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RNA isolation and sequencing 

Following isolation, fresh platelet pellets were suspended in 1 mL of Trizol and 

frozen at -80c until RNA isolation. RNA from cohort 1 was isolated using phenol-

chloroform extraction, isopropanol precipitation in the presence of glycogen, and 75% 

ethanol washes. Samples were DNAse treated (Invitrogen #AM1907), and RNA re-

purified using ammonium acetate/isopropanol precipitation as described1. RNA from 

cohort 2 was isolated and DNAse treated using DirectZol kit and columns (Zymogen).  

 

Novel platelet eQTL and sQTL analysis 

RNA-seq fastq files for 234 previously published samples (Best et. al.2,3, Netherlands 

cohort; hereafter referred to as NL cohort) were retrieved from NCBI short read archive 

PRJNA3535882. These, and fastq files for cohort 1, were aligned with STAR4 to human 

reference genome (build HG38) in a splice-aware manner, and variants were called 

using the workflow built from the Genome Analysis Toolkit (GATK)5 best practices for 

variant calling on RNA-seq. Variant call information and hard filters are reported in the 

“INFO” field of Online Datasets VII and XII. Variants tested for eQTLs were limited to 

within 2 kb of all genes not identified as eQTLs by PRAX1, and with repeatability > 0.9 

(238 genes) in the cohort 1 dataset. For comparison, the equivalent number of genes 

with lowest repeatability were also included. Variants were further excluded that were 

not identified in both cohort 1 and in the NL cohort.  Combined filtering resulted in 641 

variants across 181 genes. The RNA-seq allele frequencies of these variants was 



comparable to DNA allele frequencies reported by the Genome of the Netherlands 

project (GoNL6) and 1000 genomes7 (Online Figure XA), and clustered according to the 

expected populations by PCA analysis of allele frequencies (Online Figure XB). RNA-

seq and expected allele frequencies for significant variants are reported in Online 

Datasets VII and XII. To assess population stratification, transcriptome wide variants 

were called. Multidimensional scaling (MDS) was implemented in Plink 1.98,9 on 1994 

variants (filtered and pruned: FS > 30.0; QD < 2.0; clusterSize=3, 

clusterWindowSize=35; --geno 0.2; --hwe 10e-6; --maf .01; --indep-pairwise 50 5 0.2) 

co-identified from RNA-seq in cohorts 1, the NL cohort, and from 1000 genomes. Visual 

inspection of MDS plots indicated that individual RNA-seq samples clustered according 

to expected genetic ancestry, and that population structure was captured within the first 

4 MDS components (Online Figure XC).  Variance Stabilizing Transformation (VST) in 

the package DESeq210 was used to normalize gene expression. Gene-variant 

association was tested in the R package SNPassoc11 using an additive model of 

variant-allele dosage (0,1,2), while controlling for the covariates sex, age, and 

population structure (first 4 MDS components). Benjamini and Hochberg FDR correction 

for multiple testing (641 gene-variant tests) is reported. However, a conservative 

significance threshold of p < 1e-6 was used to filter novel eQTLs as if genome wide 

analysis had been performed12. After significance testing, eQTLs were further limited to 

those reported in dbSNP to minimize the possibility of RNA-specific (i.e. RNA-editing) 

calls.  At this threshold, 27 variants across 11 new platelet eQTL genes were identified 

(Online Dataset VII). These remained significant after further controlling for the first 5 

latent variables estimated from surrogate variable analysis (SVA)13 with explicit 



adjustment for sex and age. The 27 significant gene-variant associations were then 

tested in Cohort 1 using the strategy described above for the NL cohort, with sex, age, 

and race included as covariates. However, because of the small sample size, a 

codominant model was allowed when 1 of the 3 genotypes required for additive model 

testing was missing. The results of cohort 1 eQTL analysis are provided as additional 

information in table VII, but given the comparatively small sample size, significance in 

cohort 1 was not expected and was not considered as criteria for novel platelet eQTL 

selection.  

