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Derivation of the macroscopic approximation for the emergent threshold distribution
As stated in the main manuscript, we divide the N individuals in a given population into three groups of certainly active (with
size A), contingently active (with size C) and certainly inactive (with size N−A−C) individuals. In order to explain and derive
the emergent broad threshold distribution F we utilize a microscopic network model of cascading dynamics in which each
node represents one of the N individuals in the population. The network is constructed as an Erdős-Rényi network with a fixed
number of nodes N and a linking probability `1. Nodes are randomly assigned once and for all to either of the three groups
outlined above. A contingent node i is active at the next time point t +1 iff the number of its active neighbors ai at the current
time point t exceeds a certain share ρ (denoted as i’s individual threshold fraction) of its total number of neighbors ki, i.e., if

ai > ρki = ρ · (ai +bi). (1)

Here, bi denotes the number of currently inactive neighbors of node i.
Now, for a given number of acting nodes R(t), we aim to approximate the number of acting nodes R(t +1) at the next time

step (analogously to Eq. (2) of the main manuscript) by

R(t +1) = A+CF(R(t)) (2)

for some function F to be determined. If we interpret F(R(t)) as the probability for each contingent node i to be active at time
t +1 for a given number of acting nodes R(t) and make the approximation that the distribution of active and inactive nodes is
the same in the neighbourhoods of all nodes, then this probability follows from a multinomial distribution as

F(R(t)) = ∑
ai≥0

ai>ρ·(ai+bi)
ai≤R(t)

ai+bi≤N−1
bi≥0

bi≤N−R(t)−1

(
R(t)
ai

)(
N−R(t)−1

bi

)
`ai`bi(1− `)R(t)−ai(1− `)N−R(t)−1−bi . (3)

The first condition ai ≥ 0 under the sum forbids negative numbers of active nodes and the second condition follows from Eq. (1).
The latter imposes a stronger constraint on ai such that we obtain a lower bound of ai as
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ai ≥ 0∧ai > ρ · (ai +bi) (4)

⇔ ai >
biρ

1−ρ
(5)

⇔ ai ≥
⌊

ρbi

1−ρ

⌋
+1. (6)

For setting an upper bound on ai we utilize the third and fourth condition in the sum of Eq. (3). The third condition indicates that
the number of active neighbors ai of i can not exceed the total number of active nodes or individuals R(t). The fourth condition
forbids the degree ki = ai +bi of node i to exceed its maximum possible value N−1 (as we no not allow for self-loops). Both
conditions together give an upper bound of ai as

ai ≤ R(t)∧ai +bi ≤ N−1 (7)
⇒ ai ≤ R(t)∧ai ≤ N−1−bi. (8)

However, the last condition in the sum of Eq. (3) states that N−1−bi ≥ R(t) and thus the upper bound of ai reduces to

ai ≤ R(t). (9)

Ultimately, the upper and lower bounds of bi are given directly by the last two conditions in the sum of Eq. (3). Plugging all
upper and lower bounds back into Eq. (3) yields

F(R(t)) =
N−R(t)−1

∑
bi=0

(
N−R(t)−1

bi

)
`bi(1− `)N−R(t)−1−bi

R(t)

∑
ai=
⌊

ρbi
1−ρ

⌋
+1

(
R(t)
ai

)
`ai(1− `)R(t)−ai (10)

From here, we utilize a set of approximations to further simplify the above expression. First, we introduce r(t) ∈ [0,1] as the
fraction of active nodes at time t, such that the number of active nodes reads R(t) = br(t)Nc. Plugging this back into Eq. (10)
yields

F(r(t)) =
N−br(t)Nc−1

∑
bi=0

(
N−br(t)Nc−1

bi

)
`bi(1− `)N−br(t)Nc−1−bi

br(t)Nc

∑
ai=
⌊

ρbi
1−ρ

⌋
+1

(
br(t)Nc

ai

)
`ai(1− `)br(t)Nc−ai . (11)

Furthermore, since we generally consider large N and small `, we approximate the two binomial distributions by the respective
Poisson distributions with shape parameters λa and λb given as

λa = `bNr(t)c (12)
λb = `(N−bNr(t)c−1) (13)

