARS-CoV-2 genome and its constituent

sgRNAs. This approach builds upon the idea that the virus

uses existing host cell machinery to reproduce and, conse-

quently, that sequence-based localization signals are likely

shared between human and coronavirus transcripts. The

strengths of this approach include (1) the potential to understand

viral RNA localization without the risk of live viral cultures; (2) the

ability to examine hundreds of viral isolates and related corona-

viruses and thousands of RBP motif ablations; (3) the ability to

examine viral genes, UTRs, and negative strands individually,

which may otherwise require the ability to precisely synchronize

and arrest the viral life cycle. We find that SARS-CoV-2 appears

to harbor strong transcript residency signals toward the mito-

chondrial matrix and nuclear compartments, often comparable

to human RNAs and more so than other coronaviruses. This

intriguing hypothesis suggests future experimental exploration

and validation.

As we mentioned previously, we believe that our predicted

mitochondrial residency signal is more indicative of a localization

pathway than a destination; in the context of coronavirus biology,

this may specifically be related to double-membrane vesicles

(DMVs). Coronaviruses are known to produce DMVs to serve

functions like concealing the virus from cellular defenses (Hage-

meijer et al., 2012; Knoops et al., 2008). While these DMVs are

generally believed to be formed via viruses manipulating the ER

membrane (Blanchard and Roingeard, 2015), the mechanism for

importing and packaging proteins and RNA into these miniature

organelles is not as clearly understood. One possible mechanism

for importing viral RNA involves the virus exploiting the RNA local-

ization mechanisms that the cell already possesses for endoge-

nous double-membrane organelles, namely, the mitochondria.

Indeed, introducing just two amino acid pointmutations in themu-

rine coronavirus causes both a significant drop in the number of

DMV structures observed, as well as a sharp increase in viral pro-

tein localization at the mitochondria (Clementz et al., 2008). This

alludes to a high degree of resemblance between DMV and mito-

chondrial localization mechanisms—leading to our hypothesis

that our mitochondrial matrix residency predictions are capturing

this similarity between the DMV and mitochondria. Furthermore,

DMVs have been shown to contain double-stranded RNA (Hage-

meijer et al., 2012); our strand-agnostic residency predictions are

concordant with this evidence and might even encourage forma-
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tion of such complexes. Under this model, SARS-CoV-2’s strong

mitochondrial residency signal relative to other coronaviruses

might even contribute to its similarly high infectivity by increasing

its efficacy in forming these DMV structures.

Another possible interpretation of these predicted residencies

is that previously studied viral protein localizations are influenced

by transcript-level localizations, a mechanism that is highly prev-

alent for proteins in normal human cells (Blower, 2013). Protein-

protein interaction studies performed on SARS-CoV-2 have

found that its NSP5 (within ORF1a), NSP13 (within ORF1b),

ORF6, and ORF10 proteins interact with host proteins that pre-

dominantly localize to nuclear compartments (Gordon et al.,

2020). The same study found that the ORF9b protein, produced

by the ‘‘N’’ sgRNA, interacts with TOMM70, a mitochondrial

import receptor that plays a critical role in modulating interferon

response—a key antiviral cellular defense pathway (Liu et al.,

2010). In both cases, localized viral transcripts could help drive

viral protein localization, enabling more focused protein-protein

interactions.

A limitation of our work lies in its application of models trained

on human RNA transcript localization data to viral transcripts. It

is possible that SARS-CoV-2 infection could alter the host sub-

cellular structures and RNA transport machinery so drastically

that our learned localization patterns from human cells no longer

hold. If RNA-GPS’s predictions turn out to be wrong for this

reason, this might suggest that coronavirus infection devastates

host cell RNA trafficking and localization—a previously unrecog-

nized feature of COVID-19 pathobiology. After all, the vastmajor-

ity of RBPs in the host cell, which are key drivers of transcript

localization, recognize and process RNAs irrespective of

whether they are endogenous or foreign, and the inability to

‘‘properly’’ localize viral RNAs should mirror a similar breakdown

for host cell transcripts. As we are unable to use existing exper-

imental evidence to thoroughly evaluate and cross-reference the

predictions discussed here, future experiments in this vein are

clearly necessary. Given the historical scarcity of studies

focusing on viral transcript localization, such experiments would

likely reveal interesting, crucial insights into viral pathobiology,

whether they confirm our specific mitochondrial and nucleolus

predictions or not. It is worth pointing out, though, that this is

but one of many complex, interconnected viral mechanisms

at play.

