

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

The Effect of Concussion on Salary and Employment-A Population-Based Event Time Study using a Quasi-Experimental Design

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-038161
Article Type:	Original research
Date Submitted by the Author:	02-Mar-2020
Complete List of Authors:	Fallesen, Peter; Stockholm University, Swedish Institute for Social Research Campos, Benito; Heidelberg University Hospital Department of Neurosurgery, ;
Keywords:	Trauma management < ORTHOPAEDIC & TRAUMA SURGERY, HEALTH ECONOMICS, Neurosurgery < SURGERY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
- 3 ⊿		
5	1 2	The Effect of Concussion on Salary and Employment-A Population-Based Event Time Study using a Quasi-Experimental Design
6 7	2	
8 9	3	
10	4	^{1,2} Peter Fallesen, PhD, ^{3,4} Benito Campos, M.D.
11 12	~	
13 14	3	
15	6	¹ Swedish Institute for Social Research, Stockholm University, SE-106 91 Stockholm, Sweden
16 17	7	² ROCKWOOL Foundation, Ny Kongensgade 6, DK-1472 Copenhagen C, Denmark
18 19	8	³ Department of Neurosurgery, University of Heidelberg, INF400, 69120 Heidelberg, Germany
20	9 10	⁴ Department of Health Tech, Technical University of Denmark, DK-2800 Kongens Lyngby,
21 22	10	
23 24	12	Address of Correspondence: Peter Fallesen, Swedish Institute for Social Research,
25	13	Stockholm University, SE-106 91 Stockholm, Sweden, <u>peter.fallesen@sofi.su.se</u> ,
26 27	14	+4561333184
28 29	15	
30	16	Keywords: administrative data; concussion; income; productivity
31 32	17	Abstract word count: 196
33 34 25	18	Text word count: 3025 (excluding references and figure/table legends)
36 37	19	Number of references: 20
38 39	20	Number of tables and/or figures: 2 tables and 4 figures
40 41	21	Number of videos: 0
42	21	
43 44	22	
45 46	23	
47	24	
48 49		
50 51		
52		
53 54		
55 56		1
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3								
4 5	25	Abstract						
6 7 8	26	Objective: Concussions are the most frequent traumatic brain injuries. Yet, the socio-economic						
8 9 10	27	impact of concussions remains unclear. We study the socio-economic effect of concussions on						
11 12	28	working age adults on a population scale.						
13 14	29	Design: Our population-based, event time study uses administrative data as well as hospital						
16 17	30	and emergency room records for the population of Denmark.						
18 19	31	Setting: We study all Danish patients, aged 20-59 y, who were treated at a public hospital or						
20 21 22	32	emergency room between 2003-2017 after suffering a concussion without other intracranial or						
23 24	33	extracranial injuries (n=55,424 unique individuals) with no prior diagnosis of intra- or						
25 26	34	extracranial injury within the past ten years leading up to the incident.						
27 28 29	35	Primary and Secondary Outcome Measures: As primary endpoint, we investigate the mean						
30 31 32 33	36	effect of concussion on annual salaried income within a five-year period after trauma. In an						
	37	exploratory analysis, we study whether the potential impact of concussion on annual salaried						
35 36	38	income is driven by patient age, education or economic cycle.						
37 38	39	Results: Concussion was associated with an average change in annual salary income of -						
39 40 41	40	1,223€ (95% CI, -1,540€; -905€, p<.001) corresponding to a salary change of -4.1 % (95% CI,						
42 43	41	-5.2 %; -3.1 %). People between 30-39 y and those without high school degrees suffered the						
44 45	42	largest salary decreases. Affected individuals leaving the workforce drove the main part of the						
46 47 48	43	decrease. Absolute annual effect sizes were countercyclical to the unemployment rate.						
49 50	44	Conclusions: Concussions have a large and long-lasting impact on salary and employment of						
51 52	45	working-age adults on a nationwide scale.						
53 54 55	46							
56 57		2						
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml						
31 32 33 34 35 36 37 38 39 40 41 42 43 44 56 47 48 49 51 52 54 55 56 57 58 90	 37 38 39 40 41 42 43 44 45 46 	exploratory analysis, we study whether the potential impact of concussion on annual salar income is driven by patient age, education or economic cycle. Results: Concussion was associated with an average change in annual salary income of 1,223€ (95% Cl, -1,540€; -905€, p<.001) corresponding to a salary change of -4.1 % (95% -5.2 %; -3.1 %). People between 30-39 y and those without high school degrees suffered largest salary decreases. Affected individuals leaving the workforce drove the main part of decrease. Absolute annual effect sizes were countercyclical to the unemployment rate. Conclusions: Concussions have a large and long-lasting impact on salary and employment working-age adults on a nationwide scale. 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml						

7 Strengths and limitations of this study

- 48 We use natural experiments to obtain plausible causal effects between concussion and
- 49 salary/employment.
- 50 We study a large, population-based sample with multiple data layers.
- We study how economic cycles affect our outcome measures. to beet terien only

1 ว	
2 3	
4	50
5	53
6	
7	54
8	
9 10	55
10	
12	56
13	
14	57
15	
16	58
17 18	
10	59
20	
21	60
22	
23	61
24 25	
25 26	62
27	
28	63
29	
30	64
31	
32 22	65
34	
35	66
36	
37	67
38	
39 40	68
41	
42	69
43	
44	70
45	
46	71
47 48	
49	72
50	
51	73
52	_
53	74
54 55	
56	
57	
58	
59	

53 Introduction

Concussions are by far the most frequently occurring intracranial injuries affecting approximately 1 in 219 Danes every year.¹⁰ Immediate symptoms may last for days or weeks, and 10-15% of patients diagnosed with concussion suffer from long-term symptoms such as headache, fatigue, and intolerance to stress. Clinical practice has encouraged patients to restrict social, mental, and physical activity in the weeks following a concussion (see¹⁴ for review), although prolonged inactivity may prolong symptoms.^{4,8,12} Thus, symptoms, comorbidities, and suggested treatment are associated with short- to long-term absence from work and lower productivity.

Yet, the causal effect of concussion on economic burdens for individuals and society through decreased labor market activity has not been identified. First, concussion is a sudden incidence and thus not amenable to prospective study nor randomization. Cohort and case-control studies^{1,3,7,16,17} provide some valuable evidence on employment and labor market outcomes among those who suffered concussions but are prone to selection bias. Individuals at high risk of concussions may differ on unobserved characteristics (e.g., risk aversion, routine activities) from those at low risk. People who are more likely to suffer concussions may also, on average, have more precarious or unstable employment trajectories prior to the incident, which may further bias prospective studies. Given the high incidence of concussion, even small losses of productivity and discrete drops in employment would have a significant socioeconomic impact and thus, it would require large patient cohorts with suitable controls to grasp the full socioeconomic impact of concussions. Thus, absent the possibility of randomization, using a natural or quasi-experimental design is the only likely option to parse out the *causal* effect of

4

concussions on labor market activity.9

We examine how concussions affect salary and employment of working age individuals in Denmark, a representative north-European industrial nation with a strong welfare state and a flexible labor market. We use administrative longitudinal data linked to hospital and emergency room diagnostic data on all Danes, who received a primary diagnosis of concussion between 2003 and 2017. To address the problem of unmeasured bias between those that do and do not experience a concussion, we use a quasi-experimental event-study approach^{5,6} where we compare similar individuals, who experienced their concussions at different time points. Under mild assumptions of parallel trends in wage progression prior to concussion and random timing of concussion event within a five-year time frame, the approach recovers a robust estimation of the effect of concussion on annual salary and employment status. βry α...

1	
2	
, 1	~ 7
5	87
5	
7	88
3	
9	89
10	
11	90
13	
14	91
15	
16	92
17	
18	93
19	10
20	94
21 22	74
22	05
24	95
25	06
26	90
27	07
28	97
29	00
3U 21	98
37	00
33	99
34	100
35	100
36	
37	101
38	
10	102
41	
12	103
43	
14	104
45	
16	105
4/ 10	
+0 10	106
50	
51	107
52	
53	108
54	
55	
50	
58	
59	

Material & Methods

8 Data Sources and Sample Construction

9 Our concussion data originates from the Danish National Patient Registry (DNPR) (see¹¹ for 0 description). DNPR is published annually and holds information on all hospitalizations at public 1 hospitals in Denmark since 1977, and on all emergency room visits and outpatient treatments 2 at public hospitals since 1994. Our combined exposure and control cohort includes all Danes 3 aged 20-59 y, who received a primary diagnosis of concussion (ICD-10 code S06.0, ICD-8 code 4 N850) between 2003 and 2017 and did not sustain any kind of additional intracranial or 5 extracranial injury. Individuals who regularly engage in activities associated with a high risk of 6 sustaining multiple concussions may differ from the average concussion patient and would 7 likely be over-represented in the exposure sample. To avoid such potential bias, we exclude all individuals, who were diagnosed with any kind of brain trauma during a ten-year period prior to 8 9 the concussion event. Altogether, we study a cohort of 55,424 individuals. Only attrition is 0 through mortality and out-migration, and out-migrated or deceased patients with missing spells 1 in the follow up period is excluded in those periods.

As a measure of productivity, we use price-index deflated annual salaried income. Salary information comes from Statistics Denmark's Income Statistics database. The database includes all declared annual incomes including income from self-employment. The Danish Tax Authorities supply the data to Statistics Denmark. Overall accuracy is considered very good.¹⁵ Table 1 reports number of observations for the samples and number of observations with missing salary information. As evident, only between 0.01 to 0.02 percent of observations across exposure and control groups have missing salary information. We disregard these

3	
4 109 5	observations in the main analysis. Through social security numbers we link information on
6 7 110	salaried income to records on diagnosed concussions. Further, we obtain information on high
8 9 111 10	school or equivalent level degree at time of concussion using the Danish Education Database.
¹¹ 112	From the Danish Population Database, we obtain demographic information on age and gender
13 14 113	for all respondents. Since the data used in the study come from de-identified administrative
15 16 114 17	registers that Statistics Denmark makes available for research purposes for approved
¹⁸ 115 19	institutions, no approval from an ethics committee was needed to carry out the study. The
²⁰ 21 116	research was carried out as part of project no. 706630 approved by Statistics Denmark.
22 23 117	
24 25 26 118	Quasi-experimental design
27 28 119 29	We use a quasi-experimental, difference-in-differences event time approach previously
³⁰ 120 31	described in a health setting by Dobkin et al. ⁵ We compare two groups of individuals from the
³² 33 121	same cohort, where both groups experience concussions, but at two different time points
34 35 122 36	$(t_c,t_c+\Delta)$. Specifically, we sample all 55,496 individuals into six different subgroups: i) The
37 123 38	exposure group, which includes all patients, who suffered their concussion during the period
³⁹ 124	2003-2012 (n=37,848) and ii) five control groups, which comprise patients who experienced
41 42 125	their concussions Δ ={1 (n=34,551), 2 (n=31,851), 3 (n=29,922), 4 (n=28,530), and 5
44 126 45	(n=27,421)} years later than the exposure group and did not experience any kind of brain injury
46 127 47	in the 10+ Δ years before the concussion event (note that the design allows individuals to both
48 49 128	be part of the exposure and control group). Our model is built on the assumption that the exact
50 51 129 52	timing of a concussion is random for small enough sizes of Δ , and on the additional assumption
53 130 54	that the exposure and the control groups would have displayed parallel trends in salary if the
55 56	7
57 58	
59	

60

Page 9 of 49

BMJ Open

131 control group had not suffered a concussion at t_c . Table 1 show the number of patients in the 132 exposure group and the five control groups for each year relative to exposure group's 133 concussion incident. Using multiple comparison groups allow us the gage the validity of the 134 assumption that the exact timing of a concussion is random for small enough sizes of Δ

To estimate the impact of concussion on labor market outcomes, we focus on the change in annual salary as our primary outcome, and, in further exploratory analyses, study additional outcomes such as income from health-related benefits, income from welfare benefits, and employment rates. Our data is nested within a three-level structure: Exposure or control group *g*, which includes individuals *I*, at times to exposure-groups concussion incident *t*. First, we estimate a standard difference in differences model for each separate control group Δ ={1, 2, 3, 4, and 5} using ordinary least squares:

42 $Salary_{git} = \beta_0 + \gamma Exposure_g + \theta Post_t + \delta Post \times Exposure_{git} + X_i \beta_{Age=20} I(Age) \eta_{Age}$ 43 $+ \sum_{Year=1999}^{2012} I(Year) \eta_{Year} + \epsilon_{git}$ (1)

where *Salary_{git}* measures annual salaried income deflated to 2015-level; *Exposure_g* indicates whether the observation belongs to the exposure or control group; *Post_t* captures the period after the exposure group's concussion occurred; *Post_t*×*Exposure_{git}* captures the effect concussion, measured as share of year t \geq 0 affected by concussion; *X_i* is a set of covariates that includes a high school indicator and a gender dummy; ϵ_{git} is the error-term; and the two last sets of indicator variables *I(Age)* and *I(Year)* capture age and incident year (for control group, the year indexed against). Under an assumption of parallel trends in salaried earnings between exposure and control groups had the exposure concussion not occurred, δ then captures the annual causal effect of concussion on salary for people exposed to concussions.

8

57 58

59

1 2	
3 4 5 153	For additional exploratory analyses, we also estimate separate models across gender,
6 7 154	educational level, and age, as well as across the salary distribution (see Supplemental
8 9 155	Methods, Supplemental Digital Content 1, for further details).
10 ¹¹ 156	
12 ¹³⁰ 13	
14 157 15	Standard Protocol Approvals, Registrations, and Patient Consents
16 17 10	Since the data used in the study come from de-identified administrative registers that Statistics
18 19 159 20	Denmark makes available for research purposes for approved institutions, no approval from an
21 160 22	ethics committee was needed to carry out the study. The research was carried out as part of
²³ 161 24	project no. 706630 approved by Statistics Denmark.
25 26 162	
²⁷ ²⁸ 163	Patient and Public Involvement
30 164	There was no involvement from patients or members of the public in the design, or conduct,
$\frac{32}{33}$ 165	or reporting, or dissemination plans of the research.
34 35	
36 37	
38 39	
40 41	
42	
43 44	
45 46	
47	
48 49	
50 51	
52	
53 54	
55	9
50 57	
58 50	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
3	
4 166 5	Results
6 7 167	Concussion leads to long-term loss in salaried income
9 10 10	Compared to people who experienced their concussion one to five years after the exposure
11 12 169	group, concussions had a sizeable effect on salaried income. Comparing to people who
13 14 170	experienced a concussion one year after the exposure group, we estimate the loss in salaried
16 16 17	income to be 423€ (95% CI: -9129€; 73€, p=.095; Table 2), corresponding to a salary decrease
18 19 172	of 1.5 % (95% CI:3.0 %; 3.2 %; Figure 1). Comparing to the control group, who suffered their
20 21 173	concussions five years after the exposure group, annual salary of the exposure group was
22 23 174 24	1,243€ (95% CI: 1,564€; 922€, p<.001) lower than annual salary of the control group Δ =5,
²⁵ 175 26	corresponding to a salary decrease of 4.2 % (95% CI: 3.1 %; 5.3 %; Figure 1). Normalized
27 28 176	wage progression for the control groups, who suffered a concussion 1, 2, 3, 4, and 5 years after
29 30 177 31	the exposure group, showed similar trends and similar levels pre-exposure, indicating that the
³² 33 178	parallel wage trends assumption was met (Figure 2 and table S1, Figures S1 in Supplemental
34 35 179	Digital Content 2). Thus, there is a sizeable effect of concussion on salary, and the effect only
36 37 180 38	fully reveal itself after the first year since exposure incident.
³⁹ 40	We hypothesized that the salary decrease caused by concussion resulted from a combination
41 42 182	of lower salary and exit from the labor market, either through short- or long-term
43 44 183 45	absence/unemployment. In an exploratory analysis, we tested whether labor force exit drove
46 47 47	the full effect of concussion on salary (Figure 3). Compared to the control group Δ =5, which
48 49 185	suffers a concussion five years after the exposure group, a concussion was associated with
50 51 186 52	2.6% (95% CI: 3.0 %; 2.2 %, p <.001) increase in the risk of receiving € 0 in annual salary, or,
53 187 54	in other words, effectively exiting employment. From the cumulative density function in Figure
55 56	10

3 we infer that exit from employment among the bottom half of the salary distribution drove the effect of concussion on salary.

191 Long-term loss in salaried income stems from exit from the labor market

To further examine whether exit from the labor market was caused either through short- or longterm absence/unemployment, we estimated a dynamic model using the control group Δ =5, which suffers a concussion five years after the exposure group. Following the concussion incidence, sick leave benefits payments were higher in the exposure group for the first two years following the incident. Concussed individuals were to some extent compensated for their salaried income loss through sick leave benefits in the first few years following a concussion, but the compensation ended while the salary drop persisted. Further, employment in the exposure group remained lower than in the control group Δ =5 and remained so for the entire post-exposure period (see table S2, Supplemental Digital Content 2 for further details). Total income decline was lower than the salary decline through the five years, which indicates that some form of public benefits covered part of the salary loss (see Figure S2, Supplemental Digital Content 2 for further details).

These results suggest that the impact of concussions on salary largely stems from affected individuals leaving the labor force completely, likely instead sustaining themselves through early retirement, disability pensions, self-sufficiency, or other income sources.

Younger patients without high school degree drove the effect of concussion on loss income
 The exposure group and all control groups differed slightly in terms of average patient age, 11

Page 13 of 49

1

BMJ Open

2			
3			
4	2	1	(
5	_	1	Č
б	\mathbf{r}	1	1
7	2	I	1
8	_		_
9	2	l	2
10			
11	2	1	3
12			
17	2	1	4
14			
16	2	1	4
17	_	1	-
18		1	
19	2	I	C
20	_		_
21	2	1	7
22			
23	2	1	8
24	_		
25	\mathbf{r}	1	С
26	4	T	1
27			ſ
28	2	2	ι
29			
30	2	2	1
31			
32	2	2	2
33			
34	2	2	3
35	-	_	
36	r	r	/
37	2	2	4
38	_	_	_
39 40	2	2	2
40 41			
41 42	2	2	6
42			
43 44	2	2	7
44 45			
46	2	2	ç
47	_	_	C
48	\mathbf{r}	\mathbf{r}	c
49	2	2	>
50	_	~	
51	2	3	l
52			
53	2	3	1
54			
55			
56			
57			
58			
59			

male to female ratio, and for control group Δ =5, in the frequency of individuals with at least a J high school degree (see Table S3, Supplemental Digital Content 2 for further details). To ensure that differences in gender, education, or age did not influence our results, we subdivided our 2 exposure group into subgroups based on gender, education status, and age at time of 3 concussion. We then estimated the impact of concussion on salary and employment across all values of Δ and for all subgroups (see, Figures S3-S8, Supplemental Digital Content 2 for 5 further details). Patients between age 30-39 and those without a high school degree 5 experienced the largest absolute and relative declines in salary.