 

Caveats and limitations of RNA-seq for variant analysis 

There are recognized strengths and limitations of using RNA-seq to infer genetic 

variants14. RNA variant calls are of different quality than genome calls. They are limited 

to expressed regions which has precluded fine mapping of causal eQTLs. Where there 

is extreme allelic imbalance, genetic variants can also be missed. As with any eQTL 

analysis, false positives are also possible, such as from confounding LD and genetic 

substructure not accounted for by large-scale population stratification. Because of the 

low density of variants in RNA-seq data, fine-scale structure analysis is not possible. 

With such limitations, additional observations are helpful in interpreting the results: the 

allele frequencies of RNA-seq calls for the significant variants aligned with expected 

allele frequencies (with the exception of rs879095052 in HBG1), 22/27 of the eQTLs (for 

7/11 of the eGenes) have been reported in other tissues (The Genotype-Tissue 

Expression (GTEx) Project, see Online Dataset VII for specific tissues), and variants for 



8/11 eGenes demonstrated allelic imbalance that was directionally consistent with the 

eQTL effect on expression. 

Online Supplemental Figure Legends 

Online Figure I. Within and between individual stability of platelet non-coding 

RNA expression over 4 months (cohort 1) and 4 years (cohort 2). A and D: 

Unsupervised clustering and heatmaps of non-coding RNA expression in platelets from 

all samples in A) cohort 1 and D) cohort 2. The histograms to the left of each heatmap 

show the distribution of distances between all pairs of samples, and the darkness of 

blue indicates the degree of similarity between pairs of samples. Samples that cluster 

as neighbors in the heatmap dendrograms reflect non-coding transcriptomes with the 

highest similarity. Nearest neighbor self-pairs are highlighted in yellow and gray, 

whereas nearest neighbor non-self pairs are highlighted in orange. B and E: Example 

individual correlation plots of non-coding transcripts in B) cohort 1 or E) cohort 2. Each 

data point represents the regularized, log-transformed expression level (RLD) of a 

single non-coding transcript from the specified donor at time 0 (x axis) versus 0, 2 wk, 4 

months, or 4 years (y axis) within the same individual (top panels) or a different 

individual (bottom panels).  Points are heat-colored according to density. C and F: 

Boxplots summarizing the non-coding RNA expression Pearson correlation between all 

within versus between-individual pairs at C) time 0 and 4 months or F) in aggregate at 

all time points (left) or at the individually specified time points (right). In C, boxplots for 

cohort 1 are shown before and after adjusting for age, sex, and race, whereas only 

unadjusted are shown for cohort 2 (because of smaller sample size). P values from 

Wilcox test, adjusted. 



 

Online Figure II. Comparison of the within-individual and total variation of each 

transcript in platelets.  The mean within and total individual variation (standard 

deviation, SD) was calculated from the regularized log transformed expression (RLD) 

for each transcript.  A-B: normalized expression (x-axis) plotted against within individual 

variation for each transcript (y-axis) for A) cohort 1 and B) cohort 2. C-D: normalized 

expression (x-axis) plotted against total variation for each transcript (y-axis) for C) 

cohort 1 and D) cohort 2. E-F: Total individual variation of each transcript (x-axis) 

plotted against the within-individual variation (y-axis) of each transcript for E) cohort 1 

and F) cohort 2. Labeled points are representative transcripts with low-within and high 

total individual variation. 

 

Online Figure III. Variance partition analysis of platelet gene expression. Violin 

plots showing the distribution of the percent of variance for each transcript (y-axis) 

attributable to the indicated covariates (x-axis). The width of the violin indicates the 

probability density of transcripts at each y-value. Boxplots indicate median and 

interquartile range, and outliers are plotted as individual points. For example, sex 

explains less than 50% of the variation for most transcripts, except for the Y 

chromosome genes EIF1AY, TMSB4Y, and UTY which vary almost exclusively 

according to sex. The plot on the far right indicates that for most transcripts (>50%), 

differences between individuals explain the majority of variation. 

 



Online Figure IV. Table of transcripts with A) the highest expression, B) lowest within-

individual variation, C) highest total variation, or D) highest repeatability (low within, high 

between individual variation) in cohort 1 RNA-seq data, and their reported association 

with race, sex, or eQTLs in PRAX1 microarray data. Associations with FDR < 1e-4 are 

highlighted in pink. NS = not significant. 