Making use of the fact that the linking probability in an Erdős-Rényi graph can also be expressed in terms of the network’s
average degree K as ` = K/(N−1) and additionally using that N� K such that ` ≈ K/N we can approximate both shape
parameters as

λa =
KbNr(t)c

N−1
≈ Kr(t) (14)

λb =
K(N−bNr(t)c−1)

N−1
≈ K(1− r(t)). (15)

Hence, we approximate Eq. (11) (under omittance of the explicit time dependence of r(t)) to yield
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F(r)≈
N−brNc−1

∑
bi=0

(K−Kr)bi

bi!
exp(−K +Kr)

brNc

∑
ai=
⌊

ρbi
1−ρ

⌋
+1

(Kr)ai

ai!
exp(−Kr) (16)

=
N−brNc−1

∑
bi=0

(K−Kr)bi

bi!
exp(−K +Kr)

brNc

∑
ai=0

(Kr)ai

ai!
exp(−Kr)−

⌊
ρbi
1−ρ

⌋
∑

ai=0

(Kr)ai

ai!
exp(−Kr)

 (17)

= exp(−K)


N−brNc−1

∑
bi=0

(K−Kr)bi

bi!︸ ︷︷ ︸
exp(K−Kr) for N�K

brNc

∑
ai=0

(Kr)ai

ai!︸ ︷︷ ︸
exp(Kr) for N�K

−
N−brNc−1

∑
bi=0

(K−Kr)bi

bi!

⌊
ρbi
1−ρ

⌋
∑

ai=0

(Kr)ai

ai!

 (18)

≈ 1− exp(−K)
N−brNc−1

∑
bi=0

(K−Kr)bi

bi!

⌊
ρbi
1−ρ

⌋
∑

ai=0

(Kr)ai

ai!
. (19)

We will now eliminate the explicit dependency on N in the first sum by setting

F(r)≈ 1− exp(−K)

(
∞

∑
bi=0

(K−Kr)bi

bi!
−

∞

∑
bi=N−brNc

(K−Kr)bi

bi!

)⌊ ρbi
1−ρ

⌋
∑

ai=0

(Kr)ai

ai!
. (20)

We can now estimate an upper bound of the second sum in the brackets as

exp(−K)
∞

∑
bi=N−brNc

(K−Kr)bi

bi!

⌊
ρbi
1−ρ

⌋
∑

ai=0

(Kr)ai

ai!︸ ︷︷ ︸
≤exp(Kr)

≤ exp(−K +Kr)
∞

∑
bi=N−brNc

(K−Kr)bi

bi!
(21)

≤ (K−Kr)N−brNc

(N−brNc)!
≈
(

exp(1)(K−Kr)
(N−brNc)!

)N−brNc
→ 0 for r < 1 and K� N. (22)

For r = 1 the two sums over bi in Eq. (20) have the same limits and thus the difference between the two vanishes. Similarly, the
sum over bi in Eq. (19) vanishes such that Eq. (19) equals Eq. (20) for r = 1 as well. Thus we can we eliminate the explicit
dependence on N in the first sum of Eq. (19) for all valid choices of r and ultimately obtain

F(r)≈ 1− exp(−K)
∞

∑
bi=0

(K−Kr)bi

bi!

⌊
ρbi
1−ρ

⌋
∑

ai=0

(Kr)ai

ai!
. (23)

For the sake of completeness and to demonstrate the validity of our approximation, we consider the two limiting cases r→ 0
and r→ 1. For the first case, i.e., r→ 0, it follows that (Kr)ai → 1 if ai = 0 and (Kr)ai → 0 if ai > 0, hence

lim
r→0

⌊
ρbi
1−ρ

⌋
∑

ai=0

(Kr)ai

ai!
= 1 (24)

⇒ lim
r→0

F(r) = 1− lim
r→0

exp(−K)
∞

∑
bi=0

(K−Kr)bi

bi!
= 1− lim

r→0
exp(−Kr) = 0. (25)

For r→ 1 we obtain that
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Figure 1. Analytical approximation of the cumulative distribution function F of emergent thresholds as given in Eq. (23) for
ρ = 0.4 (dashed line) and increasing K. For large values of K, F approaches a step-function such that F(r) = 0 ∀ r < ρ and
F(r) = 1 ∀ r > ρ .