R Finally, we addressed the role of timing of concussion across different years. Given that per design our exposure group always suffered their concussion earlier than the control groups do,) changing labor market conditions could moderate effects. Part of our sample suffered their) concussion during or just prior to the Great Recession in 2009-2010, which arguably presented the largest shock to both the global and local economy since the Great Depression in the 1930s. 2 In Denmark, the great recession was preceded by a series of years of economic growth, low unemployment, and increasing salaries (see Figure S8, Supplemental Digital Content 2 for L salary development from 1994 to 2017). We estimated the impact of concussion on salary 5 separately for each year from 2003-2012 and plotted the estimate against the percent of full-5 time unemployment in the Danish labor force (Figure 4). Suffering a concussion during an economic boom had a substantially higher impact on salary than doing so during a recession 3 when comparing to control groups who suffered concussions two to five years later than) exposure group.)

Discussion 232

5

6 The impact of concussion on employment and salary remains understudied. In a systematic 233 7 8 9 234 review of four studies on the association between mild TBI and return to work, Cancelliere and 10 12¹¹235 colleagues¹ found that most workers return to work within 3-6 months of suffering a mild TBI, 13 14 236 but that the long-term impact (more than one year after concussion) was not studied. In addition, 15 16 2 37 studies included small to medium sample sizes, varied measures of return to work, and 17 ¹⁸ 238 employed both case-control and cohort designs. Using an inception cohort study design, 20 21 239 Theadom and colleagues¹⁶ collected follow up data four years after mild TBI incidents on 245 22 23 240 New Zealanders who were employed prior to incident. They found a 3.6 percent productivity 24 ²⁵ 241 decline among those who suffered a concussion, compared to a 2.3 population average 26 ²⁷ 28 242 decline. The group suffering mild TBI also reported more difficulties carrying out work-related 29 30 2 4 3 tasks. In a related study,¹⁶ Theadom and colleagues further found that the mild TBI group had 31 32 244 persisting cognitive symptoms four years after suffering their concussion compared to an age-33 ³⁴₃₅245 sex matched control group. Also using a case-control design and data from Taiwan, Chu and 36 37 246 colleagues³ found that one month after incident, 26 percent of patients had still not managed 38 39 2 4 7 to return to work, and a large share of those who did return scored below full-time employment 40 41 42 248 on a work quality index. Only one other study by Graff and colleagues⁷ include a large patient 43 .5 44 249 cohort (n=19,732). Using case-control they found an association between concussion and 45 46 2 50 failing to return to work of 1.54 odds ratio, but also found that exposed individuals had lower 47 ⁴⁸ 251 labor market attachment and was more likely to receive health related benefits pre-incident 49 50 51 252 50 compared to the control group.

53 2 5 3 In the present study, we overcame some of the obstacles faced by previous work on the impact 13

59 60

52

54 55

2			
3			
4	2	5	2
5	-	Č	
о 7	2	5	4
, 3			
9	2	5	Ċ
10			
11	2	5	7
12 13			
14	2	5	8
15			
16	2	5	9
17			
18 10	2	6	(
20			
21	2	6	1
22	-		
23	2	6	2
24	~	,	_
26	2	6	-
27	h	6	,
28	2	0	4
29	\mathbf{r}	6	4
3U 21	2	0	•
32	\mathbf{r}	6	4
33	2	0	C
34	2	6	-
35	_	U	'
36	\mathbf{r}	6	0
32	2	0	C
39	2	6	0
40	_	0	
41	2	7	(
42	_	'	`
+3 1⊿	2	7	1
45	_	'	
46	2	7	2
47			
48	2	7	2
49 50			
51	2	7	2
52			
53	2	7	4
54			
55 54			
57			
58			
59			

of concussions on labor market outcomes by including a vast cohort of patients and exploiting a quasi-experimental design that allow us to plausibly account for unobserved difference between exposure and control group. In addition, salary and employment data reported here were compiled routinely through third-party reporting and were mandatory for all subjects, thus giving a complete and comprehensive picture of the economic impact of concussion on a nationwide scale.

Altogether, we showed that Danes between 20-59 year of age, who suffered a concussion during the period 2003-2012 experienced average salary losses of 4.1%. The impact of concussions on salary already materialized one year after the incident and remained sizeable for at least five years. This result is in line with an implementation period in which the impact of concussion on wages fully develops. First, concussions occur at some point during the year, thereby not affecting already earned salary that year. Second, in Denmark, most employees are entitled to receive their salary during sickness absence for an open ended, but not indefinite period.

If we assume that people return to their expected salary levels after a five-year recovery period (a very conservative assumption that is not supported by our data), the mere net annual salary loss in our sample would be approximately $\in 23,000,000$ measured in 2015-value. That would neither include hospital charges, medical costs for the treatment of concussion, the foregone tax from income, and the increased need for welfare spending, nor would it account for the large group of individuals who never seeks treatment¹³ or receive their diagnosis from their general practitioner rather than in a hospital or emergency room, and thus escape our study. Thus, total public costs are likely substantially higher.

60

2 3 4 276 In addition, both in absolute and relative terms, the early peak-working aged individuals (30-39) 5 6 277 y) and the less-educated individuals in our cohort seemed to be most affected after suffering a 7 8 concussion. These findings might have and additional and yet unmeasured social impact, 9 278 10 ¹¹ 279 especially if our results are transferrable to other nations with a less established welfare state 12 13 14¹³280 and a less flexible labor market. In such countries, the impact on the young and less-educated 15 individuals suffering a concussion and thus on society might be accentuated. 16281 17 ¹⁸282 Comparing our hospital incidence rates to more complete canvases of incidences², it seems 19 20 ²⁰₂₁283 likely that the actual cost in the population is more than twice as large as what we estimate. If 22 23 284 we were to consider the average concussion incidence rates for six other advanced European 24 ²⁵ 285 countries that are somewhat comparable to Denmark (Norway, Finland, Germany, Netherlands, 26 27 28²/₂₈286 England and France) and under the assumption that concussion have a similar impact on 29 30 287 earnings in these countries, the net annual salary loss would be approximately €1,099,400,000 31 32 288 measured in 2015-value. While our study likely underestimates the total socioeconomic impact 33 ³⁴ 289 of concussion, it suggests that concussions has a large economic impact on a nationwide scale 35 36 37 290 and on productivity and income at the patient level. 38 ³⁹ 291 40

... 42 292 CONCLUSION

44 45²⁹³ Using timing of concussion as a natural experiment, we provide first plausible causal estimates 46 47 294 of the effect of concussion on salary and employment. Our results show that concussion has a 48 ⁴⁹ 295 large and long-term negative causal impact on salary and employment. People between 30-39 50 51 296 y and those without high school degrees suffered the largest salary decreases. 52

15

57 58

56

53 54 2 97 55

41

43

1 2	
3 4 298	Disclosures:
5	The authors report no conflict of interest
7 299 8 0 200	The authors report no connect of interest.
9 300 10	
12 301	Acknowledgements:
14 302 15	NA
$\frac{16}{17}303$	
18 19 304 20	Funding:
20^{21}_{22} 305	This work was supported by the Swedish Research Council for Health (PF), Working Life and
23 24 306	Welfare (Grant no. 2016-07099) with additional funding from the ROCKWOOL Foundation (PF).
25 26 307	The research was carried out independently of the funders.
$\frac{27}{28}$ 308	
30 31 309	Authors contributions: P.F. and B.C. conceived of the presented idea, P.F. performed the
32 33 310	computations. P.F. and B.C. verified the statistical methods. P.F. and B.C. discussed the results
³⁵ 311 36	and wrote the manuscript. The corresponding author confirms that he had full access to all the
³⁷ 38 312	data in the study and had final responsibility for the decision to submit for publication.
39 40 313	
41 42 314	Data Availability Statement
43 44	
45 315 46	The data used in this study has been made available through a trusted third party, Statistics
47 316 48	Denmark. Due to privacy concerns the data cannot be made available outside the hosted
⁴⁹ 317 50	research servers at Statistics Denmark. University-based and private Danish scientific
51 52 318	organizations can be authorized to work with data within Statistics Denmark. Such organization
53 54 319	can provide access to individual scientists inside and outside of Denmark. Requests for data
55 56	16
57 58	
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

0 r	nay		be		sent	to		Statistics		Denmark:
ł	<u>nttp://w</u>	/ww.dst.	<u>dk/en/Om</u>	DS/org	anisation/	TelefonbogC)rg.aspx	?kontor=13	&tlfbogsor	<u>t=sektion</u>
C	or the	Danish	Data Pro	otectior	Agency:	https://www	.datatils	ynet.dk/eng	lish/the-da	anish-data-
	orotect	ion-ager	ncy/contac	<mark>ct/</mark> . The	e authors	document a	nd mak	e available	all code	needed to
r	eprod	uce the f	findings in	the stu	udy.					
	17									
			For peer i	eview or	nly - http://bi	njopen.bmj.com	/site/abou	ıt/guidelines.x	html	

2	
3	

4

5

326 **References**

- 1. Cancelliere C, Kristman VL, Cassidy JD, Hincapié CA, Côté P, Boyle E, et al: Systematic Review of Return to Work After Mild Traumatic Brain Injury: Results of the International Collaboration on Mild Traumatic Brain Injury Prognosis. Archives of Physical Medicine and Rehabilitation 95:S201–S209, 2014
- 2. Cassidy JD, Carroll LJ, Peloso PM, Borg J, Von Holst H, Holm L, et al: Incidence, risk factors and prevention of mild traumatic brain injury: Results of the WHO Collaborating Centre Task Force on mild traumatic brain injury. Journal of Rehabilitation Medicine 36:28–60, 2004
- 335
 Chu SY, Tsai YH, Xiao SH, Huang SJ, Yang CC: Quality of return to work in patients with mild traumatic brain injury: a prospective investigation of associations among postconcussion symptoms, neuropsychological functions, working status and stability. Brain Injury 31:1674–1682, 2017
- 4. DiFazio M, Silverberg ND, Kirkwood MW, Bernier R, Iverson GL: Prolonged Activity Restriction After Concussion: Are We Worsening Outcomes? Clinical pediatrics 55:443– 51, 2016
- ²⁴ 342
 ²⁵ 343
 ²⁵ 343
 ²⁵ 343
 ²⁵ 343
 ²⁵ 343
 ²⁵ 343
 ²⁶ American Economic Review 108:308–352, 2018
- ²⁶ 344
 ²⁷ 345
 ²⁶ Fadlon I, Nielsen TH: Household Responses to Severe Health Shocks and the Design of Social Insurance. Cambridge, MA, 2015
- 7. Graff HJ, Siersma V, Møller A, Kragstrup J, Andersen LL, Egerod I, et al: Labour market attachment after mild traumatic brain injury: nationwide cohort study with 5-year register follow-up in Denmark. BMJ open 9:e026104, 2019
- ³² 349
 ³³ 350
 ³⁴ 351
 ³⁵ 252
 ³⁶ Lal A, Kolakowsky-Hayner SA, Ghajar J, Balamane M: The Effect of Physical Exercise After a Concussion: A Systematic Review and Meta-analysis. The American journal of sports medicine 46:743–752, 2018
- ³⁵ 352
 ³⁵ 352
 ³⁵ 352
 ³⁵ 353
 ³⁷ 353
 ³⁷ 353
 ³⁸ 354
 ³⁵ aradigm on its head. J Epidemiol Community Health: 2019
- ³⁹ 355
 ⁴⁰ 356
 ⁴⁰ 356
 ⁴⁰ Commotio Cerebri (Hjernerystelse). Videnscenter for Hjerneskade, 2003
- ⁴¹ 357
 ⁴² 358
 ⁴³ 358
 ⁴³ 359
 ⁴⁴ 359
 ⁴⁴ 359
 ⁴⁵ Schmidt M, Schmidt SAJ, Sandegaard JL, Ehrenstein V, Pedersen L, Sørensen HT: The Danish National Patient Registry: a review of content, data quality, and research potential.
 Clinical epidemiology 7:449–90, 2015
- A5 360
 12. Schneider KJ, Leddy JJ, Guskiewicz KM, Seifert T, McCrea M, Silverberg ND, et al: Rest and treatment/rehabilitation following sport-related concussion: a systematic review.
 47 362
 British journal of sports medicine 51:930–934, 2017
- ⁴⁸ 363
 ⁴⁹ 364
 ⁵⁰ 265
 ⁴⁰ 13. Setnik L, Bazarian JJ: The characteristics of patients who do not seek medical treatment for traumatic brain injury. Brain Injury 21:1–9, 2007
 ⁴⁰ 365
 ⁴¹ Oikurkana ND, kurstan Olivia and State St
- ⁵⁰ 365 52 366 53 367 14. Silverberg ND, Iverson GL: Is rest after concussion "the best medicine?": recommendations for activity resumption following concussion in athletes, civilians, and military service members. **The Journal of head trauma rehabilitation 28**:250–9, 2013
- 54 368 15. Statistics Denmark: Documentation of statistics: Income Statistics Statistics Denmark.

18

- 56 57
- 58

55

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3		
4 260		
5 270		2013 https://www.dat.dk/on/Statiatik/dakumantation/dagumantationafatatiation/income
6 370		nups.//www.ust.uk/en/Statistik/uokumentation/uocumentationoistatistics/income-
7 3/1	40	Statistics. Accessed 20 August 2018
8 3/2	10.	Ineadom A, Barker-Collo S, Jones K, Kanan M, Te Ao B, McPherson K, et al. Work
9 3/3		Limitations 4 Years After Mild Traumatic Brain Injury: A Conort Study. Archives of
10 374	4 -	Physical Medicine and Renabilitation 98:1560–1566, 2017
12 3/5	17.	Theadom A, Starkey N, Barker-Collo S, Jones K, Ameratunga S, Feigin V, et al:
13 376		Population-based cohort study of the impacts of mild traumatic brain injury in adults four
14 377		years post-injury. PLOS ONE 13:e0191655, 2018
₁₅ 378	18.	Faul M, Coronado V. Epidemiology of traumatic brain injury. Handbook of clinical
16 379		neurology 127:3-13, 2015
17 380	19.	Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic Brain Injury–Related Emergency
$\frac{18}{10}$ 381		Department Visits, Hospitalizations, and Deaths — United States, 2007 and 2013. MMWR
382		Surveillance Summaries 66:1-16, 2017
20 21 383	20.	Chernozhukov V. Fernández-Val I. Melly B. Inference on Counterfactual Distributions.
22 384		Econometrica 81:2205-2268. 2013
23 385		
24		
25		
26		
27		
29		
30		
31		
32		
33		
34 35		
36		
37		
38		
39		
40		
41 42		
- 43		
44		
45		
46		
47		
48 40		
49 50		
51		
52		
53		
54		
55	1	9
56 57	1	
57		

2	
4 5 386	Figure Legends
6 7 387 8	Figure 1. Estimated effect of concussions in percentage on salary for the exposure group
9 388 10	measured against each control group
11 12 389 13	Figure shows the percentage change in salary experienced by the exposure group following
14 390 15	their concussions compared to the expected trajectory absent the concussion (calculated from
16 391 17	the control groups) with 95 % confidence intervals. See table 1 for separate p-values for each
19 392 20	estimate.
21 393 22	
23 394 24	Figure 2. Salary development for exposure and control groups across time of exposure
25 26 395 27	Figure shows the salary trajectories for the exposure group (black) who suffers concussion at
28 396 29	year zero against normalized wage trajectories for the control groups who suffer their
³⁰ 397 31 32	concussions one to five years later. Δ indicates the number of years between exposure and
33 398 34	control incident. Table shows that there are no significant differences in the normalized salary
35 399 36 27	levels for exposure and control group prior to exposure incident (see Figure S1, Supplemental
37 400 38 39 40 41 401 42 43	Digital Content 2 for unnormalized salary trajectories).
43 44 402 45	Figure 3. The cumulative density function (cdf) for salary post-treatment among the
46 403 47	treatment group and their counterfactual, and the difference between the two cdfs
48 49 50	expressed as the effect of concussion on the probability of earning below that salary-
50 51 405 52	level following exposure event.
53 406 54	The figure shows the observed cumulative salary distribution following a concussion (red) and
55 56 57 58	20
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

407 the expected counterfactual salary distribution absent the concussion (blue). The black line 408 shows the difference between the observed and the counterfactual distribution, and the grey dash lines show the 95 % confidence interval. The closed to constant decline of the difference 409 ¹¹ 410 between the two distributions as the salary increase indicates that the main part of the effect of 14⁴¹¹ concussions on salary are driven by people having a salary equal to zero.

17412 Figure 4. Effect of concussion on salary across incident years and control groups 18 19413 together with the percentage fulltime unemployed of the labor force.

⁻₂₂ 414 Figure shows annual estimates of concussion against each control group separately mapped against the share of the labor force that is full time unemployed. 95 % confidence intervals. The 24415 ²⁶ 416 estimates for the effect of concussion on salary almost uniformly increase in absolute 29 417 magnitude when unemployment decreases, and decrease when unemployment increase, indicating that the effect of concussion on salary is countercyclical to the economic cycle. 31 418

₃₇ 420 **Supplemental Digital Content titles & legends**

39 4 2 1 Supplemental Digital Content [#1]. Text file. Supplemental materials and methods. This file ⁴¹ 422 contains further details on our quasi-experimental, difference-in-differences event time 44 423 approach.

5 6

7 8

9

10

12 13

15 16

20 21

23

25

27 28

30

38

40

42 43

48 49 425 Supplemental Digital Content [#2]. Table. Supplemental results Table S1: Test of parallel 50 51 4 26 trends assumption pre-exposure incident against each control group separately using eq. S3 in 52 53 427 supplementary methods. Separate exposure dummies for all time periods (except the year prior 54 55

21

57 58

56

5 6

45 46

53

55

60

429 7

BMJ Open

428 to exposure, which serves as reference period).

8 9 Supplemental Digital Content [#2]. Table. Supplemental results Table S2: Effect of 430 10 11 12 431 concussion on different labor market outcome parameters using separate exposure dummies 13 14 4 3 2 for all time periods (except the year prior to exposure, which serves as reference period): In this 15 16 4 3 3 exploratory analysis, the exposure group is compared to the control group Δ =5, which suffers 17 19⁴³⁴ 18 a concussion five years after the exposure group. Outcomes include annual salaried income 20 21 435 (annual salary), total annual income (total income), annual sick leave benefits received (sick 22 23 4 3 6 leave benefits) as well as a binary indicator of employment (probability of employment). 24 ²⁵₂₆ 437 Monetary outcomes were measured at 2015-level in € 1,000.

