Modulating Heparanase Activity: Tuning Sulfation Pattern and Glycosidic Linkage of Oligosaccharides

Authors: Sanyong Zhu,¹ Jiayi Li,¹ Ravi S. Loka,¹ Zhenfeng Song, ³ Israel Vlodavsky,² Kezhong Zhang,³ and Hien M. Nguyen^{*,1,#ID}

Affiliations:

¹ Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States

² Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel

³ Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, 48201, United States

Table of Contents

1. General Information	S2
2. Synthetic Schemes of Monosaccharide Building Blocks and Trisaccharides	S3
3. TR-FRET Heparanase Inhibition Assay	S6
4. Hydrolysis Assay	S7
5. Two-Stage Chromogenic Assay to Evaluate Anticoagulant Activity	S8
6. Platelet Factor 4 Binding Test by Biolayer Interferometry (BLI) Assay	S10
7. Inhibition of ECM Degradation Assay	S13
8. Inhibition of Heparanase in Pancreatic β Cells	S13
9. Computational study	S14
10. Reference	S30
11. Mass Spectra	S32
12. NMR Data	S49

*Correspondence to: hmnguyen@wayne.edu

1. General Information

Methods and Reagents. All reactions were performed in oven-dried flasks fitted with septa under a positive pressure of nitrogen atmosphere. Organic solutions were concentrated using a Buchi rotary evaporator below 40 °C at 25 torr. Analytical thin-layer chromatography was routinely utilized to monitor the progress of the reactions and performed using pre-coated glass plates with 230-400 mesh silica gel impregnated with a fluorescent indicator (250 nm). Visualization was then achieved using UV light, iodine, or ceric ammonium molybdate. Flash column chromatography was performed using 40-63 µm silica gel (SiliaFlash F60 from Silicycle). Dry solvents were obtained from a SG Waters solvent system utilizing activated alumina columns under an argon pressure. All other commercial reagents were used as received from Sigma Aldrich, Alfa Aesar, Acros Organics, TCI, and Combi-Blocks, unless otherwise noted.

Instrumentation. All new compounds were characterized by Nuclear Magnetic Resonance (NMR) spectroscopy and High-Resolution Mass spectrometry (HRMS). All ¹H NMR spectra were recorded on either Agilent 400 or 600 MHz spectrometers. All ¹³C NMR spectra were recorded on either Agilent 100 or 150 MHz spectrometer. Chemical shifts are expressed in parts per million (δ scale) referenced to the residual proton in the NMR solvent (CDCl₃: δ 7.26 ppm, δ 77.16 ppm). Data are presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and bs = broad singlet), integration, and coupling constant in hertz (Hz).

High resolution mass spectra (HRMS) were recorded using a Micromass LCT Premier XE instrument (Waters) and were determined by electrospray ionization (ESI).

2. Modular Synthetic Scheme of Trisaccharides and Monosaccharide Building Blocks

2.1. Synthetic summary

2.2. General Synthetic Schemes for Monosaccharide Building Blocks Preparation

p-Tolyl 2-azido-2-deoxy-3-*O*-(2-naphthylmethyl)-4-*O*-benzyl-6-*O*-(*p*-methoxybenzyl)-1-thioα-D-glucopyranoside (11):

Phenyl 2-azido-2-deoxy-3,4-di-*O*-benzyl-6-*O*-(2-naphthylmethyl)-1-thio-D-glucopyranoside (12):

2-N-[(2-trifluoromethyl)benzylidene]-2-deoxy-3,4-di-O-benzyl-6-O-(2-naphthylmethyl)-D-

glucopyranosyl N-phenyl-trifluoroacetimidate (13):

(15):

2-Azidoethyl

2-Azidoethyl

2-acetamido-2-deoxy-3-O-benzyl-6-O-(2-naphthylmethyl)-a-D-

glucopyranoside (16):

glucopyranoside (17):