lim
r→1

(K−Kr)bi

{
= 1 if bi = 0
→ 0 else

(26)

⇒ lim
r→1

F(r) = 1− exp(−K)
0

∑
ai=0

(K)ai

ai!
= 1− exp(−K)→ 1 if K� 0. (27)

In summary, we thus obtain that F(r)→ 0 for r→ 0 as expected and F(r)→ 1 for r→ 1 and K� 0. For the special case
of small average degree K = O(0) the network becomes increasingly disconnected. Thus, some contingent nodes might be
isolated from the rest of the network and thus never become active. As a consequence one obtains the correction exp(−K) in
the limit limr→1 F(r). Notably for K = 0 we correctly obtain F(r) = 0 ∀ r ∈ [0,1] as all nodes are isolated and no contagious
dynamics or cascades can occur.

Further assessment, limiting cases and influence of the average degree on the existence
of social tipping points
We now estimate a reasonable range for the average degree K in a sense that the model qualitatively recaptures the dynamics
that are presented in the main manuscript. We also show that the choice of K = 10 that was used in the main manuscript lies
well within that reasonable range.

Limiting cases of the average degree
We start with investigating the influence of the average degree K on the fixed points r∗ that are obtained from the macroscopic
approximation of our model. Recall from above that for K = 0, we find that F(r) = 0. Similarly, we argue that for K→ ∞ (or
K→ N in the case of a finite number of nodes N) the network becomes increasingly connected and approaches the complete
graph. In that case, all nodes are neighbors to each other and, hence, nodes become active if the total share of active nodes r
(i.e., r(t)) simply exceeds the individual threshold fraction ρ . Thus, we expect that limK→∞ F(r)→ Θ(ρ) where Θ(·) is the
Heaviside step-function.

We confirm this expectation numerically by computing F for increasing values of K, Fig. 1. We observe that with increasing
K the approximation first approaches F(r = 1) = 1 (see also Eq. (27)) and in a second step approaches a step function with its
critical point at the individual threshold fraction ρ . Thus, we conclude that there exists an intermediate range of K for which
the emergent threshold distribution has the expected and postulated broad shape2 such that the model produces the dynamics
(in terms of cusp- and saddle-node bifurcations) as described in the main manuscript.

Influence of the average degree on the existence and location of the cusp-point
To gain further insights on what might constitute a reasonable range of the average degree K, we study the position of the
cusp-point xc = (ac, pc) (like it is for instance displayed in Fig. 4a of the main manuscript) for varying choices of K (and fixed
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Figure 2. The location of the cusp-point xc = (ac, pc) depending on the choice of the average degree K for a fixed individual
threshold fraction ρ = 0.4. (a) The critical shares ac of certainly acting (purple) and pc of potentially acting individuals (green)
as a function of the average degree K. The horizontal dashed-line indicates the value of ρ = 0.4 that is approached by ac and pc
with increasing K. The vertical lines indicate the three choices of K for which the value of the smallest stable fixed point
min(r∗) is displayed in (b) (K = 1), (c) (K = 10) and (d) (K = 1000), respectively. The black circle in (c) and (d) indicates the
cusp-point xc. Grey areas in all panels indicate illicit combinations of a and p. The yellow circled area in (c) and (d) indicates
the bistable regime.

ρ = 0.4). We therefore estimate numerically the critical shares of certainly active and potentially active nodes ac and pc at
which the cusp-bifurcation occurs, Fig. 2a.

We find that for very low values of K the cusp-point vanishes, while for large K we obtain that ac→ ρ from below and
pc→ ρ from above, Fig. 2a. Thus, the cusp-point moves from the upper left corner of the parameter plane (ac = 0 and pc = 1)
to the edge of the allowed parameter regime bounded by a≤ p and approaches ac = pc = ρ . Hence, for K→ ∞ the cusp-point
lies directly on the edge of the parameter plane.