³⁰ 439 Supplemental Digital Content [#2]. Table. Supplemental results Table S3: Demographic 31 32 ₃₃ 440 factors for exposure group and control groups (Δ =1, 2, 3, 4, 5) averaged over the 5 years 34 35 4 4 1 leading up to the concussion event in each of the groups. Factors include patient age (in years), 36 37 442 share of sample female (1=100% female), and share of individuals with at least a high school 38 39 40 443 degree (1=100%).

445 Supplemental Digital Content [#2]. Figure. Supplemental results Figure S1: Unnormalized 47 446 Average Salary for Treatment and Control Groups Measured in 1K € at 2015-levels

52 448 Supplemental Digital Content [#2]. Figure. Supplemental results Figure S2: The Cumulative 54 4 4 9 Density Function (CDF) for Total Income Post-Treatment among the Treatment Group and 22

1 2	
3 4 450	Their Counterfactual and the Difference between the Two CDEs Expressed as the Effect of
5	
7 451 8	Concussion on the Probability of Total Income Below that Income-Level following Exposure
9 452	Event.
$10^{11}_{12}453$	
13 14 454	Supplemental Digital Content [#2]. Figure. Supplemental results Figure S3: Percentage
¹⁶ 455	Effect of Concussion on Relative Salary Across Age Groups.
17 18 19 456	O_
20	Supplemental Digital Content [#2] Figure Supplemental results Figure S4. Decentage
21 45 / 22	Supplemental Digital Content [#2]. Figure. Supplemental results Figure 54: Percentage
$23 \\ 24 \\ 458$	Effect of Concussion on Relative Salary Across High School Completion.
25 26 459	
27 28	
20 460 29	Supplemental Digital Content [#2]. Figure. Supplemental results Figure S5: Percentage
30 31 461	Effect of Concussion on Relative Salary Across Gender.
32 33 462 34	
35 36 463	Supplemental Digital Content [#2]. Figure. Supplemental results Figure S6: Effect of
37	
38 404 39	Concussion on Absolute Salary in TK Euro Across Age groups.
40 41 465	
42 43 466	Supplemental Digital Content [#2]. Figure. Supplemental results Figure S7: Effect of
44 45 467	Concussion on Absolute Salary in 1K Euro Across Education
46	Concussion on Absolute Salary in TR Euro Across Education.
47 48 468	
49 50 469	Supplemental Digital Content [#2]. Figure Supplemental results Figure S8. Effect of
51	
52 470 53	Concussion on Absolute Salary in 1K Euro Across Gender.
54 55	
56 57	23
58	
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 1. Number of observations for exposure and control groups across time since exposure and number of observations with missing salary information

	Exposure					
Years until exposure	group	Control ∆=1	Control ∆=2	Control ∆=3	Control ∆=4	Control ∆=5
-4	36,804	33,681	31,112	29,190	27,859	26,794
-3	36,978	33,834	31,245	29,366	27,973	26,907
-2	37,195	34,003	31,407	29,501	28,146	27,031
-1	37,449	34,224	31,582	29,687	28,288	27,220
0	37,848	34,551	31,851	29,922	28,530	27,421
1	37,467		31,755	29,832	28,433	27,337
2	36,940			29,807	28,421	27,295
3	36,484				28,421	27,304
4	36,084					27,314
Total observations	333,249	170,293	188,952	207,305	226,071	244,623
Observations with missing salary	81	32	31	44	35	29

³⁰ 476

Control groups have not suffered a concussion in $10+\Delta$ years before incident, exposure group

has not suffered concussion the 10 years before exposure incident.

Table 2. Estimated effect of concussion on salary of exposure group compared to control groups that suffered their concussion $\Delta = 1, 2, 3, 4, 5$ y after the exposure group's concussion event, measured at 2015-level. N_{Exposure}: 37,848

Estimated salary effect (δ)		95 % CI	р	N _{Control}
Δ = 1 y	-423€	(-919€;73€)	.095	34,551
∆ = 2 y	-825€	(-1,108€; -543€)	<.001	31,851
∆ = 3 y	-1,019€	(-1,331€; -707€)	<.001	29,922
∆ = 4 y	-1,126€	(-1,446€; -805€)	<.001	28,530
∆ = 5 y	-1,243€	(-1,564€; -922€)	<.001	27,421

Results obtained from estimations following Eq. (1). Models include controls for high school 20 4 8 3 22 484 diploma, gender, age, and observation year. Results obtained using reghdfe in Stata.

²³₂₄ 485

j 10⁴⁸¹

-4 -3 -2 -1 0 1 2 3 4 Years since exposure group's concussion

Figure 2

338x190mm (108 x 108 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Exposure N=37848

Control ∆=1 N=34551

Control ∆=2 N=31851

Control ∆=3 N=29922

Control ∆=4 N=28530

Control ∆=5 N=27421

5

31

30

29

28

27

26

-5

Deflated Norm. Salaried Income in 1K EUR

Figure 3

ß

Percent of Full Time Uemployed among LF

0

Control,

Control,

Control,

Control, ∆=4 yr

Control, ∆=5 yr

% Unemp. of LF

∆=1 yr

∆=2 yr

∆=3 yr

SUPPLEMENTAL MATERIALS AND METHODS

Our quasi-experimental, difference-in-differences event time approach compares two groups of individuals from the same cohort, where both groups experience concussions, but at two different time points $(t_c,t_c+\Delta)$. For the simple situation where we have three periods (t=0,1,2) and the exposure group (T) experiences their concussion at the start of period 1 $(t_c=1)$, and the control group (C) at the start of period 2 $(t_c+\Delta=2)$, the effect of concussion on salary (Y) is:

$$\Delta = (Y_1^{\rm T} - Y_1^{\rm C}) - (Y_0^{\rm T} - Y_0^{\rm C})$$

The effect of concussion on salary in t=1 is estimated by comparing the average difference in salary between exposure and control groups for the post-concussion period t=1 $(Y_1^T - Y_1^C)$ to the average difference in salary for the pre-concussion, or baseline, interval t=0 $(Y_0^T - Y_0^C)$. Assuming the exact timing of a concussion is random for small enough sizes of Δ , and under the additional assumption that the exposure group would have had parallel trends in salary as the control group absent suffering concussion at t_c, δ captures the causal effect of concussion among those who suffer concussions – also known as the average effect on the treated (AT). The AT does not capture how concussions would affect a random person. The AT captures how concussions causally affect those who suffer concussions.

For our study, the parallel trends assumption states that exposure and control groups have parallel developments in salary leading up to the exposure group's concussion and the exposure and control groups would have further exhibited parallel salary trajectories if the concussion had not occurred. To test the parallel trends assumption, we estimate a dynamic version of the model specification (shown in supplementary table S1), which explicitly allows us to test whether the parallel trend assumption for our sample is probable.

To validate that the timing of concussion is random with our study period, we present estimates for effect of exposure across different periods between exposure and control incident (Δ). Most recorded concussions outside contact sports and military engagements stem from unforeseen events, such as falls or striking/being struck by an object^{18,19}, so assuming random timing is likely valid. People who regular engage in activities that result in high risk of multiple concussions may be different than the average concussion patient and would be more likely to end up in the exposure sample than in the control sample, which could induce bias. To avoid such potential bias, we restrict our sample to individuals without prior diagnoses for intracranial injuries ten years prior to exposure.

At t=-1, i.e. one year before the exposure group suffered a concussion, the control groups were slightly smaller than the exposure group, and two control groups (Δ =4 and 5) differed slightly but significantly in terms of average patient age (p <. 001; supplementary table S2), male to female ratio (p <. 001), and for control group Δ =5, in the frequency of individuals with at least a high school degree (p < .001). However, the differences are numerically small. To test that composition differences between exposure and control do not drive our results, we provide separate results for individuals with and without high school degree, for males and females, and for different age groups across all different values of Δ .

Further, our design inherently leads to the possibility of timing issues—our exposure group always suffers their concussion earlier (in terms of calendar time and age) than the control groups do. If the labor market is constantly improving or worsening during the period we consider, this could substantially influence our results. Therefore, we also estimate separate models across exposure incident year and control group. Estimating separate models allow us the added benefit of being able to examine whether the business cycle influences the effect of concussions on salary.

Statistical model

To estimate the impact of concussion on salary, we define the following variables: Exposure or control group g, which includes individuals *i*, at times to exposure-groups concussion incident *t*. First, we estimate a standard difference in differences model for each separate control group $\Delta = \{1, 2, 3, 4, \text{ and } 5\}$ using ordinary least squares:

$$\begin{aligned} Salary_{git} &= \beta_0 + \gamma exposure_g + \theta post_t + \delta post \times exposure_{git} + X_i \beta \\ &+ \sum_{Age=26}^{48+\Delta} I(Age)\eta_{age} + \sum_{vear=1999}^{2012} I(year)\eta_{vear} + \epsilon_{git} \end{aligned}$$
(S1)

where Salary_{git} measures annual salaried income deflated to 2015-level, exposure_g indicates whether the observation belongs to the exposure or control group, $post_t$ captures the period after the exposure group's concussion occurred, and $post_t \times exposure_{git}$ captures the effect concussion, measured as share of year $t \ge 0$ affected by concussion. In this way, someone who suffers a concussion July 1 has $post_t \times exposure_{git} = 0.5$ for t = 0 and $post_t \times exposure_{git} = 1$ for t > 0. X_i is a set of covariates that includes a high school indicator and a gender dummy, ϵ_{git} is the error-term, and the two last sets of indicator variables I(Age) and I(Year) capture age and incident year levels (control group indexed against incident year). Under the parallel trends assumption, δ then captures the annual effect of concussion on salary. In eq. 1, exposure_g normalizes any pre-exposure differences between the exposure and control group, thereby creating a joint baseline pre-exposure.

We estimate robust individual-level clustered standard errors to account for the possibility that individuals enter the data twice both as control (0) and exposure (1) individuals ($g=\{0,1\}$), and that they are observed for multiple periods ($t=\{-4,..., \Delta-1\}$). To calculate the relative salary decrease after concussion, we exploit the parallel trends assumption to generate the expected counterfactual salary level, i.e. had the concussion not occurred, and calculate the decline expressed in percentage as: % change = $\delta / E(Salary_{git}|g=1, post_t = 1, post_t \times exposure_{git} = 0$). In this way, we provide both absolute estimates measured in 1K Euro, as well as percentage change.

We expect δ from eq. (1) to likely be negative. Yet, a decrease in annual salary can arrive through two different channels. Concussions may affect salary through either decreasing income among those employed or by reducing the number of individuals who are employed and earning any salary at. To parse out which of the two channels is driving the results, we examine how concussion affects the salary distribution among the exposure group following. Following Chernozhukov et al.²⁰ we estimate a series of regressions across the whole salary distribution, where, for a finite set of points, we predict how concussion affects the likelihood of having earnings on the left side of each finite point, as follows:

$$\begin{split} \sum_{j=0}^{\max{(Salary)}} p_j &= \beta_{0j} + \delta_j post_t \times exposure_{git} + \theta post_t + \gamma_j exposure_g + X_i \beta + \\ \sum_{Age=26}^{48+\Delta} I(Age) \eta_{age,j} + \sum_{year=1999}^{2012} I(year) \eta_{year,j} + \epsilon_{git,j} \end{split}$$
(S2)

where $p_j = \Pr(Salary_{git} \leq j)$ and j is the interval from 0 to max(Salary). Across the salary distribution, we can now predict the probability of earning less than j for those with and without concussions. From equation 2, we predict $p_j^1 = E(p_j|post_t \times exposure_{git} = 1, exposure_g = 1, t \geq 0)$ and the counterfactual $p_j^0 = E(p_j|post_t \times exposure_{git} = 0, exposure_g = 1, t \geq 0)$. Plotting p_j^1 and p_j^0 over each value of salary j, and assuming rank stability, gives the cumulative density function of salary for the treated (p_j^1) and the counterfactual observation of the treated had they not suffered concussions (p_j^0) . The difference between p_j^1 and p_j^0 is simply δ_j . If the value of δ_j monotonically moves towards zero as j increases until $p_j^1 \approx p_j^0 \approx 1$ it indicates that exit from employment fully drives the effect of concussion on salary. If instead the value of δ_j is constant or increasing across parts of the distribution, it instead indicates that a decrease in salary among those still receiving salary drives at least part of the effect.

Eq. 1 and eq. 2 are based on the parallel trends assumption. The assumption states that exposure and control groups follow parallel salary trajectories until individuals in the exposure group experiences a concussion, and that the parallel trends would have continued had the concussion not occurred. Whereas we cannot verify the counterfactual situation of parallel trends after exposure, we can use a dynamic model to test for systematic differences in salary trends between exposure and control group in the years leading up to the exposure group's concussion event. To do so, we estimate the following dynamic model:

$$\begin{aligned} Salary_{git} &= \beta_0 + \sum_{t=-4}^{\Delta-1} \delta_t \times I(t_g) \times exposure_g + \sum_{t=-4}^{\Delta-1} I(t_g)\eta_t + \gamma exposure_g + X_i \beta + \\ \sum_{Age=26}^{48+\Delta} I(Age)\eta_{age} + \sum_{year=1999}^{2012} I(year)\eta_{year} + \epsilon_{git} \end{aligned}$$
(S3)

Where we interact exposure group status (*exposureg*) with indicators $I(t_g)$ capturing time from concussion. If the parallel trends assumption holds, then it must be the case $\{\delta_{-4}, \delta_{-3}, \delta_{-2}\}=0$, whereas the size and sign of $\{\delta_{0...}\delta_{\Delta-1}\}$ captures the dynamic effect of a concussion from the year of incidence and Δ -1 years onward. By estimating the effect of concussion on salary among different years of the study period, we are also able to capture how the impact of concussion on salary evolves year to year after the concussion has occurred. We further estimate eq. 3 for a series of related labor market outcomes (annual total income, annual amount of sickness benefits received, annual probability of being employed), to generate a more thorough understanding on how concussions affect labor market outcomes—i.e., if people experience a decrease in salary due to a concussion, are they then compensated through different types of welfare state services.

Supplemental results

tor peet teriewony

Table S1. Test of parallel trends assumption pre-exposure incident against each control group separately using
eq. S3 in supplementary methods. Separate exposure dummies for all time periods (except the year prior to
exposure, which serves as reference period).

Time to exposure group's concussion (exposure)	Δ=1 Est (S.E.) p-value	Δ=2 Est (S.E.) p-value	Δ=3 Est (S.E.) p-value	Δ=4 Est (S.E.) p-value	Δ=5 Est (S.E.) p-value
Exposure-4y	-0.368	0.046	0.120	0.159	0.042
	(0.226)	(0.363)	(0.362)	(0.313)	(0.329)
	p=.104	p=.900	p=.741	p=.612	p=.899
Exposure-3y	-0.094	0.227	0.167	0.537	0.113
	(0.317)	(0.510)	(0.354)	(0.372)	(0.393)
	p=.768	p=.656	p=.637	p=.148	p=.774
Exposure-2y	-0.548	-0.082	-0.163	-0.124	0.082
	(0.312)	(0.347)	(0.236)	(0.247)	(0.250)
	p=.079	p=.812	p=.491	p=.617	p=.744
Exposure-1y	Ref.	Ref.	Ref.	Ref.	Ref.
N*T	284115	273725	266120	260647	256337

Note: The table shows test for differences in pre-exposure trends between exposure and control group model using interactions between pre-exposure time dummies and the exposure indicator. There is no indication of substantial or significant pre-exposure differences in salary trajectories between exposure group and any of the control groups.
Table S2. Effect of concussion on different labor market outcome parameters using separate exposure dummies for all time periods (except the year prior to exposure, which serves as reference period): In this exploratory analysis, the exposure group is compared to the control group Δ =5, which suffers a concussion five years after the exposure group. Outcomes include annual salaried income (annual salary), total annual income (total income), annual sick leave benefits received (sick leave benefits) as well as a binary indicator of employment (probability of employment). Monetary outcomes were measured at 2015-level in \in 1,000.

Time to exposure group's concussion (exposure)	Annual Salary Est. (S.E.) p-value	Total income Est. (S.E.) p-value	Sick leave benefits Est. (S.E.) p-value	Probability of employment Est. (S.E.) p-value
Exposure-4y	0.012	0.164	0.035	0.001
1 0	(0.212)	(0.173)	(0.036)	(0.004)
	p=.954	p=.343	p=.320	p=.803
Exposure-3y	0.059	0.305	0.022	-0.001
1 0	(0.252)	(0.233)	(0.034)	(0.003)
	p=.814	p=.190	p=.529	p=.739
Exposure-2y	0.043	0.122	0.002	0.001
	(0.160)	(0.147)	(0.029)	(0.003)
	p=.788	p=.405	p=.946	p=.739
Exposure-1y				
Exposure	-0.611	-0.338	0.166	-0.003
-	(0.168)	(0.140)	(0.030)	(0.003)
	p<.001	0.016	p<.001	p=.317
Exposure+1y	-1.389	-0.608	0.288	-0.020
	(0.209)	(0.162)	(0.039)	(0.003)
	p<.001	p<.001	p<.001	p<.001
Exposure+2y	-1.568	-0.847	0.132	-0.023
	(0.261)	(0.231)	(0.039)	(0.004)
	p<.001	p<.001	p=.001	p<.001
Exposure+3y	-1.393	-0.497	0.031	-0.022
· •	(0.246)	(0.219)	(0.040)	(0.004)
	p<.001	p=.023	p=.432	p<.001
Exposure+4y	-1.319	-0.499	-0.076	-0.018
•	(0.253)	(0.218)	(0.042)	(0.004)
	p<.001	p=.022	p=.075	p<.001
N*T	577762	577758	577872	577872

Note: Annual salary include all income from salary and employee fringe benefits, employee stock options, employer paid sick leave, net gains (including interests and capital gains) from own companies. Total income includes all income absent wealth. Sick leave includes only public health benefits (sick leave and paternity leave). Employment is a binary indicator measured last week of November for each year. Results obtained from estimations following Eq. (1). Models include controls for high school diploma, gender, age, and observation year. Results obtained using reghtfe in Stata. Total number of observations (N*T) differ slightly between outcomes because all income information is not available for all observation all years.

Source: Own calculations on data from Statistics Denmark.

Table S3. Demographic factors for exposure group and control groups (Δ =1, 2, 3, 4, 5) averaged over the 5 years leading up to the concussion event in each of the groups. Factors include patient age (in years), share of sample female (1=100% female), and share of individuals with at least a high school degree (1=100%).