In summary, we build upon recent computational models of

RNA subcellular localization to study, in silico, the localization

properties of SARS-CoV-2 transcripts. Our results suggest

that predicted transcript residency signals, specifically toward

the nucleolus and mitochondrial matrix, may be important,

unique characteristics of SARS-CoV-2 that warrant additional

study. We connect these observations to known viral biology

regarding DMV structures in viral replication, as well as

SARS-CoV-2 protein localization patterns. In doing so, we pro-

pose potential cellular mechanisms that underpin viral

biology—mechanisms that warrant experiments validating their

accuracy and perhaps even their potential as therapeutic tar-

gets. More broadly, we hope that our study helps define a

framework for applying machine learning models to enable

focused hypothesis generation, enabling similar studies that

leverage data science to rapidly respond to emerging epidemi-

ological challenges.
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Key Changes Prompted by Reviewer Comments
In the interest of transparency, the following changes weremade

in this paper during review. We used ‘‘RNA subcellular resi-

dency’’ rather than ‘‘RNA localization’’ to describe RNA-GPS

prediction results, as this is more reflective of the underlying

APEX-seq training data and its inherent differences compared

with viral transcripts. We clarified the origin, specificity, and

interpretation of nuclear-encoded transcripts enriched by the

COX4-APEX2 mitochondrial matrix landmark, thus enhancing

our interpretation of this predicted localization. We added a pos-

itive control showing that a CMV mRNA with known mitochon-

drial localization is correctly predicted by RNA-GPS. We thank

the reviewers and editor for insightful comments that have

improved this work. For context, the complete Transparent

Peer Review Record is included within the Supplemental

Information.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead Contact

B Materials Availability

B Data and Code Availability

d METHOD DETAILS

B Obtaining Viral Genomes

B Sequence Featurization and Predictive Models

B Training Data for Predictive Models

B RNA Binding Protein Motif Ablation

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Baseline Construction and Rank Score

B Significance Test for Localization

d ANALYSIS OF SEQUENTIAL FISH IMAGES

B Gene ontology Enrichment Analysis

B Plotting
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

cels.2020.06.008.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Coronavirus (incl. SARS-CoV-2) genome

sequences

NCBI GenBank Various (see query strings in covid19/

baseline.py and covid19/covid19.py source

code files in GitHub repository)

Human cytomegalovirus genome sequence NCBI GenBank NC_006273.2

APEX-seq RNA localization data Fazal et al., 2019 GEO: GSE116008

RNA binding protein motif database Ray et al., 2013 MEME Motif Databases

seqFISH data Fazal et al., 2019 Derived from Figure 2, PMID 31230715

Software and Algorithms

RNA-GPS model and SARS-CoV-2

analysis code

This manuscript and Wu et al., 2020b https://github.com/wukevin/rnagps
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Howard Y. Chang

(howchang@stanford.edu).

Materials Availability
This computational study did not generate or use new reagents.

Data and Code Availability
The data supporting the findings of this study are all available within publicly available repositories as listed in the Key Resources

Table. All code required to query and download viral sequences, as well as to reproduce results and figures can be found within

the GitHub repository listed in the Key Resources Table. All software dependencies for RNA-GPS and the SARS-CoV-2 analysis

described herein are freely available.Within the GitHub repository, most code pertaining to SARS-CoV-2 analysis can be found under

the ‘‘covid19’’ folder; other folders contain supporting data and source code.

METHOD DETAILS

Obtaining Viral Genomes
SARS-CoV-2 viral genomes were programmatically queried from the NCBI GenBank online database using the BioPython library’s

Entrez module (Cock et al., 2009). The exact query sequence used can be found within the ‘‘covid19/covid19.py’’ file in the GitHub

repository. Returned results were then filtered to retain only assemblies that included annotated, named sgRNA ‘‘genes.’’ We

consider the sgRNAs corresponding to ORF1ab, S, ORF3a, E, M, ORF6, ORF7a, ORF7b, ORF8, N, and ORF10, as these have

the most consistent annotations. In cases where the shared 5’ leader sequence or the 3’ tail were not explicitly annotated, their re-

gions were inferred to be the 5’ and 3’ trailing bases outside of any coding regions, respectively. As there are many SARS-CoV-2

genome assemblies that fit these criteria, subcellular residency predictions are averaged across all genomes.