3. TR-FRET Heparanase Inhibition Assay¹

42 μ L of HS trisaccharide solution in Milli-Q water (0.0038-500 μ M) or just Milli-Q water (as a control), and 42 μ L of heparanase (5.3 nM, R&D Systems) solution in pH 7.5 triz buffer (consisting of 20 mM TrisHCl, 0.15 M NaCl and 0.1% CHAPS) or just buffer as blank were added into microtubes and pre-incubated at 37 °C for 10 min bringing the [heparanase] to 0.5 nM. Next, 84 μ L of biotin-heparan sulfate-Eu cryptate (Cisbio, Cat #: 61BHSKAA) (58.6 ng in pH 5.5 0.2 M NaOAc buffer) was added to the microtubes, and the resulting mixture was incubated for 60 min at 37 °C. The reaction mixture was stopped by adding 168 μ L of Streptavidin-XLent! (Cisbio, Cat #: 611SAXLA) (1.0 μ g/ml) solution in pH 7.5 dilution buffer made of 0.1 M NaH₂PO₄, 0.8 M KF, 0.1% BSA. After the mixture had been stirring at room temperature for 15 min, 100 μ L (per well) of the reaction mixture was transferred to a 96 well microplate (Corning #3693 96 well, white polystyrene, half-area) in triplicates and HTRF emissions at 616 nm and 665 nm were measured by exciting at 340 nm using a SpectraMax iD5 Microplate Reader (Molecular Devices).

Figure S1. Inhibition of heparanase by different trisaccharide ligands.

4. Trisaccharides Hydrolysis Assay²

Micro centrifuge tubes were pretreated for 2h at 37 °C by using a solution of phosphate buffered saline comprising of 0.05% Tween 20 (PBST) and 4% bovine serum albumin. Tubes were then washed three times with PBST, dried, stored at 4 °C, and used for assay within a week. A 100 μ M solution of fondaprinux or trisaccharide with heparanase enzyme (3 nM) in pH 5.0 sodium acetate buffer (40 mM) were incubated at 37 °C in a microtube. The enzymatic reaction was stopped at different time points by adding equal volumes of reaction mixture and freshly made 1.69 mM WST-1 (Toronto Research Chemicals) in 0.1 M NaOH into a new microtube and developed at 60 °C for 60 min. A 200 μ l (per well) solution of developed reaction solution was transferred to a clear 96-well microplate in triplicates and absorbance was measured at 584 nm with a SpectraMax iD5 Microplate Reader (Molecular Devices). For the controls, exactly the same procedure was followed for a 100 μ M solution of trisaccharides without heparanase enzyme to rationalize non-enzymatic autohydrolysis.

Figure S2. Hydrolytic potential of 1α , 1β , 2α , 2β , 3α or 6α with heparanase over time compared to fondaprinux.

5. Two-Stage Chromogenic Assay to Evaluate Anticoagulant Activity²

BIOPHEN Heparin AntiXa (2 stages) USP/EP (Cat #: A221005-USP) kits from Aniara and BIOPHEN Heparin Anti-IIa (2 stages) USP/EP (Cat #: A220005-USP) were utilized to assess FXa and FIIa activity, respectively.

Factor Xa activity:

All the reagents were reconstituted and prepared according to the manufacturer's instructions and incubated at 37 °C for 15 min. Different concentrations of heparin (0.002-500 nM; 40 μ L) or trisaccharide **1a** (3.9-4000 nM; 40 μ L) and ATIII (0.04 IU; 40 μ L) were added to a deep-well block (Nunc 96 DeepWell 1.0 mL/well, clear), mixed, and incubated at 37 °C for 2 min. To the reaction mixture, FXa (0.32 μ g; 40 μ L) was added by multichannel pipette and was incubated at 37 °C for another 2 min (stage 1), then FXa specific chromogenic substrate (0.048 mmol; 40 μ L) was added. The reaction was stopped by adding citric acid (240 μ L; 20 g/L) exactly after 2 min. A 100 μ L solution was then transferred to a clear 96-well microplate in triplicate, and absorbance at 405 nm was measured with a SpectraMax iD5 Microplate Reader (Molecular Devices). The sample blank was measured by mixing the reagents in reverse order from that of the test, i.e. citric

acid, FXa substrate, FXa, ATIII, and sample. The sample blank value was deducted from the absorbance measured for the corresponding assay.

Figure S3. Inhibition of FXa by trisaccharide 1α in comparison to heparin.