		Exposure	Control, ∆=1	Control, ∆=2	Control, ∆=3	Control, ∆=4	Control, $\Delta=5$
	Mean	.430	.438	.447	.458	.464	.473
Pr(Female=1)	S.D.	(.495)	(.496)	(.497)	(.498)	(.499)	(.499)
	p-value	()	.030	<.001	<.001	<.001	<.001
	Mean	36.899	37.354	37.754	38.065	38.343	38.592
Age	S.D.	(11.856)	(11.857)	(11.718)	(11.630)	(11.584)	(11.491)
	p-value		<.001	<.001	<.001	<.001	<.001
	Mean	.624	.632	.640	.646	.653	.660
Pr(High school=1)	S.D.	(.484)	(.482)	(.480)	(.478)	(.476)	(.474)
	p-value	· · ·	.026	<.001	<.001	<.001	<.001
Total individuals		37848	34551	31851	29922	28580	27484

Note: S.D.: Standard deviation. P-values calculated using two-sided t-tests. All test performed between exposure group and each control group separately.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure S1. Unnormalized Average Salary for Treatment and Control Groups Measured in 1K € at 2015-levels

Note: Salary of the exposure group compared to salary of the 5 control groups, who experienced their concussions $\Delta = \{1, 2, 3, 4, \text{ and } 5\}$ years later than the exposure group. Salary progression is shown for the 5 years before and the 5 years after the exposure group suffered a concussion event. Table S1 demonstrates that the trends for salary progression pre-exposure incident are parallel between exposure group and each control group.

Figure S2. The Cumulative Density Function (CDF) for Total Income Post-Treatment among the Treatment Group and Their Counterfactual, and the Difference between the Two CDFs Expressed as the Effect of Concussion on the Probability of Total Income Below that Income-Level following Exposure Event.

Note: The figure shows the observed cumulative salary distribution following a concussion (red) and the expected counterfactual salary distribution absent the concussion (blue). The black line shows the difference between the observed and the counterfactual distribution, and the grey dash lines show the 95 % confidence interval. The bell-shape of the difference between the two distributions as the total income increase from 0 to 40,000 \in indicates that the main part of the effect of concussions on total incomes is driven by low-income people shifting total income downwards following concussion, but not going to total income equal to zero.

Note: Relative salary drop of the exposure group compared to the control groups, who suffer a concussion 1, 2, 3, 4, and 5 years after the exposure group. Relative salary changes are shown across different age groups. Graph shows parameter estimates and 95% CI.

Figure S4. Percentage Effect of Concussion on Relative Salary Across High School Completion.

Note: Relative salary drop of the exposure group compared to the control groups, who suffer a concussion 1, 2, 3, 4, and 5 years after the exposure group. Relative salary changes are shown across whether individuals had obtained at least a high school diploma (ISCED > 2). Graph shows parameter estimates and 95% CI.

Note: Relative salary drop of the exposure group compared to the control groups, who suffer a concussion 1, 2, 3, 4, and 5 years after the exposure group. Relative salary changes are shown across gender. Graph shows parameter estimates and 95% CI.

Figure S6. Effect of Concussion on Absolute Salary in 1K Euro Across Age groups.

Note: Absolute salary drop of the exposure group compared to the control groups, who suffer a concussion 1, 2, 3, 4, and 5 years after the exposure group. Absolute salary changes are shown across different age groups. Graph shows parameter estimates and 95% CI.

Note: Absolute salary drop of the exposure group compared to the control groups, who suffer a concussion 1, 2, 3, 4, and 5 years after the exposure group. Absolute changes in salary are shown across whether individuals had obtained at least a high school diploma (ISCED > 2). Graph shows parameter estimates and 95% CI.

Figure S8. Effect of Concussion on Absolute Salary in 1K Euro Across Gender.

Note: Absolute salary drop of the exposure group compared to the control groups, who suffer a concussion 1, 2, 3, 4, and 5 years after the exposure group. Absolute changes in salary are shown across gender. Graph shows parameter estimates and 95% CI.

Page 45 of 49

BMJ Open

	Item No.	STROBE items	Location in manuscript where items are reported	RECORD items	Location in manuscript where items are reported
Title and abstrac	ct		· · -		1
	1	(a) Indicate the study's design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced	title abstract	RECORD 1.1: The type of data used should be specified in the title or abstract. When possible, the name of the databases used should be included.	title abstract
		summary of what was done and what was found		RECORD 1.2: If applicable, the geographic region and timeframe within which the study took place should be reported in the title or abstract.	title abstract
			· e/;e	RECORD 1.3: If linkage between databases was conducted for the study, this should be clearly stated in the title or abstract.	abstract
Introduction		1	T		T
Background rationale	2	Explain the scientific background and rationale for the investigation being reported	abstract introduction	5/1	
Objectives	3	State specific objectives, including any prespecified hypotheses	introduction		
Methods					
Study Design	4	Present key elements of study design early in the paper	introduction		
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	materials and methods		

The RECORD statement – checklist of items, extended from the STROBE statement, that should be reported in observational studies using

Participants	6	(a) Cohort study - Give the	materials and	RECORD 6.1: The methods of study	materials and
F		eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up <i>Case-control study</i> - Give the	methods	population selection (such as codes or algorithms used to identify subjects) should be listed in detail. If this is not possible, an explanation should be provided.	methods
		eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls <i>Cross-sectional study</i> - Give the eligibility criteria, and the sources and methods of selection of participants		RECORD 6.2: Any validation studies of the codes or algorithms used to select the population should be referenced. If validation was conducted for this study and not published elsewhere, detailed methods and results should be provided.	materials and methods
		(b) Cohort study - For matched studies, give matching criteria and number of exposed and unexposed <i>Case-control study</i> - For matched studies, give matching criteria and the number of controls per case	or tevie	RECORD 6.3: If the study involved linkage of databases, consider use of a flow diagram or other graphical display to demonstrate the data linkage process, including the number of individuals with linked data at each stage.	not included
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable.	materials and methods main text	RECORD 7.1: A complete list of codes and algorithms used to classify exposures, outcomes, confounders, and effect modifiers should be provided. If these cannot be reported, an explanation should be provided.	materials and methods
Data sources/ measurement	8	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	materials and methods		

Bias	9	Describe any efforts to address potential sources of bias	materials and methods and results		
Study size	10	Explain how the study size was arrived at	materials and methods		
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	materials and methods		
Statistical methods	12	 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study - If applicable, explain how loss to follow-up was addressed <i>Case-control study</i> - If applicable, explain how matching of cases and controls was addressed <i>Cross-sectional study</i> - If applicable, describe analytical methods taking account of sampling strategy (e) Describe any sensitivity analyzed 	a) materials and methods b) materials and methods c) materials and methods d-e) NA	r M	
Data access and cleaning methods	3			RECORD 12.1: Authors should describe the extent to which the investigators had access to the database population used to create the study population.	materials and methods materials and methods

Linkage				RECORD 12.2: Authors should provide information on the data cleaning methods used in the study. RECORD 12.3: State whether the study included person-level, institutional-level, or other data linkage across two or more databases. The methods of linkage and methods of linkage quality evaluation should be provided	materials and methods
Results	1				
Participants	13	 (a) Report the numbers of individuals at each stage of the study (<i>e.g.</i>, numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed) (b) Give reasons for non- participation at each stage. (c) Consider use of a flow diagram 	(a-c) materials and methods	RECORD 13.1: Describe in detail the selection of the persons included in the study (<i>i.e.</i> , study population selection) including filtering based on data quality, data availability and linkage. The selection of included persons can be described in the text and/or by means of the study flow diagram.	materials and methods
Descriptive data	14	 (a) Give characteristics of study participants (<i>e.g.</i>, demographic, clinical, social) and information on exposures and potential confounders (b) Indicate the number of participants with missing data for each variable of interest (c) <i>Cohort study</i> - summarise follow-up time (<i>e.g.</i>, average and total amount) 	 a) materials and methods and Supplementary Table S3 b) materials and methods, Table 1 c) materials and methods 	n N N	
Outcome data	15	Cohort study - Report numbers of outcome events or summary measures over time Case-control study - Report numbers in each exposure	materials and methodsand Supplementary Table S3, results		

		of exposure <i>Cross-sectional study</i> - Report numbers of outcome events or summary measures			
Main results	16	 (a) Give unadjusted estimates and, if applicable, confounder- adjusted estimates and their precision (e.g., 95% confidence interval). Make clear which confounders were adjusted for and why they were included (b) Report category boundaries when continuous variables were categorized (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period 	a) results b) results c) results		
Other analyses	17	Report other analyses done— e.g., analyses of subgroups and interactions, and sensitivity analyses	results		
Discussion					
Key results	18	Summarise key results with reference to study objectives	results and discussion	051	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	results and discussion	RECORD 19.1: Discuss the implications of using data that were not created or collected to answer the specific research question(s). Include discussion of misclassification bias, unmeasured confounding, missing data, and changing eligibility over time, as they pertain to the study being reported.	NA
Interpretation	20	Give a cautious overall interpretation of results considering objectives	discussion		

		limitations, multiplicity of analyses, results from similar studies, and other relevant evidence			
Generalisability	21	Discuss the generalisability (external validity) of the study results	discussion		
Other Informatio	n				
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Title page		
Accessibility of protocol, raw data, and programming code			Reference to supplementary data throughout the text	RECORD 22.1: Authors should provide information on how to access any supplemental information such as the study protocol, raw data, or programming code.	materials and methods

*Reference: Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, Sørensen HT, von Elm E, Langan SM, the RECORD Working Committee. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) Statement. PLoS Medicine 2015; ense. in press.

*Checklist is protected under Creative Commons Attribution (CC BY) license.

BMJ Open

The Effect of Concussion on Salary and Employment-A Population-Based Event Time Study using a Quasi-Experimental Design

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-038161.R1
Article Type:	Original research
Date Submitted by the Author:	21-Jul-2020
Complete List of Authors:	Fallesen, Peter; Stockholm University, Swedish Institute for Social Research Campos, Benito; Heidelberg University Hospital Department of Neurosurgery; Technical University of Denmark, Department of Health Tech
Primary Subject Heading :	Public health
Secondary Subject Heading:	Neurology
Keywords:	HEALTH ECONOMICS, Neurosurgery < SURGERY, Trauma management < ORTHOPAEDIC & TRAUMA SURGERY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3		
4 5	1	The Effect of Concussion on Salary and Employment-A Population-Based Event Time
6 7	2	Study using a Quasi-Experimental Design
8	3	
9 10	4	12 Potor Falleson, PhD 34 Ponito Campos, M.D.
11	4	
12 13	5	
15	6	¹ Swedish Institute for Social Research, Stockholm University, SE-106 91 Stockholm, Sweden
16 17	7	² ROCKWOOL Foundation, Ny Kongensgade 6, DK-1472 Copenhagen C, Denmark
18	8	³ Department of Neurosurgery, University of Heidelberg, INF400, 69120 Heidelberg, Germany
19 20	9	⁴ Department of Health Tech, Technical University of Denmark, DK-2800 Kongens Lyngby,
21	10	Denmark
22 23	11	
24 25	12	Address of Correspondence: Peter Fallesen, Swedish Institute for Social Research,
26	13 14	+4561333184
27 28	15	
29	16	Keywords: administrative data: concussion: income: productivity
30 31		
32 33	17	Abstract word count: 245
33 34 35	18	Text word count: 3913 (excluding references and figure/table legends)
36 37	19	Number of references: 21
38 39	20	Number of tables and/or figures: 2 tables and 4 figures
40		
41 42	21	Number of videos: 0
43 44	22	
45	23	
46 47	24	
48 40		
49 50		
51 52		
53		
54 55		
56		1
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	23	1 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2		
5 4 5	25	Abstract
6 7 8	26	Objective: Concussions are the most frequent traumatic brain injuries. Yet, the socio-economic
9 10	27	impact of concussions remains unclear. Socio-economic effects of concussions on working age
11 12	28	adults were studied on a population scale.
13 14 15	29	Design: This population-based, event time study uses administrative data as well as hospital
16 17	30	and emergency room records for the population of Denmark.
18 19	31	Setting: We study all Danish patients, aged 20-59 y, who were treated at a public hospital or
20 21 22	32	emergency room between 2003-2017 after suffering a concussion without other intracranial or
23 24	33	extracranial injuries (n=55,424 unique individuals) with no prior diagnosis of intra- or
25 26	34	extracranial injury within the past ten years leading up to the incident.
27 28 29	35	Primary and Secondary Outcome Measures: As primary endpoint, we investigate the mean
30 31	36	effect of concussion on annual salaried income within a five-year period after trauma. In an
32 33	37	exploratory analysis, we study whether the potential impact of concussion on annual salaried
34 35 36	38	income is driven by patient age, education, or economic cycle.
37 38	39	Results: Concussion was associated with an average change in annual salary income of -
39 40 41	40	1,223€ (95% CI, -1,540€; -905€, p<.001) corresponding to a salary change of -4.2 % (95% CI,
41 42 43	41	-5.2 %; -3.1 %). People between 30-39 y and those without high school degrees suffered the
44 45	42	largest salary decreases. Affected individuals leaving the workforce drove the main part of the
46 47 48	43	decrease. Absolute annual effect sizes were countercyclical to the unemployment rate.
40 49 50	44	Conclusions: Concussions have a large and long-lasting impact on salary and employment of
51 52	45	working-age adults on a nationwide scale.
53 54 55	46	
56 57		2
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

20 54

47 Strengths and limitations of this study

- Natural experiments used to obtain plausible causal effects between concussion and
 salary/employment.
- 50 Large, population-based sample with multiple data layers.
- 51 Analysis includes how economic cycles affect outcome measures.
- 52 Data only captures concussions registered in ERs and hospitals.
- 53 Because concussions do not occur at random, causal estimate relies on stronger
 - assumptions than for a randomized control trial.

ו כ	
2 3	
4	5
5	5
б	_
7	5
8	_
9 10	5
10	
12	5
13	
14	6
15	
16	6
17	
18	6
19	
20	6
21 วว	0.
22 23	6
23	0
25	6
26	0.
27	
28	6
29	
30	6
31	
32	6
55 21	
34	6
36	
37	7
38	
39	7
40	
41	7
42	, ,
43 44	7
44 45	/.
46	7
47	/.
48	7
49	1.
50	7
51	/
52	_
53	7
54	
56 56	
57	
58	
50	

56 Introduction

7 Concussions are by far the most frequently occurring intracranial injuries affecting 8 approximately 450 to 600 per 100,000 people every year[1]. Immediate symptoms may last 9 for days or weeks. Further, Danish cohort data[2] indicates that 10-15% of patients diagnosed 0 with concussion suffer from long-term symptoms such as headache, fatigue, and intolerance to 1 stress, whereas other studies place the upper bound as high as 30%[3,4]. Clinical practice has 2 encouraged patients to restrict social, mental, and physical activity in the weeks following a 3 concussion (see[5] for review), although prolonged inactivity may prolong symptoms. Thus, 4 symptoms, comorbidities, and suggested treatment are associated with short- to long-term 5 absence from work and lower productivity.

6 Yet, the causal effect of concussion on economic burdens for individuals and society through 7 decreased labour market activity has not been identified. First, concussion is a sudden incident 8 and thus not amenable to prospective study nor randomization. Cohort and case-control 9 studies[6–10] provide some valuable evidence on employment and labour market outcomes 0' among those who suffered concussions but are prone to selection bias. Individuals at high risk 1 of concussions may differ on unobserved characteristics (e.g., risk aversion, routine activities) 2 from those at low risk. People who are more likely to suffer concussions may also, on average, 3 have more precarious or unstable employment trajectories prior to the incident, which may 4 further bias prospective studies. Given the high incidence rate of concussion, even small losses '5 of productivity and discrete drops in employment would have a significant socioeconomic 6 impact and thus, it would require large patient cohorts with suitable controls to grasp the full 7 socioeconomic impact of concussions. Thus, absent the possibility of randomization, using a

4

natural or quasi-experimental design is the only likely option to parse out the *causal* effect of
 concussions on labour market activity.[11]

We examine how concussions affect salary and employment of working age individuals in Denmark, a representative north-European industrial nation with a strong welfare state and a flexible labour market. We use administrative longitudinal data linked to hospital and emergency room diagnostic data on all Danes, who received a primary diagnosis of concussion between 2003 and 2017. To address the problem of unmeasured bias between those that do and do not experience a concussion, we use a quasi-experimental event-study approach[12,13] where we compare similar individuals, who experienced their concussions at different time points. Under mild assumptions of parallel trends in wage progression prior to concussion and random timing of concussion event within a five-year time frame, the approach recovers a robust estimation of the effect of concussion on annual salary and employment status.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

י ר		
2		
3		
4		9
5		
6		^
7		9
8		
9		9
10		-
11		ი
12		7
13		
14		9
15		
16		9
17		1
18		~
19		9
20		
21		9
22		
23		0
23		9
27		
25	1	0
20		
27	1	n
28	I	U
29		
30	1	0
31		
32	1	0
33	1	Č
34	1	~
35	I	U
36		
37	1	0
38		-
39	1	n
40	I	U
41		
42	1	0
43		
13	1	n
4 4 45	T	v
45		_
40	1	0
47		
48	1	1
49	1	1
50		
51	1	1
52		
53	1	1
54	1	1
55		
56		
57		
58		
59		

1 Material & Methods

Data Sources and Sample Construction

3 Concussion data originates from the Danish National Patient Registry (DNPR) (see[14] for 4 description). DNPR is published annually and holds information on all hospitalizations at public 95 hospitals in Denmark since 1977, on all emergency room visits and outpatient treatments at 6 public hospitals since 1994, and almost all private hospital treatments since 2003. With one 7 single, short-lived exception, private hospitals do not operate emergency rooms in Denmark. 8 Since 2003, the data cover 95% of all treatments at private hospitals[14], yet only 13 9 concussion were diagnosed in private hospital settings throughout the period covered by the 0 data.