Viral genomes constituting the coronavirus baseline follow an identical process, save for using a different NCBI GenBank query

sequence that specifically fetches matches to the six coronaviruses known to infect humans (excluding SARS-CoV-2): 229E,

NL63, OC43, HKU1, MERS-CoV (beta coronavirus that causes Middle East Respiratory Syndrome, or MERS), and SARS-CoV

(the beta coronavirus that causes severe acute respiratory syndrome, or SARS) (Su et al., 2016). The exact query sequence used

can be found in the ‘‘covid19/baseline.py’’ source file in theGitHub repository. A detailed breakdown of the exact number of genomes

derived from each strain is in Table S2.

The human cytomegalovirus was chosen for additional evaluation based on a systematic literature review of viral RNA localization

studies. This is the only example we found that associates a specific viral transcript with a consistent experimentally validated local-

ization. The viral sequence for validation of our model predictions was obtained from the NCBI GenBank reference sequence

NC_006273.2. Due to lack of standardized 50 and 30 UTR region annotations for this transcript (despite these being referenced in

the literature), we manually determined these regions after reviewing literature and the overall genome annotation.
Cell Systems 11, 102–108.e1–e3, July 22, 2020 e1

mailto:howchang@stanford.edu
https://github.com/wukevin/rnagps


ll
OPEN ACCESS Brief Report
Sequence Featurization and Predictive Models
RNA-GPS uses k-mer featurization with k = 3, 4, 5, applied independently to the 50 untranslated region (UTR), coding sequence

(CDS), and 30 UTR parts of the transcript (Wu et al., 2020b). This creates a feature space of (43 + 44 + 45) x 3 = 1344 x 3 = 4032 di-

mensions. These features are then consumed by a random forest model (implemented using the scikit-learn Python library) to

generate localization/residency predictions. Extending this definition to the coronavirus sgRNA sequences, we consider the shared

50 leader sequence the fixed 50 UTR input to our model, shared 30 UTR sequence the fixed 30 UTR input to our model, and the variable

sgRNA sequence the ‘‘CDS’’ input. For sake of consistency with sgRNA transcript mechanisms, this ‘‘CDS’’ sequence includes the

current reading frame, along with any 30 downstream bases until the shared 30 UTR region begins. Each sgRNA is individually as-

signed predicted residencies. RNA-GPS’s per-segment featurization also enables the per-segment residency analysis. For this,

we selectively provide the model with only features that correspond to a single segment (i.e. the 50 UTR, CDS, or 30 UTR), with

zero values for other features.

For the deep recurrent model, we implemented and trained a recurrent neural network that consumes raw bases as input, maps

these to a 32-dimensional embedding layer, passes these through two 64-dimensional gated recurrent units (GRU), and finally a fully-

connected layer with sigmoid activation producing 8 localization/residency predictions. This flavor of GRU network is popular in

sequence modeling and uses ‘‘gating’’ mechanisms to improve learning of longer-range sequence dependencies (Chung et al.,

2014). The model was implemented in PyTorch and was trained to minimize a binary cross-entropy loss using the Adam optimizer

(Kingma and Ba, 2014) with a batch size of 1, with early stopping based on validation set area under the receiver operating charac-

teristic (AUROC).

Training Data for Predictive Models
Both RNA-GPS and the GRUmodel are trained and tuned on the same APEX-seq data, measuring localization within HEK293T cells

(Fazal et al., 2019). Localization within this dataset is expressed as an enrichment score compared to the rest of the cell. We consider

transcripts that exhibit significant enrichment (log fold change (logFC) > 0 and adjusted p-value % 0.05) for at least one of the eight

measured compartments (n = 3660). Many transcripts contain more than one significant localization. Furthermore, due to the nature

of the APEX-seq technology, transcriptsmeasured at a specific compartment may also contain transcripts that were picked up as the

APEX2 labeling protein itself was being transported to that compartment. This effect is usually minimal, except for mitochondrial

transcripts (see Figure S1). We use data splits of 80% train (n = 2928), 10% validation (n = 366), and 10% train (n = 366). As is con-

ventional, the validation set was used for hyperparameter tuning and model architecture tuning.