Factor IIa activity

All the reagents were reconstituted and prepared according to the manufacturer's instructions and incubated at 37 °C for 15 min. Different concentrations of heparin (0.002-500 nM; 40 μ L) or trisaccharide **1***a* (3.9-4000 nM; 40 μ L) and ATIII (0.01 IU; 40 μ L) were added to a deep-well block (Nunc 96 DeepWell 1.0 mL/well, clear), mixed, and incubated at 37 °C for 2 min. To the reaction mixture, FIIa (1.2 nkat; 40 μ L) was added by multichannel pipette and was incubated at 37 °C for another 2 min (stage 1), then FIIa specific chromogenic substrate (0.048 mmol; 40 μ L) was added. The reaction was stopped by adding citric acid (240 μ L; 20 g/L) exactly after 2min. 100 μ L was transferred to a 96-well microplate in triplicate, and absorbance at 405 nm was measured with SpectraMax iD5 Microplate Reader (Molecular Devices). The sample blank was measured by mixing the reagents in reverse order from that of the test, i.e. citric acid, FXa substrate, FXa, ATIII, and sample. The sample blank value was deducted from the absorbance measured for the corresponding assay.

Figure S4. Inhibition of FIIa by trisaccharide 1α in comparison to heparin.

6. Platelet Factor 4 Binding Test by Biolayer Interferometry (BLI) Assay¹

BLI assays were performed on an Octet Red Instrument (fortéBIO) at 25 °C. Immobilization and binding analysis were carried out at 1000 rpm using HBS-EP buffer [10 mM HEPES, pH 7.4, 150 mM NaCl, 3.0 mM EDTA, and 0.005% (v/v) surfactant tween20]. A solution affinity assay, used to determine affinities of ligands by SPR analysis was adopted to BLI.³ In this method PF 4 (100 nM; 100 μ L) was mixed with various concentrations of trisaccharide **1***a* (0.08-250 μ M; 100 μ L) or heparin (0.4-400 nM; 100 μ L). Free protein in this equilibrium mixture is tested for binding against immobilized heparin (all proteins are carrier-free and purchased from R&D Systems). Heparin-biotin (Creative PEGworks, 18 kDa, 1 biotin per HP polymer), 5 μ g/mL was immobilized on to streptavidin biosensors (fortéBio) for 5 min. Binding experiments were carried under conditions of mass transport. Binding was fitted to equation 1 of ref 10 using Graphpad Prism. BLI response was used in place of F and ligand (heparin / trisaccharide **1***a*) concentration was used in place of [metal].

Figure S5. BLI assay to test binding affinity of PF4 and trisaccharide 1α / heparin.

7. Inhibition of ECM Degradation Assay

Briefly, sulfate [³⁵S] labeled ECM coating the surface of 35 mm tissue culture dishes,¹² is incubated (5 h, 37°C, pH 6.0, 1 ml final volume) with recombinant human heparanase (0.5 ng/ml) in the absence and presence of trisaccharide 1 α . The reaction mixture contains: 50 mM NaCl, 1 mM DTT, 1 mM CaCl₂, and 10 mM buffer Phosphate-Citrate, pH 6.0. To evaluate the occurrence of proteoglycan degradation, the incubation medium is collected and applied for gel filtration on Sepharose 6B columns (0.9 x 30 cm). Fractions (0.2 ml) are eluted with PBS and counted for radioactivity. The excluded volume (V₀) is marked by blue dextran and the total included volume (V_t) by phenol red. Degradation fragments of HS side chains, characterized as described,¹³ are eluted from Sepharose 6B at 0.5 < Kav < 0.8 (fractions 20-35). Results are best represented by the actual gel filtration pattern.¹⁴⁻¹⁶ Each experiment was performed at least three times and the variation of elution positions (Kav values) did not exceed ±15%.