Fig. 2b,c,d show (in analogy to Fig. 4a of the main manuscript) the value of the smallest stable fixed point min(r∗) for
different shares of certainly and potentially active individuals a and p as well as fixed values of K = 1 (Fig. 2b), K = 10
(Fig. 2c), and K = 1000 (Fig. 2d), respectively. For K = 1 the smallest stable fixed point (which is the only stable fixed point
for all choices of parameters) varies smoothly with changing a and p and, hence, no bifurcation (and no tipping) occurs. For
K = 10 we find intermediate values of ac and pc and thus the cusp-point can be crossed in both the direction of a and p. Note
that Fig. 2c corresponds to Fig. 4a in the main manuscript, but shows the entire valid parameter space. For K = 1000 (Fig. 2d)
the cusp-point moves to the outer diagonal edge of the parameter plane. Consequently the system approaches a state (that
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Figure 3. Same as Figure 3 of the main manuscript but including pairs of r(t) and normalized r(t +1) for the transient phase
of the network simulation (where t = 1,2, . . . tmax−2) shown as semi-transparent scatter. We note that the approximation looses
some accuracy for the transient phase if one goes from individual threshold fractions ρ = 0.2 to ρ = 0.5. For ρ = 0.8
cascading dynamics are not very likely and only occur if the share of certainly acting nodes in the network simulation is
sufficiently high. Hence, the transient phase becomes very short as either no cascade starts or all nodes almost immediately
become active once the share of certainly acting nodes is large enough. Therefore, only few additional data points for the
transient phase are observed for ρ = 0.8 and the analytical approximation remains to match well with the numerics.

would be reached if K were to be increased further) where it becomes monostable for a < p < ρ or a > ρ, p > ρ and bistable
for a < ρ, p > ρ (yellow boundaries in Fig. 2d).

Additionally, we estimate numerically a critical value of Kc as the smallest value of K for which the cusp-point xc still exists
and obtain Kc ≈ 1.801 for ρ = 0.4.

Hence, for all choices of K that lie in a range that is reasonable for real-world applications the model produces qualitatively
similar results in alignment with the results shown in Fig. 4 of the main manuscript. For the results put forward in the main
manuscript we deliberately choose to set K = 10 to allow for a sufficiently long transient phase of the network simulations.
Even more realistic choices of K, e.g., close to Dunbar’s number3, are expected to provide qualitatively similar results according
to the assessment provided in this section.

Comparison between transient phases in the simulations and the analytical approxima-
tion
Fig. 3 of the main manuscript shows a comparison of the cumulative distribution of emergent thresholds F obtained from the
analytical approximation and the corresponding normalized shares of acting individuals (r(t +1)−a)/c (both as a function of
the share of currently acting individuals r(t)) obtained from the numerical network model for all times where the system is
close to equilibrium, i.e., t ∈ {0, tmax−1}. Fig. 3 shows the same, but includes also the combinations of r(t) and normalized
r(t +1) obtained for the transient phase of the network simulation, i.e., t = 1,2 . . . , tmax−2. As already discussed in the main
manuscript, we find that measures taken during the transient phase do not match as well with the approximation as the points
that are close to equilibrium. This mainly stems from induced correlations in the neighborhood structure of active and inactive
nodes as the activity spreads through the network. Since our approximation is based on a multinomial distribution we assume
that the probability for two nodes to be connected is the constant value ` regardless whether we consider a pair of two active,
two inactive or an active and an inactive node. However, during the course of the simulation the active and inactive nodes are
naturally expected to form clusters such that the activity spreads along their front. Hence, the assumption of a perfect mixing
of the two states induces inaccuracies when comparing our approximation with measures taken during the transient phase of
the network simulation. Since our present work is not focused on capturing these dynamics during the transient phase, but
(along the lines of the original threshold model2) only aims to estimate the final number of acting individuals r∗, we argue that
the proposed approximation serves this purpose already very well (as can be seen from the good alignment of the network
simulations close to equilibrium and the approximation as shown in Fig. 3 of the main manuscript and Fig. 3). Future work
should, however, aim to improve the approximation also for the transient phase of the model’s dynamics. One possible way to
achieve this is by explicitly deriving dynamic equations not only for the share of acting individuals or nodes r(t) but also for the
different types of links between them using, e.g, different techniques of pair-approximations4–6.
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