When removing potentially spurious mitochondrial examples, we start with the above dataset and remove all transcripts that

measured to localize to the mitochondrial matrix but have log fold change enrichment in the bottom 20th percentile of localized mito-

chondrial matrix transcripts. This removes the bottom 20%ofmitochondrial sequences with the lowest enrichment relative to the rest

of the cell (n = 61) – this denoised dataset contains 240mitochondrial matrix transcripts instead of 301, and a total of 3599 transcripts

compared to 3660 previously.

RNA Binding Protein Motif Ablation
We use a database of 102 RNA binding protein binding motifs (Ray et al., 2013). To identify matches, we use the same methodology

as was used in the RNA-GPS manuscript (Wu et al., 2020b). We start with the position weight matrix (PWM) that describes the motif,

adjust its probabilities to account for the background nucleotide composition of each transcript sequence, define a cutoff score

slightly lower than the maximum achievable log-likelihood for that PWM, and identify any subsequences that exceed that cutoff.

When ablating these PWMs, we use the same methodology for identifying hits, and subsequently replace all hits with ‘‘N’’ bases,

re-featurizing the ablated sequence as necessary before feeding into the model, thus generating the ablated localization predictions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Baseline Construction and Rank Score
Baseline distributions are constructed by running a set of baseline transcript sequences through a model predicting transcript local-

ization/residency. For each individual model, there is a per-localization baseline derived from human APEX-seq measurements, and

one derived from human coronaviruses excluding SARS-CoV-2. For each localization neighborhood within the human baseline, we

consider only transcripts that exhibit significant localization to that neighborhood, as defined by having a logFC > 0 and adjusted p-

value% 0.05 when running differential expression analysis against the remainder of the cell. Additionally, we only use transcripts not

used for model training/tuning (i.e. the test data split), as this most closely approximates what the model would predict when pre-

sented with novel sequences.

For the coronavirus baseline, we do not have systematically measured localization data, so we cannot constrain this baseline using

known localizations behaviors. Instead, each SARS-CoV-2 sgRNA is compared only to homologous sgRNAs from other coronavi-

ruses. For example, the spike protein’s residency prediction is only compared against residency predictions of other coronavirus

spike proteins. This limits our comparison to the set of genes with easily traceable homology across human coronaviruses, namely

ORF1ab, spike (S), envelope (E), membrane (M), and nucleocapsid (N) (Woo et al., 2010).

For both these baselines, we define a rank score as the proportion of baseline values that a SARS-CoV-2 sgRNA residency pre-

diction exceeds. A hypothetical value of 0.5 would correspond to a median, 0.25 would correspond to the first quartile, etc.; rank
e2 Cell Systems 11, 102–108.e1–e3, July 22, 2020
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score is thus bound between 0 and 1 (inclusive). Note that this rank is calculated for each individual compartment separately, as the

baselines themselves are compartment specific. As previously discussed, subcellular residency predictions are averaged across all

valid SARS-CoV-2 genomes prior to calculating rank scores. Furthermore, since the human baseline is constrained by measured

localizations, whereas the coronavirus baseline is constrained by sequence homology, rank scores for these two baselines are

not directly comparable.

Significance Test for Localization
In addition to computing the rank scores described above, we also evaluate whether these rank scores correspond to significant

enrichment. To do this, we compare the underlying predicted residency probabilities (not the rank scores) against a ‘‘null’’ distribution

of localization probabilities for human transcripts exhibiting no significant localization. We do this using a one-sided Wilcoxon rank-

sum test (scipy Python package (Virtanen et al., 2020), with the hypothesis that residency probabilities exceed that of the null distri-

bution. Our data satisfies the Wilcoxon rank-sum test’s assumptions of independence, and our residency/localization prediction

probabilities are naturally ordinal. To address the fact that we do multiple comparisons, we use the Holm method (statsmodels Py-

thon package (Seabold and Perktold, 2010)) to correct the resultant p-values.

ANALYSIS OF SEQUENTIAL FISH IMAGES

The sequential FISH experiments were described in (Fazal et al., 2019), and resulted in data for 29 transcripts retained for further

analysis. The analysis was also described in (Fazal et al., 2019), and briefly consists of compiling imaging data from 20 fields of

view, eachwith > 20 cells, andwith the data processed usingMATLAB. For the quantification of each field of view, amask was gener-

ated for each gene of interest using a uniform threshold cutoff of 0.5–0.998, after removing non-cell pixels. The co-localization score

with mitochondria was calculated by interesting the mask of a particular gene with the mask of the mitochondrial-resident transcript

MT-ND3, and then dividing the summed intensity of the intersectedmask by the summed intensity of the genemasks of interests. The

quantification results for all 20 fields of view were then averaged to obtain the final number.