1 The combined exposure and control cohort includes all Danes aged 20-59 y, who received a 2 primary diagnosis of concussion (ICD-10 code S06.0, ICD-8 code N850) between 2003 and 3 2017 and did not sustain any kind of additional intracranial or extracranial injury. Individuals)4 who regularly engage in activities associated with a high risk of sustaining multiple concussions)5 may differ from the average concussion patient and would likely be over-represented in the 6 exposure sample. To avoid such potential bias, all individuals who were diagnosed with any 7 kind of brain trauma during a ten-year period prior to the concussion event were excluded. 8 Altogether, the study included a cohort of 55,424 individuals. Only attrition is through mortality 9 and out-migration, and out-migrated or deceased patients with missing spells in the follow up period is excluded in those periods. 0

As a measure of productivity, a price-index deflated annual salaried income was used. Salary information comes from Statistics Denmark's Income Statistics database. The database

60

3 4 113 includes all declared annual incomes including income from self-employment. The Danish Tax 5 6 114 Authorities supply the data to Statistics Denmark. Overall accuracy is considered very good.[15] 7 8 Table 1 reports number of observations for the samples and number of observations with 9 115 10 ¹¹ 116 missing salary information. As evident, only between 0.01 to 0.02 percent of observations 12 13 .5 14 117 across exposure and control groups have missing salary information. These observations were 15 disregarded in the main analysis. Through social security numbers, information on salaried 16118 17 18 1 1 9 income were linked to records on diagnosed concussions. Further, information on high school 19 20 120 or equivalent level degree at time of concussion was obtained using the Danish Education 21 22 23 121 Database. The Danish Population Database provided demographic information on age and 24 25 1 2 2 gender for all respondents. Since the data used in the study come from de-identified 26 ²⁷ 123 administrative registers that Statistics Denmark makes available for research purposes for 29 ₃₀ 124 approved institutions, no approval from an ethics committee was needed to carry out the study. 31 32 1 2 5 The research was carried out as part of project no. 706630 approved by Statistics Denmark. 33 ³⁴ 126 Statistical analysis was carried out using Stata MP 15.1. 35 36 37 127 38

³⁹128 Quasi-experimental design

41 42 129 The study used a quasi-experimental, difference-in-differences event time approach previously 43 44 1 3 0 described in a health setting by Dobkin et al.[12] The approach compare two groups of 45 ⁴⁶ 131 individuals from the same cohort, where both groups experience concussions, but at two 47 48 49¹³² different time points (t_c , t_c + Δ). Specifically, the sample of 55,496 individuals was divided into six 50 51 133 different subgroups: i) The exposure group, which includes all patients, who suffered their 52 53 134 concussion during the period 2003-2012 (n=37,848) and ii) five control groups, which comprise 54

7

57 58

55

56

40

patients who experienced their concussions $\Delta = \{1 (n=34,551), 2 (n=31,851), 3 (n=29,922), 4 \}$ 135 136 (n=28,530), and 5 (n=27,421)} years later than the exposure group and did not experience any kind of brain injury in the 10+ Δ years before the concussion event (note that the design allows 137 individuals to both be part of the exposure and control group). The model is built on the assumption that the exact timing of a concussion is random for small enough values of Δ , and on the additional assumption that the exposure and the control groups would have displayed parallel trends in salary if the control group had not suffered a concussion at t_c (i.e., assuming 142 that control and exposure group(s) would have continued to show similar trends in salaried earnings had the exposure group not experienced concussions). Table 1 show the number of patients in the exposure group and the five control groups for each year relative to exposure group's concussion incident. Using multiple comparison groups makes it possible to gage the validity of the assumption that the exact timing of a concussion is random for small enough sizes of Δ

To estimate the impact of concussion on labour market outcomes, the analysis focuses on the 37 149 change in annual salary as the primary outcome, and, in further exploratory analyses, studies 39 1 5 0 additional outcomes such as income from health-related benefits, income from welfare benefits, ⁴¹ 151 and employment rates. The data are nested within a three-level structure: Exposure or control 44 152 group g, which includes individuals *I*, at times to exposure-groups concussion incident *t*. First, a standard difference in differences model for each separate control group Δ ={1, 2, 3, 4, and 5} 46 1 5 3 ⁴⁸ 154 is estimated using ordinary least squares:

 $Salary_{git} = \beta_0 + \gamma Exposure_g + \theta Post_t + \delta Post \times Exposure_{git} + X_i \beta + \sum_{Aae=20}^{59+\Delta} I(Age)\eta_{Age}$ $+ \sum_{Year\,=\,1999}^{2012} I(Year) \eta_{Year} + \epsilon_{git}$ (1)

8

58 59

2			
3			
4	1	5	7
5	1	č	í
6	1	5	0
7	I	J	0
8		_	_
9	1	5	9
10			
11	1	6	0
12			
13	1	6	1
14	1	Ű	1
15	1	<i>,</i>	
16	I	0	2
17			
18	1	6	3
19			
20	1	6	Δ
21	1	0	т
22	1	_	~
23	I	6	5
24			
25	1	6	6
26			
27	1	6	7
28	1	Ö	'
29		_	~
30	l	6	8
31			
32	1	6	9
33			
34	1	7	0
35	1	'	v
36	1	_	1
37	I	/	I
38			
39	1	7	2
40			
41	1	7	2
42	T	/	5
43			
44	1	7	4
45			
46	1	7	5
47	1	'	5
48	1	_	_
49	l	1	6
50			
51	1	7	7
52			
53	1	7	8
54	1	'	0
55			
56			
57			
58			
59			

1

7 where Salary_{ait} measures annual salaried income deflated to 2015-level; *Exposure*_q indicates whether the observation belongs to the exposure or control group; Post, captures the period 8 9 after the exposure group's concussion occurred; *Post_t*×*Exposure_{ait}* captures the effect 0 concussion, measured as share of year $t \ge 0$ affected by concussion (i.e., for year of incident 1 exposure is expressed as share of year spent with post-exposure, for following years it is equal 2 to 1); X_i is a set of covariates that includes a high school indicator and a gender dummy; ϵ_{ait} is 3 the error-term; and the two last sets of indicator variables I(Age) and I(Year) capture age and incident year (for control group, the year indexed against). Under an assumption of parallel 4 5 trends in salaried earnings (i.e., assuming that control and exposure group(s) would have 6 continued to show similar trends in salaried earnings had the exposure group not experienced 7 concussions), δ then captures the annual causal effect of concussion on salary for people 8 exposed to concussions (see Supplemental Methods for further details). For additional 9 exploratory analyses, separate models across gender, educational level, and age, as well as 0 across the salary distribution are also estimated (see Supplemental Methods, Supplemental 1 Digital Content 1, for further details). The authors document and make available all code 2 needed to reproduce the findings in the study (Supplemental Digital Content 2).

4 Standard Protocol Approvals, Registrations, and Patient Consents

5 Since the data used in the study come from de-identified administrative registers that Statistics 6 Denmark makes available for research purposes for approved institutions, no approval from an 7 ethics committee was needed to carry out the study. The research was carried out as part of 8 project no. 706630 approved by Statistics Denmark.

9

1	
3	
$\frac{4}{5}$ 179	
6 7 180	Patient and Public Involvement
8 9 181	There was no involvement from patients or members of the public in the design, or conduct,
10 11 182	or reporting, or dissemination plans of the research.
12 13	
14	
15 16	
17 18	
19 20	
21	
22 23	
24 25	
26 27	
28	
30	
31 32	
33 34	
35 36	
37	
39	
40 41	
42 43	
44 45	
46	
47 48	
49 50	
51 52	
53 54	
55	10
56 57	
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4 183 Results 5 6 184 Concussion leads to long-term loss in salaried income 7 8 9 Individuals who suffered a concussion (exposure group) had a lower salaried income compared 185 10 11 12¹⁸⁶ to individuals who experienced their concussion 1, 2, 3, 4 and 5 years after the exposure group 13 14 187 (control groups). Compared to patients who experienced a concussion one year after the 15 16 188 exposure group, salaried income was €423/£380 (95% CI: -€9129/-£8208; €73/£66, p=.095; 17 18 19¹⁸⁹ Table 2) lower, corresponding to a salary decrease of 1.5 % (95% CI: -0.3 %; 3.2 %; Figure 1). 20 21 190 Compared to patients who experienced a concussion 5 years after the exposure group, 22 23 191 however, salaried income in the exposure group was €1,243 (95% CI: -€1,564/-£1,406; -€922/-24 25 192 £829, p<.001) lower, corresponding to a salary decrease of 4.2 % (95% CI: 3.1 %; 5.3 %; Figure 26 27 28 193 1). Normalized wage progression for the control groups, who suffered a concussion 1, 2, 3, 4, 29 and 5 years after the exposure group, showed similar trends and similar levels pre-exposure, 30 194 31 ³² 195 indicating that the parallel wage trends assumption was met (Figure 2 and table S1, Figures S1 33 34 35¹196 in Supplemental Digital Content 3). 36 37 197 We hypothesized that the salary decreases resulted from a combination of lower salary and 38 39 198 exit from the labour market, either through short- or long-term absence/unemployment. In an 40 41 42 199 exploratory analysis, we tested whether labour force exit drove the full effect of concussion on 43 44 200 salary (Figure 3). By comparing the cumulative distribution of salary density for the exposure 45 ⁴⁶ 201 group with the cumulative distribution of salary density for the Δ =5 control group (Figure 3, left 47 48 49²⁰² panel), we found that the impact of concussion on salary was significant for individuals in the 50 51 203 lower quartile of the salary distribution (at a 95 % significance level). Specifically, below a 52 53 204 threshold salaried income of 40,000€ (£36,000) the presumed impact of concussion on salary 54 55 11 56 57 58

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

59 60

BMJ Open

2	
3	
4	205
5	203
6	
7	206
8	
9	207
10	
11	208
12	200
13	200
14	209
15	
16	210
1/	
18	211
19	211
20	010
21	212
22	
25	213
24	
25	214
20	
27	215
20	213
30	• • •
31	216
32	
33	217
34	
35	218
36	
37	210
38	21)
39	220
40	220
41	
42	221
43	
44	222
45	
46	222
47	223
48	
49	224
50	
51	225
52	
53	<u></u>
54	∠∠0
55	
56	
5/	
50 50	
14	

increased towards the bottom of the earnings pyramid; Figure 3, right panel).

Comparing the exposure group to the control group Δ =5, which suffers a concussion five years after the exposure group, concussion was associated with a 2.6% (95% CI: 3.0 %; 2.2 %, p <.001) increase in the risk of receiving \in 0 in annual salary.

Long-term loss in salaried income stems from exit from the labour market

To further examine whether exit from the labour market was caused either through short- or long-term absence/unemployment, we estimated a dynamic model using the control group Δ =5, which suffers a concussion five years after the exposure group. Sick leave benefits payments were higher in the exposure group compared to the control groups for the first two years following concussion. Sick leave benefits were no longer different from year 3 while the difference in annual salary between exposure and control groups persisted. Further, employment in the exposure group remained lower than in the control group Δ =5 and remained so for the entire post-exposure period (see table S2, Supplemental Digital Content 3 for further details). To assess whether some form of public benefits covered part of the salary loss, total income decline was compared to salary decline following concussion. Indeed, total income decline was lower than the salary decline through a five year period (see Figure S2, Supplemental Digital Content 3 for further details).

60

Younger patients without high school degree drove the effect of concussion on income loss The exposure group and all control groups differed slightly in terms of average patient age, male to female ratio, and for control group Δ =5, in the frequency of individuals with at least a 12

227 high school degree (see Table S3, Supplemental Digital Content 3 for further details). To ensure 228 that differences in gender, education, or age did not influence our results, we subdivided our 229 exposure group into subgroups based on gender, education status, and age at time of 10 ¹¹230 concussion. We then estimated the impact of concussion on salary and employment across all 12 13 14¹³231 values of Δ and for all subgroups (see, Figures S3-S8, Supplemental Digital Content 3 for 15 16 2 3 2 further details). Patients between age 30-39 and those without a high school degree 17 18 233 experienced the largest absolute and relative declines in salary. 19

20 ⁻⁰₂₁234 Finally, we addressed the role of timing of concussion across different years. Given that per 22 23 2 3 5 design our exposure group always suffered their concussion earlier than the control groups do, 24 ²⁵ 236 changing labour market conditions could moderate effects. Part of our sample suffered their 26 ²⁷ 28 237 concussion during or just prior to the Great Recession in 2009-2010, which arguably presented 29 30 2 38 the largest shock to both the global and local economy since the Great Depression in the 1930s. 31 32 239 In Denmark, the great recession was preceded by a series of years of economic growth, low 33 $^{34}_{35}240$ unemployment, and increasing salaries (see Figure S8, Supplemental Digital Content 3 for 36 37 241 salary development from 1994 to 2017). We estimated the impact of concussion on salary 38 39 2 4 2 separately for each year from 2003-2012 and plotted the estimate against the percent of full-40 ⁴¹ 243 time unemployment in the Danish labour force (Figure 4). Suffering a concussion during an 42 43 .5 44 244 economic boom had a substantially higher impact on salary than doing so during a recession 45 when comparing to control groups who suffered concussions two to five years later than 46 2 4 5 47 ⁴⁸ 246 exposure group.

5 6

7 8

9

13

60

55

1	
2	
3	
4	248
5	210
6	a 10
7	249
8	
9	250
10	
11	251
12	
13	252
14	232
15	0.50
10	253
1/	
10	254
20	
20 21	255
21 22	
22	256
2J 74	230
25	257
25	257
27	
28	258
29	
30	259
31	
32	260
33	200
34	261
35	201
36	
37	262
38	
39	263
40	
41	264
42	
43	265
44	205
45	200
46	266
4/	
48	267
49 50	
50	268
57	
ッと 52	260
54	209
55	
56	
57	
58	
59	
60	

Discussion

The impact of concussion on employment and salary remains understudied. In a systematic review of four studies on the association between mild TBI and return to work, Cancelliere and colleagues[9] found that most workers return to work within 3-6 months of suffering a mild TBI, but that the long-term impact (more than one year after concussion) was not studied. In addition, studies included small to medium sample sizes, varied measures of return to work, and employed both case-control and cohort designs. Using an inception cohort study design, Theadom and colleagues[7] collected follow up data four years after mild TBI incidents on 245 New Zealanders who were employed prior to incident. They found a 3.6 percent productivity decline among those who suffered a concussion, compared to a 2.3 population average decline. The group suffering mild TBI also reported more difficulties carrying out work-related tasks. In a related study, [7] Theadom and colleagues further found that the mild TBI group had persisting cognitive symptoms four years after suffering their concussion compared to an agesex matched control group. Also using a case-control design and data from Taiwan, Chu and colleagues[6] found that one month after incident, 26 percent of patients had still not managed to return to work, and a large share of those who did return scored below full-time employment on a work quality index. Only one other study by Graff and colleagues [10] include a large patient cohort (n=19,732). Using case-control they found an association between concussion and failing to return to work of 1.54 odds ratio, but also found that exposed individuals had lower labour market attachment and was more likely to receive health related benefits pre-incident compared to the control group.

In the present study, we overcame some of the obstacles faced by previous work on the impact 14

4 270 of concussions on labour market outcomes by including a vast cohort of patients and exploiting 5 6 271 a guasi-experimental design that allow us to plausibly account for unobserved difference 7 8 9 272 between exposure and control group. In such a guasi-experimental setup exposure and control 10 ¹¹ 273 groups only differ in the timing of concussion. Since everyone in the control group experiences 12 13 14¹³274 a concussion within five years after individuals in the exposure group, the groups are likely to 15 16275 be balanced on unobservable characteristics. This is particularly important given the number of 17 18 276 potential factors that can influence employment after concussion[16,17]. Data from Donker-19 ²⁰ Cools et al. [17], for instance, suggests larger employers are more able to keep those who have 22 23 278 sustained brain injuries in work compared to smaller employers. However, studying the effect 24 25 2 7 9 of concussion on salaried income for individuals with employer of different size lies beyond the 26 ²⁷ 280 granularity of our data.

In addition, salary and employment data reported here were compiled routinely through third-30 281 31 32 282 party reporting and were mandatory for all subjects, thus giving a complete and comprehensive 33 ³⁴ 283 picture of the economic impact of concussion on a nationwide scale. It should be mentioned 36 37 284 that our study also included data from individuals diagnosed in private hospitals. However, 38 39 285 given the setup of the Danish health care system, i.e. private hospitals predominantly do 40 41 42 286 selective and overflow surgery and have no ERs[18], only 13 patients were diagnosed at a 43 44 287 private hospital from 2003 onwards.

Altogether, we showed that Danes between 20-59 year of age, who suffered a concussion during the period 2003-2012 experienced average salary losses of 4.2%. The impact of concussions on salary already materialized one year after the incident and remained sizeable for at least five years. This result is in line with a "burn-in" period in which the impact of

15

57 58

54 55

56

45

1 2 3

concussion on wages fully develops. First, concussions occur at some point during the year. 292 293 thereby not affecting already earned salary that year. Second, in Denmark, most employees 294 are entitled to receive their salary during sickness absence for an open ended, but not indefinite period. The results further showed that both in absolute and relative terms, people with an educational level at less than a high school degree saw substantially larger negative impact to salaried earnings than did those with at least a high school degree. Also, the group with less than a high school degree also saw an immediate impact on salary from their concussion (cf. Figure S4), indicating that the burn-in period present for workers with at least high school education likely expressed differences in types of employment and job protection.

In addition, total income decline was lower than the salary decline through a five year period (see Figure S2, Supplemental Digital Content 3 for further details), suggesting that the impact of concussions on salary largely stems from affected individuals leaving the labour force completely, likely sustaining themselves through early retirement, disability pensions, selfsufficiency, or other income sources instead.

It is important to mention that our study was restricted to individuals diagnosed in ER and 37 306 ³⁹ 307 hospital settings. Rowson et al., however, show that in concussed individuals, severity of the 42 308 cranial injury is not strongly correlated with strength or length of subsequent symptoms[19]. 44 309 Thus, individuals diagnosed by a GP might suffer concussion effects as much as individuals 46 3 1 0 who initially sustained a more severe cranial injury and sought medical attention in an ER or ⁴⁸/₁₂ 311 hospital setting. If this holds true, our results may have validity beyond individuals diagnosed in an ER or hospital setting.

- 16

314 If we assume that people return to their expected salary levels after a five-year recovery period 315 (a very conservative assumption that is not supported by our data), the mere net annual salary loss in our sample would be approximately €23,000,000 (£21,000,000) measured in 2015-9 316 10 ¹¹ 317 value. That would neither include hospital charges, medical costs for the treatment of 12 13 14 318 concussion, the foregone tax from income, and the increased need for welfare spending, nor 15 16319 would it account for the large group of individuals who never seeks treatment[20] or receive 17 18 3 2 0 their diagnosis from their general practitioner rather than in a hospital or emergency room, and 19 ²⁰ 321 thus escape our study. Thus, total public costs are likely substantially higher. 22 23 322 In addition, both in absolute and relative terms, the early peak-working aged individuals (30-39)

24 25 323 y) and the less-educated individuals in our cohort seemed to be most affected after suffering a 26 ²⁷₂₈ 324 concussion. These findings might have and additional and yet unmeasured social impact, 29 30 325 especially if our results are transferrable to other nations with a less established welfare state 31 32 326 and a less flexible labour market. In such countries, the impact on the young and less-educated 33 ³⁴ 327 individuals suffering a concussion and thus on society might be accentuated.