8. Inhibition of Heparanase in Pancreatic β Cells

Culture of mouse pancreatic β cell line MIN6 and detection of cellular mitochondrial ROS using *mitochondrial ROS trackers.* Mouse pancreatic β cell line (insulinoma) MIN6 was cultured as we previously described.¹⁷ Specifically, MIN6 cells were cultured with high-glucose DMEM supplemented with 10% fetal bovine serum (FBS), 50μM β-mercaptoethanol, and antibotics. Before experiments, MIN6 cells were seeded in 4-well slide-chambers for immunofluorescence analyses. When the cells reached approximately 50% confluency, they were cultured in the conditioned medium from heparanase-producing CHO cells or control CHO cells. Heparanaseproducing CHO cells were provided by Dr. Israel Vlodavsky (Technion, Israel). Meanwhile, the cells were treated with vehicle (PBS) or the trisaccharide 1a inhibitor for 24 h. The cells were then stained with mitochondrial ROS tracker probe using the concentration of 100 nM according to the manufacturer's instruction (Molecular Probes, Invitrogen). Mitochondrial ROS in the MIN6 cells were visualized by fluorescence microscopy, and the extents and intensities of fluorescent activities, which reflect intracellular mitochondrial ROS, were quantified using ImageJ software. Quantitative real-time PCR (qPCR) - Total RNA from Min-6 cells was extracted using Trizol by following manufacture's instruction and complementary DNA was synthesized from 500 ng of total RNA to with High Capacity cDNA Reverse Transcription Kit (AB applied biosystems). The

abundance of mRNA was measured by q PCR analysis using the SYBR Green PCR Master mix (Applied Biosystems).

The sequences of the primers for SOD1: 5'-GCGGTGAACCAGTTGTGTTGTC-3' and 5'-CAGTCACATTGCCCAGGTCTCC-3'; and for ERO1α: 5'-ATGGACTGTGTTGGCTGCTT-3' and 5'-GCTTTCCGGCATATTTGCGA-3'.

9. Computational study

All molecular docking and MD simulations were conducted with the YASARA Structure software package (<u>www.yasara.org</u>). Detail procedures for the computation study were reported in previous article.⁵

9.1. Computational Docking

In the docking study, the enzyme structure was inherited from previously modified *apo* heparanase structure (PDB code: 5E8M).^{5,6} The ligand saccharide backbone was obtained from Glycam GAGs builders (<u>www.glycam.com</u>), then the sulfation patterns and aliphatic portion was modified on GaussView 5.0.⁷ The modified ligand pdb files were then subjected to energy minimization in YASARA, and saved in .yob format. Each ligand was docked separately into heparanase within the simulation cell (80 x 61 x 76 Å) using Autodock VINA⁸ default parameters. The ligand and enzyme were subjected to 100 docking runs, where AMBER14 force field⁹ was applied to the protein, and GLYCAM06¹⁰ and GAFF/Am1BCC force filed was applied to each ligand. During docking study, the ligands and receptor binding pocket residues were kept flexible. The most populated clusters of the docking runs was subjected to MD simulation.

9.2. Docking Results for HS Trisaccharides

Figure S6: Snapshots of the first cluster when ligands docked into human heparanase and the distance between the catalytic residues and the scissile bond

Clu	N	Members	Bind	.energy	sprea	ad	[kcal/n	mol]	Diss	oc.	consta	nt	[pM]
001 002 003	- + - 	016 002 002	+ 	000009. 000009. 000009.	5228+- 0810+- 8185+-	-00 -00 -00	0000.5	844 220 695	000 000 000	0000)010464)022058)034355	7.2 6.4 2.2	2293 1078 2965

		10	ι		[←] NHSO ₃ ⁻					
Clu	M	lembers	Bind	d.energy	spread	[kcal/mo	ol]	Dissoc.	constant	[pM]
	-+-		+				+			
001		010		000010.3	1993+-0	00000.710) 8 (0000000	00033408.	6388
002		003		000009.	0003+-0	00000.289	95	0000000	0252759.	5868
003		001		000009.3	3710+-0	00000.000	1 O C	0000000	00135209.3	3990
004		004		000008.	6332+-0	00000.304	46	0000000	0469658.2	2439
005		001		000008.	4040+-0	00000.000	1 O C	0000000	00691549.3	1274
006		001		000007.	6410+-0	00000.000) O C	0000000	02506723.	6529