Gene ontology Enrichment Analysis
To perform gene ontology enrichment analysis, we used the PANTHER tool (Mi et al., 2019) provided by the Gene Ontology Con-

sortium (Ashburner et al., 2000, The Gene Ontology, 2019). Genes were compared in an overrepresentation test against a reference

list of all genes in theHomo sapiens database using Fisher’s Exact test, with false discovery rate correction. The annotation usedwas

‘‘Reactome version 65’’

Plotting
Plots were generated using a combination of seaborn and matplotlib Python packages (Hunter, 2007).
Cell Systems 11, 102–108.e1–e3, July 22, 2020 e3
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Supplementary Tables & Figures 

Localization APEX2 fusion complex 

Nucleolus GFP + APEX2 + NF-κβ-inducing kinase (NIK, three tandem nuclear targeting 
sequences) 

Nucleus V5 + APEX2 + nuclear localization sequence (NLS) 

Nuclear lamina V5 + APEX2 + N-terminus of prelamin-A/C (LMNA) 

Nuclear pore V5 + APEX2 + N-terminus of sentrin-specific protease 2 (SENP2) 

Cytosol FLAG + APEX2 protein + nuclear export signal (NES) 

ER Membrane Amino acids 1-27 of P450 oxidase 2C1 + APEX2 + V5 

Mitochondrial 
matrix 

Amino acids 1-24 of COX4 (component of mitochondrial electron transport 
chain) + V5 + APEX2 

Outer mito 
membrane 

FLAG + APEX2 + C-terminal amino acids 510-540 of mitochondrial antiviral 
signaling protein (MAVS) 

Table S1 (related to Figure 1): APEX2 fusions used to measure localization of transcripts. APEX2 is 
responsible for labelling, while the protein (segments) it is fused to drive its localization. Additional 
information regarding the APEX-seq protocol and data can be found in the original APEX-seq manuscript 
(Fazal et al., 2019), particularly Figure S2. Transcripts picked up by APEX2 (both en route and upon arrival 
at each fusion’s final destination) are used to train the RNA-GPS model. 

Strain Count Proportion 

Human coronavirus NL63 48 0.25 

Human coronavirus 229E 22 0.12 

Human coronavirus OC43 82 0.43 

Human coronavirus HKU1 3 0.02 

MERS coronavirus 20 0.10 

SARS coronavirus (2003) 16 0.08 

Total 191 1.00 

Table S2 (related to STAR Methods): Viral strains comprising the human coronavirus baseline. The 
strains NL63, 229E, OC43, and HKU1 historically commonly infect humans worldwide, while the MERS and 
SARS coronavirus have been recently responsible for more severe outbreaks. 



 