Comparing our hospital incidence rates to more complete canvases of incidences carried out 37 328 38 ³⁹ 329 by Cassidy et al. [21], it seems likely that the actual cost in the population is more than twice as 40 42 330 41 large as what we estimate, assuming that individuals not diagnosed in a hospital setting on 43 44 331 average suffer the same extent of concussion symptoms. If we were to consider the average 45 46 3 3 2 concussion incidence rates for six other advanced European countries that are somewhat 47 ⁴⁸ 333 comparable to Denmark (Norway, Finland, Germany, Netherlands, England and France) and 49 50 ₅₁ 334 under the assumption that concussion have a similar impact on earnings in these countries, the 52 53 335 net annual salary loss would be approximately €1,099,400,000 (£988,4780,000) measured in

17

57 58

54 55

56

36

5 6

Page 19 of 109

60

BMJ Open

1 2	
$\frac{3}{5}$ 336	2015-value. While our study likely underestimates the total socioeconomic impact of
6 7 337	concussion, it suggests that concussions has a large economic impact on a nationwide scale
8 9 338	and on productivity and income at the patient level.
10 11 ₂₂₀	
12 ³³⁹ 13	
14 340	CONCLUSION
16	Line time of a new side of a second
17 <i>3</i> 41 18	Using timing of concussion as a natural experiment, we provide first plausible causal estimates
19 342 20	of the effect of concussion on salary and employment among patients treated for concussion in
$21 \\ 22 343$	an emergency room or hospital setting in Denmark, 2003-2017. Our results show that among
23 24 344	this patient group concussion has a large and long-term negative causal impact on salary and
25 26 345	employment. People between 30-39 y and those without high school degrees suffered the
$\frac{28}{29}346$	largest salary decreases.
30 21 3 4 7	
31 547 32	
33 34	
35	
36 37	
38 39	
40	
41 42	
42	
44	
45 46	
40 47	
48	
49 50	
50 51	
52	
53	
54 55	
56	18
57	
58	
59	
1 2	
-------------------------	---
3 4 2 4 0	
5 348	Disclosures:
6 7 349 8	The authors report no conflict of interest.
9 350 10	
11 12 351	Acknowledgements:
13 14 352	NA
16 17 353	
18 19 354 20	Funding:
20^{21}_{22} 355	This work was supported by the Swedish Research Council for Health (PF), Working Life and
23 24 356	Welfare (Grant no. 2016-07099) with additional funding from the ROCKWOOL Foundation (PF).
25 26 357 27	The research was carried out independently of the funders.
²⁸ 29358	
30 31 359	Authors contributions: P.F. and B.C. conceived of the presented idea, P.F. performed the
32 33 360 34	computations. P.F. and B.C. verified the statistical methods. P.F. and B.C. discussed the results
³⁵ 361 36	and wrote the manuscript. The corresponding author confirms that he had full access to all the
³⁷ 38 362	data in the study and had final responsibility for the decision to submit for publication.
39 40 363 41	
$\frac{42}{43}364$	Data Availability Statement
44 45 365	The data used in this study has been made available through a trusted third party, Statistics
46 47 366 48	Denmark. Due to privacy concerns the data cannot be made available outside the hosted
49 50 367	research servers at Statistics Denmark. University-based and private Danish scientific
51 52 368	organizations can be authorized to work with data within Statistics Denmark. Such organization
53 54 369 55	can provide access to individual scientists inside and outside of Denmark. Requests for data
56 57	19
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2						
3 4 5 370	may	be	sent	to	Statistics	Denmark:
6 7 371	http://wwv	v.dst.dk/en/Om[DS/organisation/T	elefonbogOrg	g.aspx?kontor=13&tlfbo	ogsort=sektion
8 9 372	or the Da	anish Data Pro	tection Agency:	https://www.d	latatilsynet.dk/english/t	he-danish-data-
10 11 ₃₇₃	protection		t/ The authors of	' locument and	d make available all c	ode needed to
12 ³⁷³	protection					
14 ^{37/4} 15	reproduce	e the findings in	the study.			
16 375 16 375 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	20					
57 58						
59 60		For peer re	eview only - http://bm	jopen.bmj.com/s	ite/about/guidelines.xhtml	

376 References

5 6

7 8 9

13

27

29

31

41

57 58 59

60

Cassidy JD, Carroll LJ, Peloso PM, et al. Incidence, risk factors and prevention of 377 1 mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild 378 10 11 379 Traumatic Brain Injury. J Rehabil Med 2004;:28-60. doi:10.1080/16501960410023732 12

14 380 2 Pinner M, Jensen R, Birket-Smith M, et al. Konsensusrapport om commotio cerebri 15 16 381 (hjernerystelse). Videnscenter for Hjerneskade 2003. 17

18 19 382 3 Hou R, Moss-Morris R, Peveler R, et al. When a minor head injury results in 20 enduring symptoms: a prospective investigation of risk factors for postconcussional syndrome 21 383 22 ²³ 384 after mild traumatic brain injury. J Neurol Neurosurg Psychiatry 2012;83:217–23. 24 25 ⁻⁻₂₆ 385 doi:10.1136/jnnp-2011-300767

28 3 8 6 4 Ruff R. Two decades of advances in understanding of mild traumatic brain injury. ³⁰ 387 J Head Trauma Rehabil 2005;20:5–18. doi:10.1097/00001199-200501000-00003

32 5 33 388 Silverberg ND, Iverson GL. Is rest after concussion "the best 34 35 389 medicine?":: recommendations for activity resumption following concussion in athletes, 36 ³⁷ 390 civilians, and military service members. The Journal of head trauma rehabilitation 2013:28:250-38 39

40 391 9. doi:10.1097/HTR.0b013e31825ad658

42 392 Chu SY, Tsai YH, Xiao SH, et al. Quality of return to work in patients with mild 6 43 44 393 traumatic brain injury: a prospective investigation of associations among post-concussion 45 46 47 394 symptoms, neuropsychological functions, working status and stability. Brain Injury 48 49 3 95 2017;**31**:1674–82. doi:10.1080/02699052.2017.1332783 50

51 396 7 Theadom A, Barker-Collo S, Jones K, et al. Work Limitations 4 Years After Mild 52 53 54 397 Traumatic Brain Injury: A Cohort Study. Archives of Physical Medicine and Rehabilitation 55 21 56

BMJ Open

2	
4 5 5 398	2017; 98 :1560–6. doi:10.1016/j.apmr.2017.01.010
6 7 399 8	8 Theadom A, Starkey N, Barker-Collo S, <i>et al.</i> Population-based cohort study of the
9 400 10	impacts of mild traumatic brain injury in adults four years post-injury. PLOS ONE
$^{11}_{12}401$	2018; 13 :e0191655. doi:10.1371/journal.pone.0191655
13 14 402	9 Cancelliere C, Kristman VL, Cassidy JD, et al. Systematic Review of Return to
16 403	Work After Mild Traumatic Brain Injury: Results of the International Collaboration on Mild
18 19 404	Traumatic Brain Injury Prognosis. Archives of Physical Medicine and Rehabilitation
20 21 405	2014; 95 :S201–9. doi:10.1016/j.apmr.2013.10.010
22 23 24 24	10 Graff HJ, Siersma V, Møller A, <i>et al.</i> Labour market attachment after mild traumatic
25 26 407	brain injury: nationwide cohort study with 5-year register follow-up in Denmark. BMJ open
27 28 408	2019; 9 :e026104. doi:10.1136/bmjopen-2018-026104
29 ³⁰ 409	11 Ogilvie D, Adams J, Bauman A, et al. Using natural experimental studies to guide
31 32 33 410	public health action: turning the evidence-based medicine paradigm on its head. J Epidemiol
34 35 411	Community Health Published Online First: 19 November 2019. doi:10.1136/jech-2019-213085
36 ³⁷ 412	12 Dobkin C, Finkelstein A, Kluender R, et al. The Economic Consequences of
38 39 ⊿0 413	Hospital Admissions. American Economic Review 2018: 108 :308–52.
41 42 414	doi:10.1257/aer.20161038
43 ⁴⁴ 415	13 Fadlon I. Nielsen TH. Household Responses to Severe Health Shocks and the
45 110 46 47 416	Design of Social Insurance, Cambridge, MA: 2015, doi:10.3386/w21352
48	14 Cohmidt M. Cohmidt CAL Condegoord II. et al. The Denich National Datient
50 51	14 Schmidt M, Schmidt SAJ, Sandegaard JL, et al. The Dahish National Patient
52 418 53	Registry: a review of content, data quality, and research potential. Clinical epidemiology
54 419 55	2015; 7 :449–90. doi:10.2147/CLEP.S91125
56 57	
58 59	For poor rovious only betty //by ionon by i com/site/shout/swidelines.
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

Page 24 of 109

2		
4 5 420	15	Statistics Denmark. Documentation of statistics: Income Statistics - Statistics
⁶ ₇ 421	Denmark.	
8 9 422 10	2015.https	://www.dst.dk/en/Statistik/dokumentation/documentationofstatistics/income-
¹¹ 423 12	statistics (a	accessed 20 Aug 2018).
13 14 424 15	16	Buck PW, Laster RG, Sagrati JS, et al. Working with mild traumatic brain injury:
16 425 17	voices fron	n the field. <i>Rehabil Res Pract</i> 2012; 2012 :625621. doi:10.1155/2012/625621
¹⁸ 19 20	17	Donker-Cools BHPM, Wind H, Frings-Dresen MHW. Prognostic factors of return to
20 21 427 22	work after	traumatic or non-traumatic acquired brain injury. <i>Disabil Rehabil</i> 2016; 38 :733–41.
23 428 24	doi:10.310	9/09638288.2015.1061608
²⁵ 26 27	18	Vrangbaek K, Østergren K, Birk HO, et al. Patient reactions to hospital choice in
28 430 29	Norway,	Denmark, and Sweden. <i>Health Econ Policy Law</i> 2007; 2 :125–52.
³⁰ 431 31	doi:10.101	7/S174413310700401X
32 33 432	19	Rowson S, Duma SM, Stemper BD, et al. Correlation of Concussion Symptom
35 433 36	Profile with	Head Impact Biomechanics: A Case for Individual-Specific Injury Tolerance. J
³⁷ 434 38	Neurotraur	na 2018; 35 :681–90. doi:10.1089/neu.2017.5169
39 40 435 41	20	Setnik L, Bazarian JJ. The characteristics of patients who do not seek medical
42 436 43	treatment	for traumatic brain injury. Brain Injury 2007; 21 :1–9.
44 437 45	doi:10.108	0/02699050601111419
46 47 438 48	21	Cassidy JD, Carroll LJ, Peloso PM, et al. Incidence, risk factors and prevention of
49 439 50	mild traum	atic brain injury: Results of the WHO Collaborating Centre Task Force on mild
⁵¹ 440 52	traumatic	brain injury. <i>Journal of Rehabilitation Medicine</i> 2004; 36 :28–60.
53 54 441	doi:10.108	0/16501960410023732
55 56	23	
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4 5 442	
6 7 113	
8	
9	
11	
12	
14	
15 16	
17	
18 19	
20	
21 22	
23	
24 25	
26	
27 28	
29	
31	
32 33	
34	
35 36	
37	
38 39	
40 41	
42	
43 44	
45	
46 47	
48	
49 50	

Figure Legends 444

Figure 1. Estimated effect of concussions in percentage on salary for the exposure group 445 446 measured against each control group

12 447 Note: Figure shows the percentage change in salary experienced by the exposure group 14 4 4 8 following their concussions compared to the expected trajectory absent the concussion 16 4 4 9 (calculated from the control groups) with 95 % confidence intervals. See table 1 for separate p-19⁴⁵⁰ values for each estimate.

25

27

29

31 32

34

36

45

47

49 50

52

54 55

56

5 6

7 8 9

10 11

13

15

17

18

Figure 2. Salary development for exposure and control groups across time of exposure

26 4 5 3 Note: Figure shows the salary trajectories for the exposure group (black) who suffers 28 4 5 4 concussion at year zero against normalized wage trajectories for the control groups who suffer ³⁰ 455 their concussions one to five years later. Δ indicates the number of years between exposure ₃₃ 456 and control incident. Table shows that there are no significant differences in the normalized 35 4 57 salary levels for exposure and control group prior to exposure incident (see Figure S1, ³⁷ 458 Supplemental Digital Content 3 for unnormalized salary trajectories).

Figure 3. (Left panel) The cumulative density function (cdf) for salary post-treatment 44 460 46 461 among the treatment group and their counterfactual outcome had they not experienced ⁴⁸/₁₂ 462 their concussions, and (Right panel) the change in salary density for the exposure group 51 463 compared to their counterfactual baseline expressed as the effect of concussion on the 53 464 probability of earning below the salary-level expressed on the x-axis following exposure

25

1 2	
3	
⁴ 465	event.
6 7 466 8	Note: The figure shows the observed cumulative salary distribution following concussion for the
9 467 10	exposure group (red) and the expected counterfactual salary distribution absent suffering
$^{11}_{12}468$	concussion in the exposure group (blue), when using the Δ =5 control group. The black line
13 14 469 15	shows the difference between the observed and the counterfactual distribution, and the grey
16 470 17	dash lines show the 95 % confidence interval. The close to constant decline of the difference
18 471 19	between the two distributions as the salary increase indicates that the main part of the effect of
20 21 472 22	concussions on salary are driven by people having a salary equal to zero.
23 24 473 25	Figure 4. Effect of concussion on salary across incident years and control groups
26 26 27 27	together with the percentage fulltime unemployed of the labor force.
28 29 475	Note: Figure shows annual estimates of concussion against each control group separately
30 31 476 32	mapped against the share of the labor force that is full time unemployed. 95 % confidence
³³ 477 34	intervals. The estimates for the effect of concussion on salary almost uniformly increase in
35 36 478	absolute magnitude when unemployment decreases, and decrease when unemployment
38 479 39	increase, indicating that the effect of concussion on salary is countercyclical to the economic
40 480 41	cycle.
42 43 44 481	
45 46 482	Supplemental Digital Content titles & legends
47 48 49483	Supplemental Digital Content [#1]. Text file. Supplemental materials and methods. This file
50 51 484	contains further details on our quasi-experimental, difference-in-differences event time
52 53 485 54	approach.
55 56	26
57 58	
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

Supplemental Digital Content [#2]. File. Code used for the analyses.

Supplemental Digital Content [#3]. Table. Supplemental results Table S1: Test of parallel trends assumption pre-exposure incident against each control group separately using eq. S3 in supplementary methods. Separate exposure dummies for all time periods (except the year prior to exposure, which serves as reference period).

Supplemental Digital Content [#3]. Table. Supplemental results Table S2: Effect of concussion on different labor market outcome parameters using separate exposure dummies for all time periods (except the year prior to exposure, which serves as reference period): In this exploratory analysis, the exposure group is compared to the control group Δ =5, which suffers a concussion five years after the exposure group. Outcomes include annual salaried income (annual salary), total annual income (total income), annual sick leave benefits received (sick leave benefits) as well as a binary indicator of employment (probability of employment). Monetary outcomes were measured at 2015-level in € 1,000.

Supplemental Digital Content [#3]. Table. Supplemental results Table S3: Demographic 503 factors for exposure group and control groups (Δ =1, 2, 3, 4, 5) averaged over the 5 years leading up to the concussion event in each of the groups. Factors include patient age (in years), share of sample female (1=100% female), and share of individuals with at least a high school degree (1=100%).

27

1 2	
3 4 508 5	Supplemental Digital Content [#3]. Figure. Supplemental results Figure S1: Unnormalized
6 7 509	Average Salary for Treatment and Control Groups Measured in 1K € at 2015-levels
8 9 510	
10 11 12 511	Supplemental Digital Content [#3]. Figure. Supplemental results Figure S2: The Cumulative
13 14 512	Density Function (CDF) for Total Income Post-Treatment among the Treatment Group and
15 16 513	Their Counterfactual, and the Difference between the Two CDFs Expressed as the Effect of
17 18 514	Concussion on the Probability of Total Income Below that Income-Level following Exposure
19 ⁵¹¹ 20 21 515	Event
21 515 22 23 51 6	
24 25	
26 517 27	Supplemental Digital Content [#3]. Figure. Supplemental results Figure S3: Percentage
28 518 29	Effect of Concussion on Relative Salary Across Age Groups.
$30 \\ 31 \\ 519 \\ 32$	
33 520 34	Supplemental Digital Content [#3]. Figure. Supplemental results Figure S4: Percentage
³⁵ 521 36	Effect of Concussion on Relative Salary Across High School Completion.
37 38 522	
39 40 523	Supplemental Digital Content [#3]. Figure. Supplemental results Figure S5: Percentage
$41 \\ 42 \\ 43 524$	Effect of Concussion on Relative Salary Across Gender.
44 45 525	
46 ⁴⁷ 526	Supplemental Digital Content [#3] Figure Supplemental results Figure S6. Effect of
48 ⁵²⁰ 49	Concussion on Absolute Salary in 1K Euro Across Age groups
50 <i>52 1</i> 51	Concussion on Absolute Gulary in the Euro Across Age groups.
52 528 53 54	
55 56	28
57 58	
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

59

60

3 4 529 Supplemental Digital Content [#3]. Figure. Supplemental results Figure S7: Effect of 5 6 530 Concussion on Absolute Salary in 1K Euro Across Education. 7 8 9 531 10 11 12 532 Supplemental Digital Content [#3]. Figure. Supplemental results Figure S8: Effect of 13 14 5 3 3 Concussion on Absolute Salary in 1K Euro Across Gender. 15 ¹⁶ 534 17 18 Table 1. Number of observations for exposure and control groups across time since 19 5 3 5 20 ²⁰₂₁ 536 exposure and number of observations with missing salary information 22 537 23 Exposure 24 Years until exposure group Control ∆=1 Control ∆=2 Control ∆=3 Control ∆=4 Control ∆=5 25 26 -4 36,804 33,681 31,112 29,190 27,859 26,794 27 -3 36,978 33,834 31,245 29,366 27,973 26,907 28 -2 37,195 34,003 31,407 29,501 28,146 27,031 29 -1 37,449 34,224 31,582 29,687 28,288 27,220 30 31 0 37,848 34,551 31,851 29,922 28,530 27,421 32 1 37,467 31,755 29,832 28,433 27,337 33 2 36,940 29,807 28,421 27,295 34 3 36,484 28,421 27,304 35 36 4 36,084 27,314 37 333,249 170,293 188,952 207,305 226,071 244,623 **Total observations** 38 Observations with 39 81 32 31 44 35 29 missing salary 40 41 538 42 539 Control groups have not suffered a concussion in $10+\Delta$ years before incident, exposure group 43 44 45 540 has not suffered concussion the 10 years before exposure incident. 46 47 541 48 49 50 51 52 53 54 55 29 56 57 58

BMJ Open

group's	s concussion event. meas	sured at 2015-level	I. N _{Exposure} : 3	7,848
3	· · · · · · · · · · · · · · · · · · ·			.,
	Estimated salary effect (δ)	95 % CI	p	N _{Control}
Δ = 1 y	-423€	(-919€;73€)	.095	34,551
∆ = 2 y	-825€	(-1,108€; -543€)	<.001	31,851
∆ = 3 y	-1,019€	(-1,331€; -707€)	<.001	29,922
∆ = 4 y	-1,126€	(-1,446€; -805€)	<.001	28,530
Δ = 5 y	-1,243€	(-1,564€; -922€)	<.001	27,421

Exposure N=37848

Control ∆=1 N=34551

Control ∆=2 N=31851

Control ∆=3 N=29922

Control ∆=4 N=28530

Control ∆=5 N=27421

352x256mm (72 x 72 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 4

SUPPLEMENTAL MATERIALS AND METHODS

Our quasi-experimental, difference-in-differences event time approach compares two groups of individuals from the same cohort, where both groups experience concussions, but at two different time points $(t_c,t_c+\Delta)$. For the simple situation where we have three periods (t=0,1,2) and the exposure group (T) experiences their concussion at the start of period 1 $(t_c=1)$, and the control group (C) at the start of period 2 $(t_c+\Delta=2)$, the effect of concussion on salary (Y) is:

$$\Delta = (Y_1^{\rm T} - Y_1^{\rm C}) - (Y_0^{\rm T} - Y_0^{\rm C})$$

The effect of concussion on salary in t=1 is estimated by comparing the average difference in salary between exposure and control groups for the post-concussion period t=1 $(Y_1^T - Y_1^C)$ to the average difference in salary for the pre-concussion, or baseline, interval t=0 $(Y_0^T - Y_0^C)$. Assuming the exact timing of a concussion is random for small enough sizes of Δ , and under the additional assumption that the exposure group would have had parallel trends in salary as the control group absent suffering concussion at t_c, δ captures the causal effect of concussion among those who suffer concussions – also known as the average effect on the treated (AT). The AT does not capture how concussions would affect a random person. The AT captures how concussions causally affect those who suffer concussions.