Clu |Members|Bind.energy spread [kcal/mol]|Dissoc. constant [pM] ___ 001 | 010 000009.2158+-000001.1214 | 00000000175699.1364 002 | 001 000008.5790+-000000.0000 | 0000000514691.4643 003 | 001 000007.9040+-000000.0000 | 0000001608148.1296 000007.4785+-000000.2465 | 00000003297765.3798 004 | 002 005 | 004 000007.3618+-000000.1473 | 00000004016040.0966 006 | 001 000007.3470+-000000.0000 | 00000004117274.1365 000007.1290+-000000.0000 | 00000005948464.8219 007 | 001

		2α		(\sim	NHSO ₃ ⁻						
Clu	1	Members	Binc	l.ener	дλ	spread	[kcal,	/mol]	D.	issoc.	constant	[Mq]
	-+-		+						+			
001		007		00000	8.3	3014+-00	.0000	7134		000000	00822258	.8077
002		006		00000	8.	9397+-00	0000.2	2119		000000	00280012	.0893
003		001		00000	7.	9780+-00	.0000	0000		000000	01419330	.0346
004		002		00000	7.	7145+-00	.0000	1695		000000	02214269	.3720
005		002		00000	7.2	2910+-00	.0000	5280		000000	04525413	.3424
006		001		00000	7.	6090+-00	.0000	0000		000000	02645832	.3817
007		001		00000	6.	7540+-00	.0000	0000	(000000	11201647	.3126

2α: Clu 001

Clu	Me	embers	Binc	d.energy	spread	[kcal/mol]	I	Dissoc.	constant	[pM]
	+		+				+-			
001		003		000008.	9960+-00	0000.2861		0000000	0254615.0)745
002		001		000009.2	2060+-00	0000.0000		0000000	00178629.3	3151
003		002		000008.	4735+-00	0000.6395		0000000	00615006.0	0169
004		004		000007.	4480+-00	0000.4922		0000000)3471971.8	3437
005		001		000007.	8580+-00	0000.0000		0000000)1737978.()922
006		001		000006.	8340+-00	0000.0000		0000000	09786818.2	2811
007		001		000006.	7600+-00	0000.0000		000000	11088781.0	6526
800		002		000006.	6335+-00	0000.1095		000000	13728057.8	3518
009		001		000006.	6810+-00	0000.0000		000000	12670426.9	9642
010		001		000006.	6700+-00	0000.0000		000000	12907865.2	2525
011		001		000006.	6240+-00	0000.0000		000000	13949950.0	5377
012		002		000006.	4580+-00	0000.0050		000000	18460848.()877

		3α		0	NHSO3					
Clu	Me	embers	Bind	d.energy	spread	[kcal/	mol]	Dissoc.	constant	[PM]
	+		+					+		
001		004		000008.	0042+-00	0000.4	151	000000	01357819.	9161
002		006		000007.3	1860+-00	0000.2	470	000000)5402859.	9435
003		001		000007.	5370+-00	0.000.0	000	000000	02987711.	9929
004		003		000007.	0517+-00	0000.2	647	000000	06777830.	8857
005		001		000007.	0270+-00	0.000.0	000	000000	07065967.	1517
006		001		000006.	9620+-00	0.0000	000	000000	07885277.	8732
007		001		000006.	8680+-00	0.000.0	000	000000	09241009.	1910
800		001		000006.	8120+-00	0.000.0	000	000000	10157056.	5632
009		001		000006.	7580+-00	0.0000	000	000000	11126282.	5828
010	I	001		000006.	7230+-00	00000.0	000	000000	11803346.	6062

Clu	Members	Bind.energy	spread	[kcal/mol]	Dissoc.	constant	[pM]
001 002 003 004 005 006 007	+ 008 004 001 003 001 001 001	000009. 000009. 000009. 000008. 000007. 000007. 000007.	$\begin{array}{c}\\ 8015+-00\\ 3918+-00\\ 4400+-00\\ 3830+-00\\ 6750+-00\\ 5600+-00\\ 5340+-00\\ 5120+-00\\ 510+-00\\ 510+-00\\ 510+-00\\ 510+$	0000.4618 0000.4370 0000.0000 0000.5373 0000.0000 0000.0000 0000.0000	+	00065380.5 00130556.0 00120345.5 00716500.3 02366922.2 02873953.5 03002879.5	5138 0984 5497 3913 2220 7925 7170
000	I UUT	000007.	JT20+-00	0000.0000		0) I I I Z Z I . (5575