 ER 
membrane 

Nuclear 
lamina Mito matrix Cytosol Nucleolus Nucleus Nuclear 

pore 
Outer mito 
membrane 

ORF1ab 1.38E-05 1.00 4.13E-32 1.00 4.86E-24 1.00 1.00 1.00 

S 3.54E-05 1.00 8.01E-41 1.00 1.04E-37 1.00 1.00 1.00 

ORF3a 1.00 1.00 9.08E-61 1.00 5.89E-36 1.00 1.00 1.00 

E 8.91E-01 2.86E-13 3.11E-65 1.00 1.38E-22 1.00 1.00 1.00 

M 1.23E-03 2.14E-05 8.72E-53 1.00 1.73E-21 1.00 1.00 1.00 

ORF6 1.00 7.60E-09 1.31E-47 1.00 3.47E-25 1.00 1.00 1.00 

ORF7a 5.92E-02 1.00 1.01E-54 1.00 4.26E-25 1.00 1.00 1.00 

ORF8 2.62E-01 7.38E-01 2.56E-61 1.00 7.50E-26 1.00 1.00 1.00 

N 1.00 1.00 7.83E-64 1.00 1.15E-22 1.00 6.10E-01 1.00 

ORF10 1.00 6.84E-03 5.04E-85 1.00 5.17E-05 1.00 7.26E-08 1.00 

ORF7b 1.00 8.94E-01 6.77E-09 1.00 2.85E-05 1.00 1.00 1.00 

Table S3 (related to Figure 1): Wilcoxon rank-sum test p-values comparing SARS-CoV-2 sgRNAs’ 
residency predictions against those of human transcripts without significant measured localization. All 
p-values are Holm-adjusted. Values that exceed our significance cutoff of 0.05 are in bold. The SARS-CoV-
2 sgRNA residency predictions towards the mitochondrial matrix and nucleolus both have consistently 
significant p-values, indicating that their predictions are significantly higher than that of unlocalized 
transcripts (for each respective compartment), suggesting significant predicted residency.  



 

Figure S1 (related to Figure 2): Analysis of APEX-seq mitochondrial transcripts used to train RNA-GPS. 
(A) COX4 is a nuclear-encoded protein that localizes within the mitochondria (Richter-Dennerlein et al., 
2016), and is used to localize APEX to the mitochondria as shown in this illustration. Many transcripts thus 
picked up by COX4 that nominally localize at the mitochondrial matrix are actually nuclear-encoded. We 
hypothesize that these are picked up as the APEX2-COX4 fusion is transported from cytosol to 
mitochondria (final arrow). (B) Sequential FISH data showing fraction of transcripts colocalizing at the 
mitochondria (using the mitochondrial-resident MTND5 RNA as a mitochondrial marker, as described in 
(Fazal et al., 2019)). Nuclear transcripts like XIST and NEAT1 do not show mitochondrial enrichment, while 
transcripts known to localize to the outer surface of the mitochondria like SCD and IARS2 are enriched, 
providing negative and positive controls, respectively. Within this range, “non-canonical” nuclear-
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encoded transcripts like GOLPH3 show intermediate FISH values. This confirms their presence, which likely 
arises as these transcripts are labelled in the cytosol while COX4 makes its way to the mitochondria. (C) 
Shows a plot of APEX-seq log fold-change enrichment scores at each compartment for the 251 
mitochondrial-enriched, nuclear-encoded “non-canonical” transcripts used to build RNA-GPS. We see that 
these transcripts have enrichment centered around 0 for all but the mitochondrial matrix, indicating that 
while these transcripts are nuclear-encoded, the APEX-seq labelling technology consistently and uniquely 
associates them with the mitochondrial matrix, and are thus not noise. These transcripts are also 
biologically meaningful, as shown by a reactome ontology analysis of the 100 most enriched (by p-value) 
nuclear-encoded mitochondrial matrix transcripts (D). There is a clear emphasis for cytoskeletal and 
intracellular transport terms (e.g. kinesins, post-chaperonin tubulin folding pathway, recruitment of 
NuMA to mitotic centrosomes; adjusted p < 0.05). This supports the interpretation that many of these 
non-canonical transcripts are picked up as the APEX-seq protein is itself trafficked to the mitochondria. 



 

Figure S2 (related to Figure 1): Summary of residency patterns aggregated across all transcripts 
comprising the human coronavirus baseline. We see that coronaviruses in general primarily exhibit 
residency towards the nucleolus, mitochondrial matrix, and ER membrane – a pattern similar to that seen 
in SARS-CoV-2’s sgRNAs (albeit less dramatic). 
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Figure S3 (related to Figure 1): Heatmaps of rank scores of SARS-CoV-2 residency predictions, relative 
to localized human transcripts (A) and other coronavirus genomes (B), according to a deep-learning 
recurrent model (GRU). This model takes a very different computational approach to predicting 
residency compared to RNA-GPS, and thus serves as an orthogonal computational support of results 
covered in our primary figures. (A) Recapitulates that mitochondrial matrix and nucleolus are among the 
two most prominent residency signals for SARS-CoV-2. (B) Recapitulates that compared to other 
coronaviruses, SARS-CoV-2 generally exhibits a stronger nuclear residency signal.  
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Figure S4 (related to Figure 1): Residency of negative strand sgRNA precursors. Figure 1C shows that 
the positive strand sgRNA transcripts tend to exhibit residency towards the mitochondrial matrix and 
nucleolus. Here, we look at the negative-strand precursors to those sgRNAs and observe that these 
transcripts share similar mitochondrial matrix and nucleolus residency patterns. This suggests another 
layer of conservation of this predicted residency signal. 
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