For our study, the parallel trends assumption states that exposure and control groups have parallel developments in salary leading up to the exposure group's concussion and the exposure and control groups would have further exhibited parallel salary trajectories if the concussion had not occurred. To test the parallel trends assumption, we estimate a dynamic version of the model specification (shown in supplementary table S1), which explicitly allows us to test whether the parallel trend assumption for our sample is probable.

To validate that the timing of concussion is random with our study period, we present estimates for effect of exposure across different periods between exposure and control incident (Δ). Most recorded concussions outside contact sports and military engagements stem from unforeseen events, such as falls or striking/being struck by an object^{25,26}, so assuming random timing is likely valid. People who regular engage in activities that result in high risk of multiple concussions may be different than the average concussion patient and would be more likely to end up in the exposure sample than in the control sample, which could induce bias. To avoid such potential bias, we restrict our sample to individuals without prior diagnoses for intracranial injuries ten years prior to exposure.

At t=-1, i.e. one year before the exposure group suffered a concussion, the control groups were slightly smaller than the exposure group, and two control groups (Δ =4 and 5) differed slightly but significantly in terms of average patient age (p <. 001; supplementary table S2), male to female ratio (p <. 001), and for control group Δ =5, in the frequency of individuals with at least a high school degree (p < .001). However, the differences are numerically small. To test that composition differences between exposure and control do not drive our results, we provide separate results for individuals with and without high school degree, for males and females, and for different age groups across all different values of Δ .

Further, our design inherently leads to the possibility of timing issues—our exposure group always suffers their concussion earlier (in terms of calendar time and age) than the control groups do. If the labor market is constantly improving or worsening during the period we consider, this could substantially influence our results. Therefore, we also estimate separate models across exposure incident year and control group. Estimating separate models allow us the added benefit of being able to examine whether the business cycle influences the effect of concussions on salary.

Statistical model

To estimate the impact of concussion on salary, we define the following variables: Exposure or control group g, which includes individuals *i*, at times to exposure-groups concussion incident *t*. First, we estimate a standard difference in differences model for each separate control group $\Delta = \{1, 2, 3, 4, \text{ and } 5\}$ using ordinary least squares:

$$\begin{aligned} Salary_{git} &= \beta_0 + \gamma exposure_g + \theta post_t + \delta post \times exposure_{git} + X_i \beta \\ &+ \sum_{Age=26}^{48+\Delta} I(Age)\eta_{age} + \sum_{vear=1999}^{2012} I(year)\eta_{vear} + \epsilon_{git} \end{aligned}$$
(S1)

where Salary_{git} measures annual salaried income deflated to 2015-level, exposure_g indicates whether the observation belongs to the exposure or control group, $post_t$ captures the period after the exposure group's concussion occurred, and $post_t \times exposure_{git}$ captures the effect concussion, measured as share of year $t \ge 0$ affected by concussion. In this way, someone who suffers a concussion July 1 has $post_t \times exposure_{git} = 0.5$ for t = 0 and $post_t \times exposure_{git} = 1$ for $t \ge 0$. X_i is a set of covariates that includes a high school indicator and a gender dummy, ϵ_{git} is the error-term, and the two last sets of indicator variables I(Age) and I(Year) capture age and incident year levels (control group indexed against incident year). Under the parallel trends assumption, δ then captures the annual effect of concussion on salary. In eq. 1, exposure_g normalizes any pre-exposure differences between the exposure and control group, thereby creating a joint baseline pre-exposure.

We estimate robust individual-level clustered standard errors to account for the possibility that individuals enter the data twice both as control (0) and exposure (1) individuals ($g=\{0,1\}$), and that they are observed for multiple periods ($t=\{-4,...,\Delta-1\}$). To calculate the relative salary decrease after concussion, we exploit the parallel trends assumption to generate the expected counterfactual salary level, i.e. had the concussion not occurred, and calculate the decline expressed in percentage as: % change = $\delta / E(Salary_{git}|g=1, post_t = 1, post_t \times exposure_{git} = 0$). In this way, we provide both absolute estimates measured in 1K Euro, as well as percentage change.

We expect δ from eq. (1) to likely be negative. Yet, a decrease in annual salary can arrive through two different channels. Concussions may affect salary through either decreasing income among those employed or by reducing the number of individuals who are employed and earning any salary at. To parse out which of the two channels is driving the results, we examine how concussion affects the salary distribution among the exposure group following. Following Chernozhukov et al.²⁷ we estimate a series of regressions across the whole salary distribution, where, for a finite set of points, we predict how concussion affects the likelihood of having earnings on the left side of each finite point, as follows:

$$\sum_{j=0}^{\max(Salary)} p_j = \beta_{0j} + \delta_j post_t \times exposure_{git} + \theta post_t + \gamma_j exposure_g + X_i \beta + \sum_{Age=26}^{48+6} I(Age)\eta_{age,j} + \sum_{year=1999}^{2012} I(year)\eta_{year,j} + \epsilon_{git,j}$$
(S2)

where $p_j = \Pr(Salary_{git} \le j)$ and j is the interval from 0 to max(Salary). Across the salary distribution, we can now predict the probability of earning less than j for those with and without concussions. From equation 2, we predict $p_j^1 = E(p_j | post_t \times exposure_{git} = 1, exposure_g = 1, t \ge 0)$ and the counterfactual $p_j^0 = E(p_j | post_t \times exposure_{git} = 0, exposure_g = 1, t \ge 0)$. Plotting p_j^1 and p_j^0 over each value of salary j, and assuming rank stability, gives the cumulative density function of salary for the treated (p_j^1) and the counterfactual observation of the treated had they not suffered concussions (p_j^0) . The difference between p_j^1 and p_j^0 is simply δ_j . If the value of δ_j monotonically moves towards zero as j increases until $p_j^1 \approx p_j^0 \approx 1$ it indicates that exit from employment fully drives the effect of concussion on salary. If instead the value of δ_j is constant or increasing across parts of the distribution, it instead indicates that a decrease in salary among those still receiving salary drives at least part of the effect.

Eq. 1 and eq. 2 are based on the parallel trends assumption. The assumption states that exposure and control groups follow parallel salary trajectories until individuals in the exposure group experiences a concussion, and that the parallel trends would have continued had the concussion not occurred. Whereas we cannot verify the counterfactual situation of parallel trends after exposure, we can use a dynamic model to test for systematic differences in salary trends between exposure and control group in the years leading up to the exposure group's concussion event. To do so, we estimate the following dynamic model:

$$\begin{aligned} Salary_{git} &= \beta_0 + \sum_{t=-4}^{\Delta-1} \delta_t \times I(t_g) \times exposure_g + \sum_{t=-4}^{\Delta-1} I(t_g)\eta_t + \gamma exposure_g + X_i \beta + \\ \sum_{Age=26}^{48+\Delta} I(Age)\eta_{age} + \sum_{year=1999}^{2012} I(year)\eta_{year} + \epsilon_{git} \end{aligned} \tag{S3}$$

Where we interact exposure group status (*exposure*_g) with indicators $I(t_g)$ capturing time from concussion. If the parallel trends assumption holds, then it must be the case { δ_{-4} , δ_{-3} , δ_{-2} }=0, whereas the size and sign of { $\delta_{0...}\delta_{\Delta-1}$ } captures the dynamic effect of a concussion from the year of incidence and Δ -1 years onward. By estimating the effect of concussion on salary among different years of the study period, we are also able to capture how the impact of concussion on salary evolves year to year after the concussion has occurred. We further estimate eq. 3 for a series of related labor market outcomes (annual total income, annual amount of sickness benefits received, annual probability of being employed), to generate a more thorough understanding on how concussions affect labor market outcomes—i.e., if people experience a decrease in salary due to a concussion, are they then compensated through different types of welfare state services.

25 Faul M, Coronado V. Epidemiology of traumatic brain injury. *Handbook of clinical neurology* **127**:3-13, 2015

26 Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic Brain Injury–Related Emergency Department Visits, Hospitalizations, and Deaths — United States, 2007 and 2013. *MMWR Surveillance Summaries* **66**:1-16, 2017

27 Chernozhukov V, Fernández-Val I, Melly B. Inference on Counterfactual Distributions. *Econometrica* **81**:2205-2268, 2013

Page 38 of 109

BMJ Open

1	
2	
3	*****
4	
5	
6	***************************************
7	**********
, 8	***************************************
0	*********
9	****
10	***** This study relies on restricted individual level
11	administrative data obtained
12	duministrative uata obtained
13	***** ITOM STATISTICS Denmark.
14	****
15	***** Only Danish research environments are granted authorization to
16	access data from Statistics Denmark. ***** Foreign
17	***** researchers can, however, get access to micro data through an
18	affiliation to a Danish authorized
19	wwww environment
20	πππππ CIVII Unincici
20	***** Access is given to anonymized micro data, i.e. data at an
21	individual personal or corporate level. ***** Access takes
22	***** place through researcherís own pc over the Internet.
23	****
24	<pre>***** See https://www.dst.dk/en/TilSalg/Forskningsservice for detail</pre>
25	****
26	wwww For the replication of present study contact the POCKWOOL
27	Foundation for access
28	roundation for access.
29	***** http://www.rockwoolfonden.dk/en/
30	****
31	***********
32	******
32	*****
3/	***
2F	
55 26	***************************************
30	***********
3/	
38	
39	
40	******
41	*****
42	
43	***************************************
44	***********
45	***************************************
46	*********
47	****
48	***** This is the master data do-file for the full package of do-
40	files that generates the results for
7 7	***** Fallesen and (amons (2020) Evecute files in the order they
50	are listed. For each file, specify a weeker home registry in place of
51	are croced. For each rice, specing a ***** nome registry in place of
52	[nome] Further, generate subtolders [nome]/data, [home]/tables, and
53	***** [home]/highdet to capture auxiliary data sets, tables, and
54	figures.
55	****
56	*******
57	*****
58	᠂᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃
59	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
60	***************************************

1	
2	
3	***************************************
4 5	*********
5	
7	***Install user-written reghdfe command for faster computation of
8	regressions
9	ssc install reghdfe
10	
10	<pre>***Generate concussion samples and merges on covariates and outcome</pre>
12	do 01generate_sample.do
13	
14	<pre>***Generates auxilary data sets the includes social benefit</pre>
15	recipiency indicator and levels of benefits received
16	do 02generate benefits.do
17	5 _
18	***Generates auxilarv data sets the includes social benefit
19	recipiency indicator and levels of benefits received
20	do 02generate benefits.do
21	
22	***Generate results
23	do Aggenerate figures and results
24	do obgenerate_rigares_ana_resutts
25	evit clear
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
30 27	
27 20	
30	
40	
40	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
5/	
58	
59	
60	

clear all	
**************************************	********************
** ** (2020)	This program builds data for Fallesen & Campos
(2020) **	study of concussion's impact on productivity
measured **	through annual salary
** *************** ************	**************************************
∗∗Global for global dorg "I	oath to registry data E:/data/rawdata/706630"
*Global for p global data "	rocessed data [home]/data"
/*globals for	price index to calculate income at 2015-level across
<pre>years*/ /*Price index forbrug/forbrug</pre>	obtained from www.dst.dk/en/statistik/emner/priser-og- ugeriser/nettoprisindeks */
{	
global pricely	980 = .358 981 = .398
global price19	982 = .439
global price19	983 = .466
global pricely	984 = .494 985 = .517
global price19	986 = .521
global price19	987 = .537
global price19	988 = .564
global pricel	989 = .594 990 = .612
global price19	991 = .628
global price19	992 = .642
global price19	993 = .651
global pricel	394 = .062
global price19	995 = .688
global price19	997 = . 703
global price19	998 = .713
global price19	999 = .728
global price20	300 = .751 301760
global price2	302 = .788
global price2	203 = .806
global price20	304 = .817
global price20	205 = .833
global price20	000 = .00V

4

5

6

7

8

```
global price2007 = .867
          global price2008 = .899
          global price2009 = .917
          global price2010 = .936
          global price2011 = .960
          global price2012 = .978
          global price2013 = .986
10
          global price2014 = .994
11
          global price2015 =1.00
12
          global price2016 =1.005
13
          global price2017 =1.017
14
15
16
17
          /*Locate concussions and other TBIs from the Danish National Patient
18
19
          Registry */
20
          /**/
21
          forvalue t = 1977/2017{
22
                   if `t' < 1994 use $dorg/lpr_diag`t'.dta /// **uses ICD-8</pre>
23
          codes until Dec. 31, 1993
24
                            if substr(c_diag,1,2)=="85"
25
                   if `t' > 1993 use $dorg/lpr_diag`t'.dta /// **uses ICD-10
26
           codes from Jan. 1, 1994
27
                            if substr(c_diag,1,4)=="DS06"
28
                   **recovers encrypted social security number and admittance
29
          date
30
                   merge m:m recnum using $dorg/lpr_adm`t', keepus(pnr d_ind*)
31
          keep(3)
32
                   drop _merge recnum
33
34
35
36
                   **Keeps diagnosis, diagnosis type, and individual id (pnr)
37
                   keep pnr c_diag c_diagtype pnr d_ind
38
39
                   **generate year variable
40
                   gen year = year(d_ind)
41
42
                   **geenrate share of year with concussion
43
                    gen time_from_incident = 1-((d_ind-mdy(1,1,year(d_ind)))/
44
          365)
45
                   drop d_ind
46
47
                   *save as one dataset
48
                   if `t' > 1977 append using $data/concussion.dta
49
                   if `t' == 2017 sort pnr year
50
                   save $data/concussion.dta, replace
51
52
53
54
          }
55
          */
56
          57
          Sets up datasets for treatment group (x = 0)
58
          and the control groups who suffer concussion
59
          1, 2, 3, 4, 5 years later (x = 1 2 3 4 5).
60
```

4 5

6

7

8

9

10

11

12

13

14 15

16

17 18

19

20 21

22

23 24

25

26

27

28

29 30

31

32

33

34 35 36

37

38

39 40

41

42

43

44

45

46

47

48 49

50

51

52

53 54 55

56

57 58

59

60

Defined by latest year available data*/ forvalue count = 1992(1)`endtime'{ local t = count'// for ease of coding local n = t'-4// first pre-treatment event period local c = `t'+`post_period' //last post-event period local w = t'+time'//time of concussion for control use pnr alder using \$dorg/bef`t' /// Bring in all 30-49 yr olds if inrange(alder`t',20,59), clear // from the population register **year variable gen year = `t' **limit sample to those who suffer a concussion in `t' merge 1:1 pnr year using \$data/ concussion_0.dta, /// keep(3) nogen forvalue x=`n'/`c'{ //add longitudinal data merge 1:1 pnr using \$dorg/bef`x', /// keep(1 3) keepus(efalle alder koen) //add information on spouse, //age, and gender rename _merge merge`x' //indicator for whether in DK that year **Add salary information and ses information if `x' < 2017{ merge 1:m pnr using \$dorg/ ind`x', /// m:1 to account for duplicates nogen keep(1 3) keepus(erhvervsindk_13 pre_socio personindk dispon_13 aekvivadisp_13) // in data on non-important variables bysort _all: keep if _n ==1 //drop perfect duplicates **Align variable names and account for inflation rename erhvervsindk_13 loenmv rename pre_socio pre_socio`x' foreach kk in personindk dispon 13 aekvivadisp_13 loenmv{

Page 44 of 109

1 2 3

4

5

6 7

8

9

10

11

12 13

14

15

16

17 18

19

20

21

22

23

24

25 26

27

28

29

30 31

32

33 34

35 36

37 38

39 40

41 42

43

44

45 46

47

48

49

50

51

52

53 54

55 56

57

58

59

60

rename `kk' `kk'`x' } foreach kk in personindk dispon_13 aekvivadisp_13 loenmv{ replace `kk'`x' = `kk'`x'/\${price`x'} } ****Bring in educational information** merge 1:1 pnr using \$dorg/ uddany`x', /// nogen keep(1 3) keepus(hffsp) } if `x' == 2017{ merge 1:m pnr using \$dorg/ ind`x', /// m:1 to account for duplicates nogen keep(1 3) keepus(erhvervsindk_13 pre_socio personindk) // in data on non-important variables bysort _all: keep if _n ==1 //drop perfect duplicates **Align variable names and account for inflation rename erhvervsindk_13 loenmv rename pre_socio pre_socio`x' foreach kk in personindk loenmv{ rename `kk' `kk'`x' } foreach kk in personindk loenmv{ replace `kk'`x' = `kk'`x'/\${price`x'} } **Bring in educational information merge 1:1 pnr using \$dorg/ udda`x', /// nogen keep(1 3) keepus(hfaudd) rename hfaudd hfaudd x' } } **Reshape data to panel structure if `count'>= 2012 reshape long efalle alder koen loenmv pre_socio personindk dispon_13 aekvivadisp_13 hffsp merge hfaudd , i(pnr) j(t)