Clu	Members	Bind.energy spr	ead [kcal/mol]	Dissoc.	constant [pM]
001	006	000009.9750	 +-000000.3556 +-000000.1176	000000(000000()0048783.3737)0267086.7681
003	003	000008.4820	+-000000.4666		0606246.0493
005 006	001	000008.1730	+-000000.0000 +-000000.0845	0000000)1021285.6477)1873539.8824

Clu	Members	Bind.energy	spread	[kcal/mol]	Dissoc.	constant	[PM]
001	001	000008.	 9160+-00	0000.0000	000000	 00291423.2	2851
002	001	000008.	5070+-00	0000.0000	000000	00581197.4	1745
003	001	000008.	4690+-00	0000.0000	000000	00619695.0	0101
004	001	000008.	3330+-00	0000.0000	000000	00779590.4	108
005	001	000008.	2310+-00	0000.0000	000000	00926047.3	3751
006	001	000008.	2140+-00	0000.0000	000000	00953003.3	3801
007	001	000008.	0510+-00	0000.0000	000000	01254799.6	5455
800	003	000007.	6833+-00	0000.1532	000000	02333864.8	3466
009	003	000007.	2710+-00	0000.1149	000000	04680781.2	2506
010	004	000006.	9325+-00	0000.1604	000000	08287826.7	7693
011	001	000006.	8150+-00	0000.0000	000000	10105752.6	5661
012	001	000006.	7300+-00	0000.0000	000000	11664715.3	3546
013	001	000006.	6450+-00	0000.0000	000000	13464171.2	299
			~				

	7	α	[⊂] NHSO ₃ ⁻				
Clu	Members	Bind.energy	spread	[kcal/mol]	Dissoc.	constant	[PM]
 001 002 003 004 005 006 007 008	+	+ 000010.4 000008.4 000008.5 000007.8 000007.6 000007.2 000007.3 000007.3	 000+-00 980+-00 505+-00 640+-00 770+-00 752+-00 750+-00 030+-00	00000.1360 00000.6459 00000.1175 00000.0630 00000.0990 00000.1354 00000.0000	000000 000000 000000 000000 000000 000000 000000 000000	00023809.1 00590093.4 00540055.0 01720465.8 02358946.4 04647324.9 03927224.4 04434678.3	.858 1751 0431 3644 1528 0099 1646 3692
009 010	001 001	000007.2 000007.1	370+-00 370+-00	0000.0000	000000 000000	04957245.9 05868686.7	9638 7699

	8	βa	0	NHSO3_					
Clu	Members	Bino	d.energy	spread	[kcal/r	mol]	Dissoc.	constant	[pM]
001 002 003 004 005 006	007 003 004 001 004 004 001	+ 	000010. 000009. 000009. 000009. 000009. 000009.	2929+-0 9593+-0 7858+-0 7630+-0 5748+-0 5040+-0	00000.68 00000.28 00000.18 00000.00 00000.10	847 828 594 000 096 000		00028528.0 00050090.5 00067141.8 00069770.5 00095864.3	5276 5229 3071 1005 3483 3395

		9 α	5	-3 0 <u></u>	∕_NHSO3 ⁻					
Clu	M	embers	Bind	d.energy	spread	[kcal/mol]		Dissoc.	constant	[pM]
	+-		+				-+			
001		001		000010.2	2700+-00	0000.0000		0000000	00029650.	7014
002		001		000009.2	2050+-00	0000.0000		0000000	0178931.	1836
003		001		000008.	6190+-00	0000.0000		0000000	0481090.	4998
004		001		000008.3	1180+-00	0000.0000		0000000	01120631.	2920
005		001		000007.	9030+-00	0000.0000		0000000	01610864.	4683
006		002		000007.	6850+-00	0000.0140		0000000	02327309.	3568
007		002		000007.4	4250+-00	0000.0720		0000000	03609402.	5303
008		003		000007.3	3183+-00	0000.0573		0000000	04321382.	5274
009		002		000007.2	2120+-00	0000.0790		0000000	05170894.	4260
010		001		000007.2	2650+-00	0000.0000		0000000	04728423.	9477
011		001		000007.2	2530+-00	0000.0000		0000000	04825169.	0517
012		002		000007.3	1125+-00	0000.1095		0000000	06116453.	2049
013		001		000007.3	1910+-00	0000.0000		0000000)5357457.	2666
014		001		000007.0	0480+-00	0000.0000		0000000	06819908.	8375