 

Online Figure V. For transcripts with a reported eQTL in PRAX1, the FDR is 

associated with repeatability. On the x-axis is the lowest reported log FDR (i.e. -125 = 

10-125) for eQTLs associated with each transcript. On the y-axis is 1-repeatability (cohort 

1) for each transcript. 

 

Online Figure VI. Unsupervised clustering and heatmap based on the Exon PSI for all 

245 identified exon skipping events in platelets within the 31 individuals in cohort 1 at 

T=0 and T=4 months. The histograms to the left show the distribution of distances 

between all pairs of samples, and the darkness of blue indicates the degree of similarity 

between pairs of samples. Samples that cluster as neighbors in the heatmap 

dendrograms reflect samples with the highest similarity in exon skipping levels. Nearest 

neighbor self-pairs are highlighted in yellow. Bars to the left are colored according to 

sequencing batch or lane.  

 

Online Figure VII. PCR confirmation of SELP exon 14 skipping in platelets. Platelet 

RNA from 5 different individuals was reverse transcribed and cDNA amplified with 



primers flanking exon 14 of SELP. Bands were extracted and sequenced by Sanger 

sequencing to confirm sequence. 

 

Online Figure VIII. Exon 14 skipping of SELP remains associated with rs6128 in 

disease. Boxplots of SELP exon 14 mean PSI according to rs6128 genotype inferred 

from RNA-seq in all healthy and disease samples reported in the NL cohort when 

analyzed in A) aggregate or B) according to disease. In B, only diseases with multiple 

samples of at least 2 different genotypes are shown. *p adjusted for age, sex, smoking, 

hospital, and storage time.  

 

Online Figure IX. rs6128 directly regulates exon 14 skipping in P-selectin protein. 

Western blot analysis of P-selectin (antibody to c-terminal DYK tag) in HEK 293 cells 

following transfection of rs6128 C/C or T/T SELP (CMV promoter) constructs. Shown is 

a representative blot from 4 independent experiments. Below are bar graphs and 

standard error summary of PSI calculated according to densitometry analysis of the 

exon 14 inclusion band (upper band) divided by the sum of the upper and lower bands 

(total).*paired t-test, n=4 independent experiments. Note that anti-DYK antibody 

detected 2 distinct bands that differ by ~19 kDa whereas exon 14 encodes only 40 

amino acids (< 5 kDa). The difference is from the heavy glycosylation of exon 14 as 

deglycosylation of lysates with PNGase rendered the bands indistinguishable in size 

(data not shown). 

Online Figure X. Comparison of RNA-seq with genomic variant calls and 

population stratification. A) Allele frequencies of the 641 variants tested for eQTL 



presence as called by RNA-seq in the NL cohort (x-axis) versus allele frequencies as 

reported in the Netherlands genome database (GoNL6); Pearson cor=0.93 (p < 2.2e-

16). Allele frequencies for cohort 1 compared to those reported in 1000 genomes 

database7 were also assessed but are not shown: cor=0.87 (p < 2.2e-16) for white 

individuals in cohort 1 RNA-seq calls vs European superpopulation genomes; cor = 0.89 

(p < 2.2e-16) for black/African American individuals in cohort1 RNA-seq calls vs African 

superpopulation genomes B) PCA analysis comparing allele frequencies of the 641 

variants as called by RNA-seq in Black/African American (AA) or white individuals in 

cohort 1, or the NL cohort, with allele frequencies reported in GoNL and 1000 genomes 

database superpopulations: East Asian (EAS), South Asian (SAS), Ad Mixed American 

(AMR), European (EUR), or African (AFR). C) MDS analysis8,9 of population structure 

for each individual in cohort 1 and the NL cohort anchored to individuals from 1000 

genomes. 1994 variants co-identified in the RNA-seq cohorts and 1000 genomes were 

used in the analysis. Results indicate that cohort 1 white individuals and the NL cohort 

RNA-seq individuals cluster almost exclusively with the EUR genome superpopulation, 

whereas the cohort 1 black/African American and other/unknown RNA-seq individuals 

cluster with the AFR superpopulation, and suggest admixture. The top three MDS 

components are plotted. Zoom-boxes are included for clarity where there is a high 

density of cohort1 white, NL cohort, and EUR individuals. 
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