9.3. Molecular Dynamic Simulations

The most populated clusters (heparanase-ligand complexes) from the each docking run were subjected to MD simulation. Each enzyme-ligand complex was imported into YASARA and energy minimized in *vacuo*. Meanwhile, a simulation cell was formulated with at least 10 Å from all three sides of the enzyme-ligand complex (86 x 61x 59 Å for 1 α complex and 67 x 89 x 61 Å for 1 β complex). AMBER14 force field was applied with periodic boundary conditions. The force field parameters were assigned using YASARA's "AutoSMILES" feature. The simulations were run in a default physiological solution (pH 7.4, 0.9% m/v NaCl solution with TIP3P water,¹¹ water density set at 0.997 g/mL) at 298 K. The pK_a of titratable side chains was predicted and assigned to respective groups before running MD and Glu 225 was manually protonated.

MD simulations were performed for 25000 ps for both 1α and 1β complexes initially. As suspicious movements were found in 1α complex at the end of the simulation, an extra 5000 ps were added to the duration for 1α complex. The cutoff radius for long-rage electrostatics was set to 8 Å. The snapshots were saved every 25 ps for the whole simulation duration, which were then analyzed for the RMSD of the C α and heavy atoms of ligand-protein complex, as well as the distance between the side chain carboxylic carbons of catalytic residues and the scissile bond (Glu225-O1, Glu343-C1).

Figure S7. RMSD of the C α and heavy atoms of (A) 1 α and (B) 1 β complex

Figure S8. Evolution of distances between catalytic residues and the scissile bond during the simulation in (A) 1α and (B) 1β complex

10. Reference

(1) Loka, R. S.; Sletten E. T.; Barash, U.; Vlodavsky, I.; Nguyen, H. M. Specific inhibition of heparanase by a glycopolymer with well-defined sulfation pattern prevents breast cancer metastasis in mice. *ACS Appl. Mater. Interface* **2019**, *11* (1), 244-254.

(2) Loka, R. S.; Yu, F.; Sletten, E. T.; Nguyen, H. M. Design, synthesis, and evaluation of heparan sulfate mimicking glycopolymers for inhibiting heparanase activity. *Chem. Commun.* **2017**, *53* (65), 9163-9166.

(3) Cochran, S.; Li, C.; Ferro, V. A surface plasmon resonance-based solution affinity assay for heparan sulfate-binding proteins. *Glycoconjugate J.* **2009**, *26* (5), 577-587.

(4) Chai, S.; Lu, J.; Ye, Q. Determination of binding affinity of metal cofactor to the active site of methionine aminipeptidase based on quantitation of functional enzyme. *Anal. Biochem.* **2009**, *395* (2), 263-264.

(5) Sletten, E. T.; Loka, R. S.; Yu, F.; Nguyen, H. M., Glycosidase inhibition by multivalent presentation of heparan sulfate saccharides on bottlebrush polymers. *Biomacromolecules* **2017**, *18* (10), 3387-3399.

(6) Wu, L.; Viola, C. M.; Brzozowski, A. M.; Davies, G. J., Structural characterization of human heparanase reveals insights into substrate recognition. *Nat. Struct. Mol. Biol.* **2015**, *22* (12), 1016-1022.

(7) Dennington, R. K., Todd A.; Millam, John M. *GaussView*, 5; Semichem Inc.: Shawnee Mission, KS, 2016.

(8) Trott, O.; Olson, A. J., Software news and update AutoDock Vina: improving the speed and sccuracy of docking with a new scoring function, efficient optimization, and multithreading. *J. Comput. Chem.* **2010**, *31* (2), 455-461.

(9) Case, D. A.; Babin, V.; Berryman, J. T.; Betz, R. M.; Cai, Q.; Cerutti, D. S.; Cheatham, I., T.E.; Darden, T. A.; Duke, R. E.; Gohlke, H.; Goetz, A. W.; Gusarov, S.; Homeyer, N.; Janowski, P.; Kaus, J.; Kolossváry, I.; Kovalenko, A.; Lee, T. S.; LeGrand, S.; Luchko, T.; Luo, R.; Madej, B.; Merz, K. M.; Paesani, F.; Roe, D. R.; Roitberg, A.; Sagui, C.; Salomon-Ferrer, R.; Seabra, G.; Simmerling, C. L.; Smith, W.; Swails, J.; Walker, R. C.; Wang, J.; Wolf, R. M.; Wu, X.; Kollman, P. A., *AMBER 14*. University of California: San Francisco, 2014.

(10) Kirschner, K. N.; Yongye, A. B.; Tschampel, S. M.; Gonzalez-Outeirino, J.; Daniels, C. R.; Foley, B. L.; Woods, R. J., GLYCAM06: A generalizable biomolecular force field. Carbohydrates. *J. Comput. Chem.* **2008**, *29* (4), 622-655.

(11) Mahoney, M. W.; Jorgensen, W. L., A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. *J. Chem. Phys.* **2000**, *112* (20), 8910-8922.

(12) Vlodavsky I. Preparation of extracellular matrices produced by cultured corneal endothelial and PF-HR9 endodermal cells. Curr Protoc *Cell Biol.* **2001**; *Chapter 10*, Unit 10.4

(13) Vlodavsky, I., Fuks, Z., Bar-Ner, M., Ariav, Y. and Schirrmacher, V. Lymphoma cell mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: Relationship to tumor cell metastasis. *Cancer Res.* **1983**, *43* (6), 2704-2711.

(14) Vlodavsky, I., Friedmann, Y., Elkin, M., Aingorn, H., Atzmon, A., Ishai-Michaeli, R., Bitan, M., Pappo, O., Peretz, T., Michal, I., Spector, L., and Pecker, I. Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. *Nature Med.* 1999, *5* (7), 793-802.

(15) Barner, M.; Kramer, M. D.; Schirrmacher, V.; Ishaimichaeli, R.; Fuks, Z.; Vlodavsky, I., Sequential degradation of heparan-sulfate in the subendothelial extracellular-matrix by highly metastatic lymphoma-cells. *Int. J. Cancer* **1985**, *35* (4), 483-491.

(16) Naggi, A., Casu, B., Perez, M., Torri, G., Cassinelli, G., Penco, S., Pisano, C., Giannini, G., Ishai-Michaeli, R., and Vlodavsky, I. Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol-splitting. *J Biol. Chem.* **2005**, *280* (13), 12103-12113.

(17) Fang, J.; Liu, M.; Zhang, X.; Sakamoto, T.; Taatjes, D. J.; Jena, B. P.; Sun, F.; Woods, J.; Bryson, T.; Kowluru, A.; Zhang, K.; Chen, X. COPII-dependent ER export: a critical component of insulin biogenesis and β -cell ER homeostasis. *Mol. Endocrinol.* **2015**, *29* (8), 1156-1169.

11. Mass Spectra

11.1. Detection for Microwave-Assisted Sulfonation Reaction

Using 3 equiv SO₃·TEA gave **56** as a majority

Figure S6. Microwave assisted sulfonation monitored by negative-mode mass, indicating 3 equiv SO₃·TEA was good.

11.2. Mass Spectra for the Final HS Trisaccharides

12. NMR Data

 13 C NMR, 150 MHz, CDCl₃

0.0

-0.5

 ^{13}C NMR, 150 MHz, CDCl_3

¹³C NMR, 150 MHz, CDCl₃

 ^{13}C NMR, 150 MHz, CDCl_3

 $^{13}\mathrm{C}$ NMR, 150 MHz, CDCl_3

 ^{13}C NMR, 150 MHz, CDCl_3

¹H NMR, 600 MHz, CDCl₃

2010			6			1							(12) IS	110		120		100 Kin		202	
-	· .			· 6 · ·		· .	· E	- <u>1</u>	· .					- 1	·	- 1					
200	190	180	170	160	150	140	130	120	110	100 f1 (90 (mn	80	70	60	50	40	30	20	10	0	-10

¹³C NMR, 150 MHz, D₂O

-174.7355

-42.8011