4

5

6 7

8

9

10 11

12

13 14

15 16

17

18

19 20

25

26

27

28 29

30

31

32 33

34

35 36

37

38

39 40

41

42

43

44

45

46 47

48

49

50

51

52

53 54

55

56

57

58

59 60 **BMJ** Open

if `count' < 2012 reshape long efalle alder koen loenmv pre_socio personindk dispon_13 aekvivadisp_13 hffsp merge i(pnr) j(t) qen count = t-year//variable for time to concussion gen treatment =1 //treatment group indicator save \$data/sample_temp.dta, replace //temporary dataset / Now build control sample for time `time' and year `count' use pnr alder using \$dorg/bef`t' /// Bring in all 30-49 yr olds if inrange(alder`t',20,59), clear // from the population register **year variable //time for concussion for control gen year = `w' group `time' **limit sample to those who suffer a concussion in `+' merge 1:1 pnr year using \$data/ concussion_`time'.dta, /// keep(3) nogen forvalue x=`n'/`c'{ //add longitudinal data merge 1:1 pnr using \$dorg/ bef`x', /// keep(1 3) keepus(efalle alder koen) //add information on spouse, //age, and gender rename _merge merge`x' //indicator for whether in DK that year if `x' < 2017{ ****Add salary and SES** information merge 1:m pnr using \$dorg/ind`x', /// 1:m to account for duplicates nogen keep(1 3) keepus(erhvervsindk_13 pre_socio personindk dispon_13 aekvivadisp_13) // in data on non-important variables

bysort _all: keep if _n ==1 //drop perfect duplicates **Align variable names and account for inflation rename erhvervsindk_13 loenmv rename pre socio pre_socio`x' foreach kk in personindk dispon_13 aekvivadisp_13 loenmv{ rename `kk' `kk'`x' } foreach kk in personindk dispon_13 aekvivadisp_13 loenmv{ replace `kk'`x' = `kk'`x'/\${price`x'} } **Bring in educational information merge 1:1 pnr using \$dorg/uddany`x', /// nogen keep(1 3) keepus(hffsp) } if `x' == 2017{ merge 1:m pnr using \$dorg/ ind`x', /// m:1 to account for duplicates nogen keep(1 3) keepus(erhvervsindk_13 pre_socio personindk) // in data on non-important variables bysort _all: keep if _n ==1 //drop perfect duplicates **Align variable names and account for inflation rename erhvervsindk 13 loenmv rename pre_socio pre_socio`x' foreach kk in personindk loenmv{ rename `kk' `kk'`x' } foreach kk in personindk loenmv{ replace `kk'`x' =

48

49

50 51 52

53

54 55

56 57

58 59

60

2 3 `kk'`x'/\${price`x'} 4 } 5 6 **Bring in educational information 7 merge 1:1 pnr using \$dorg/ 8 udda`x', /// 9 nogen keep(1 3) 10 keepus(hfaudd) 11 rename hfaudd hfaudd x' 12 } 13 } 14 15 **Reshape data to panel structure 16 if `count'>= 2012 reshape long efalle alder koen 17 18 loenmv pre_socio personindk dispon_13 aekvivadisp_13 hffsp merge 19 hfaudd , i(pnr) j(t) 20 if `count' < 2012 reshape long efalle alder koen 21 loenmv pre_socio personindk dispon_13 aekvivadisp_13 hffsp merge , 22 i(pnr) j(t) 23 gen count = t-t'//variable for 24 time to concussion for treatment 25 gen control`time' =1 //control indicator 26 save \$data/control_temp, replace 27 28 **Build sample with treatment and control `time' 29 for year `count' 30 use \$data/sample_temp 31 append using \$data/control_temp 32 33 **fixes control and treatment indicators 34 replace control`time' = 0 if control`time'==. 35 36 replace treatment = 0 if treatment==. 37 38 **Picks up changes to education variable 39 if `count' >=2012{ 40 tostring hfaudd, replace 41 rename hfaudd start 42 merge m:1 start using "\ 43 \srvfsenas1\data\Formater\SAS formater i Danmarks 44 Statistik\STATA datasaet\Disced\c udd niveau l1l2 k.dta" , nogen 45 keep(1 3)46 destring UDD, replace force 47 **Replace all with high school degree or 48 higher in HFAUDD to have HFFSP = 40000001 49 replace hffsp = 40000001 if t == 2017 & 50 inrange(UDD,30,80) 51 replace hffsp = 0 if t == 2017 & !52 53 inrange(UDD,30,80) 54 drop UDD start 55 } 56 57 sort pnr t 58 59

```
save $data/sample_control_`count'_`time'.dta,
replace
       }
}
forvalue time = 1/5{
       forvalue count =2003/2012{
               if `time' ==1 & `count' ==2003 use $data/
sample_control_`count'_`time'.dta, clear
               else append using $data/
sample_control_`count'_`time'.dta`
               if `time' ==5 & `count' ==2012 bysort pnr: keep if
_n ==1
               if `time' ==5 & `count' ==2012
                                             count
       }
}
```

Page 49 of 109

2	
3	clear
4	
5	
6	***************************************
7	******
0	***************************************
0	****
9	**
10	** Calculate share of year on nublic benefits and size
11	of herefit
12	
13	** payments for Fallesen and Campos (2020)
14	**
15	**
16	********
17	****
18	
10	
20	
20	/*globals for price index to calculate income at 2015-level across
21	years*/
22	/*Price index obtained from www.dst.dk/en/statistik/emner/priser-og-
23	forbrug/forbrugeriser/nettoprisindeks */
24	
25	alahal price1080 - 358
26	$\frac{1}{2}$
27	y(0)a(p)(e190) = .590
28	global price1982 = 439
29	global price1983 = .466
30	global price1984 = .494
31	global price1985 = .517
37	alobal price1986 = .521
32	alobal price1087 - 537
24	$\frac{1}{2} \frac{1}{2} \frac{1}$
34	ylubal price1900 – 1004
35	global price1989 = .594
36	global price1990 = .612
37	global price1991 = .628
38	global price1992 = .642
39	global price1993 = .651
40	alobal price1994 = .662
41	alobal price1005 $-$ 674
42	global price1999 = 699
43	y(0)a(p)(ce1990000)
44	global price1997 = .703
45	global price1998 = .713
46	global price1999 = .728
40	global price2000 = .751
47	global price2001 = .769
48	alobal price2002 $-$ 788
49	g_{10bal} price2002 – 1700
50	$y_{10}y_{11} = 000$
51	global price2004 = .81/
52	global price2005 = .833
53	global price2006 = .850
54	global price2007 = .867
55	global price2008 = $.899$
56	alobal price 2000 = 017
57	g_{10} g_{11} g_{12} g_{13} g
58	$g_{10} = 930$
50	global price2011 = .960
55	global price2012 = .978
00	

```
global price2013 = .986
global price2014 = .994
global price2015 =1.00
global price2016 =1.005
global price2017 =1.017
**Global for path to registry data
global dorg "e:/data/rawdata/706630"
*Global for processed data
global data "E:/data/workdata/706630/pf/FallesenCampos/data"
forvalue t=1996/2017{
        ** Read in data on social benefits recipiency share of
weeks
        ** from the DREAM database
        use $dorg/dream`t'
        gen share =0
        forvalue y = 1/52{
                         if `y' < 10 replace share = share+1 if
y_0`y' !=.
                         if y' > 9 replace share = share+1 if
y_`y' !=.
                          if `y' < 10 drop y_0`y'
                          if y' > 9 drop y_y'
        }
        **Generate annual measure of share of year receiving social
benefits
        replace share = share/52
        keep pnr share
        qen t = t'
        if `t' > 1996 append using $data/temp.dta
        save $data/temp.dta, replace
}
forvalue t=1998/2017{
        **Read in information on size of different types of social
benefits
        if `t' < 2002{
                 use pnr syg_barsel_13 konthj arblhum pre_socio
using $dorg/ind`t'.dta, clear
                 replace syg_barsel_13 = syg_barsel_13/${price`t'}
                 replace konthj = konthj /${price`t'}
                 replace arblhum = arblhum/${price`t'}
                 gen kont_dag = konthj+arblhum
                 drop konthj arblhum
        }
        if `t' >= 2002 & `t' < 2013{
```

```
2
3
                             use pnr syg_barsel_13 adagpagn konthj arblhum
4
           pre_socio using $dorg/ind`t'.dta, clear
5
                              replace syg_barsel_13 = syg_barsel_13/${price`t'}
6
                              replace adagpagn = adagpagn/${price`t'}
7
                              replace konthj = konthj /${price`t'}
8
                              replace arblhum = arblhum/${price`t'}
9
                             gen kont_dag = konthj+arblhum
10
                             drop konthj arblhum
11
                    }
12
                    if `t' >= 2013{
13
                             use pnr syg_barsel_13 adagpagn dagpenge_kontant_13
14
           pre_socio using $dorg/ind`t'.dta, clear
15
                              replace syg_barsel_13 = syg_barsel_13/${price`t'}
16
                              replace adagpagn = adagpagn/${price`t'}
17
18
                              replace dagpenge_kontant_13 =
19
           dagpenge_kontant_13 /${price`t'}
20
                             gen kont_dag = dagpenge_kontant_13-syg_barsel_13
21
                             drop dagpenge_kontant_13
22
                    }
23
                    gen t = `t'
24
                    compress
25
                    bysort pnr: keep if _n ==1
26
                    if `t' > 1998 append using $data/temp2.dta
27
                    if `t' == 2017{
28
                             sort pnr t
29
                    }
30
                    save $data/temp2.dta, replace
31
           }
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
```

1 2 3

4 5

6

7

8

9

10

11

12

13

14

15 16

17 18

19

20 21

22

23 24

25

30 31

32

33

34 35

36 37

38

39

40

41

42

43 44

45

46

47

48

49 50

51

52 53 54

55 56

57

58

59

60

clear all ****** ** This program geenrates figerus and results for ** Fallesen & Campos (2020) study of concussion's impact on productivity ** measured through annual salary ** ** ****** **Global for path to registry data global dorg "E:/data/rawdata/706630" *Global for processed data global data "[home]/data" *Global on figures global highdef "[home]\highdef" forvalue time = 1/5{ //for different control groups local post_period = 5 // local for number of years observed post // concussion for exposure group local endtime = 2017-`post_period' /*last year where we allow for exposure event to occur, in order to have long enough control period. Defined by latest year available data*/ ******Matrixes to capture estimates matrix results = J(15,6,.)// For salary estimates matrix results_p = J(15,6,.)// For Pr(salary=0) estimates matrix t = J(15, 6, .)// For time indicators forvalue count = 2003(1)`endtime'{ use \$data/sample_control_`count'_`time', clear gen female = koen==2qui{ gen edu =0 replace edu = 1 if inrange(hffsp, 2000000,3900000) | ///

(hffsp >	40000000	& hffsp!=.) }			
appear i	in data, from whe	<pre>**exclude individuals in years where they do not</pre>			
appear 1		**due to either death or migration, as well as			
perious		<pre>**the control group sufer their concussion drop if merge ==1 count > `time'-1</pre>			
1		<pre>**generate concussion variable gen treat = inrange(count,0,`time'-1) & treatment</pre>			
treatmen	t ==1	<pre>replace treat = time_from_incident if count ==0 &</pre>			
for		<pre>**Generate pre-concussion income difference</pre>			
		<pre>**use in calculating marginal effects sum loenmv if count <0 & treatment ==0 local control =r(mean) sum loenmv if count <0 & treatment ==1 local treat =r(mean) sum loenmv if count>=0 & treatment ==0 local control_post =r(mean) gen post = count >=0</pre>			
treatmen	<pre>**estimate DiD model on salary reghdfe loenmv treat, abs(alder female post treatment edu year) cl(pnr) matrix b =e(b) //regression coefficient matrix V = e(V) // standard error^2 local n = `count'-2002 //time</pre>				
(`contro	l_post'-	matrix results matrix results matrix results (`control'-`tre matrix results	S[`n',1] S[`n',2] S[`n',3] Sat')) S[`n',4]	= = =	b[1,1] V[1,1]^.5 b[1,1]/ `n'
	} svmat re	esults			
	rename results1 est rename results2 se rename results3 marg rename results4 time				
graph	replace	<pre>time = time+(``</pre>	time'-3)* . 1	//jitter	estimates for

```
2
3
                    keep est* se* marg* time
4
                    keep if est !=.
5
6
                    replace est = est/7446
                                              //estimate measured as 1000 Euro
7
                    replace se = se/7446
                                              //S.E. measured as 1000 Euro
8
9
                    gen upper = est+se*1.96 // Upper CI
10
                   gen lower = est-se*1.96 // Lower CI
11
12
13
                    gen control = `time'
                                                       //indicate control group
14
15
                    if `time' >1 append using $data/results.dta
16
17
                    save $data/results.dta, replace
18
           }
19
20
           use $data/results.dta, clear
21
22
           replace time = 2002+time
23
24
25
           *reads in unemployment statistcis obtained from statistikbanken.dk/
26
           en/
27
28
           gen unemp = 5.8 if time == 2003
29
           replace unemp = 5.8 if time ==2004
30
           replace unemp = 5.1 if time ==2005
31
           replace unemp = 3.9 if time ==2006
32
           replace unemp = 2.7 if time == 2007
33
           replace unemp = 1.9 if time ==2008
34
           replace unemp = 3.6 if time ==2009
35
36
           replace unemp = 4.2 if time ==2010
37
           replace unemp = 4.0 if time ==2011
38
           replace unemp = 4.5 if time ==2012
39
40
           scatter est time if control ==1, mcolor(navy) yaxis(1) ysc(range(-4
41
           3) axis(1)) ylab(-4(1)3) || ///
42
           scatter est time if control ==2, mcolor(blue) || ///
43
           scatter est time if control ==3, mcolor(midblue) || ///
44
           scatter est time if control ==4, mcolor(gray) || ///
45
           scatter est time if control ==5, mcolor(ltblue) || ///
46
           rspike upper lower time if control ==1, lcolor(navy) || ///
47
           rspike upper lower time if control ==2, lcolor(blue) || ///
48
           rspike upper lower time if control ==3, lcolor(midblue) || ///
49
           rspike upper lower time if control ==4, lcolor(gray) || ///
50
           rspike upper lower time if control ==5, lcolor(ltblue) || ///
51
           line unemp time , lcolor(black) yaxis(2) ysc(range(0 6) axis(2))
52
53
           ylab(0(1)6, axis(2))
                                 - / / /
54
           xsc(range(2002.5 2012.5)) xlab(2003(2)2012) ///
55
           yline(0) ysize(10) xsize(12) graphr(c(white)) ///
56
           xti("Year of concussion for exposure group") scale(.95) ///
57
           legend(label(1 " Control," "{&Delta}=1 yr") ///
58
           label(2 " Control," "{&Delta}=2 yr") ///
59
           label(3 " Control," "{&Delta}=3 yr") ///
60
```

4 5

6

7

8

9

10 11 12

13 14 15

16 17

18

19 20

21

22

23

24

25

26

27

28

29

30

31 32

33 34

35

36

37

38

39

40 41

42 43

44

45

46

47 48

49

50

51 52 53

54

55

56

57

58

59

```
label(4 " Control," "{&Delta}=4 yr") ///
label(5 " Control," "{&Delta}=5 yr") ///
label(6 "% Unemp." "of LF") ///
c(1) order(1 2 3 4 5 6) pos(3) size(small) ///
c(1) symx(4) region(lc(white))) ///
yti("Effect on Salary (in EUR 1K)", height(7) axis(1)) ///
yti("Percent of Full Time Uemployed among LF", height(7) axis(2))
graph export $highdef/marg est.png, replace width(3900)
forvalue control_time=1/5{
        local end = 2012 // last incident year in data
        if `control_time' ==1
                                  eststo clear
        **build dataset for joint estimate across years
        forvalue count=2003/`end'{
                 if `count'==2003{
                          use $data/
sample_control_`count'_`control_time'.dta, clear
                         gen time = `count' //incident year
indicator
                 }
                 else append using $data/
sample_control_`count'_`control_time'.dta
                 replace time = `count' if time ==.
                 **exclude individuals in years where they do not
appear in data,
                 **due to either death or migration, as well as
periods from when
                 **the control group sufer their concussion
                 drop if merge ==1 | count > `control_time'-1
        }
        gen female = koen==2
        //build ident, so we can multivariate cluster for
individuals
        //who occur both as control and exposure during the period
(id)
        bysort pnr time: gen helpx = _n ==1
        gen id= sum(helpx)
        drop helpx
        **Generate educational groups
        qui{
                 gen edu =0
                 replace edu = 1 if inrange(hffsp,20000000,39000000)
| ///
                                                            (hffsp
>40000000 & hffsp!=.)
```
BMJ Open

1 2 3

4 5

6

7

8

9

10 11

12

13

14

15

16 17 18

19

20

21

22

23

24

25

26 27

28

29

30

31 32

33 34 35

36

37

38

39

40

41

42

43

44

45 46

47

48

49 50

51

52

53

54

55

56

57

58 59

60

} **Calculate number of observations for exposure and control count if count==0 & treatment ==1 local Ntreated = r(N)count if count==0 & treatment ==0 local Ncontrol = r(N)**generate concussion variable gen treat = inrange(count,0,`control time'-1) & treatment ==1 replace treat = time_from_incident if count ==0 & treatment ==1 ******Generate pre-concussion income difference for **use in calculating marginal effects sum loenmv if count <0 & treatment ==0</pre> local control =r(mean) sum loenmv if count <0 & treatment ==1</pre> local treat =r(mean) sum loenmv if count>=0 & treatment ==0 local control_post =r(mean) forvalue t=-4/4{ local n = t'*-1if `t' < -1 gen T_`n' = treatment ==1 & count ==`t' if `t' > -1 gen T`t' = treatment ==1 & count ==`t' } **estimate DiD model on salary reghdfe loenmv T*, abs(alder female count time treatment edu) cl(pnr id) eststo est1 `control time' if `control_time'==1 matrix results = J(5,5,.) // matrix to capture results if `control_time'==1 matrix results_p = J(5,5,.) // matrix to capture results if `control_time'==1 matrix results_pre = J(5,5,.) // matrix to capture results matrix b = e(b)matrix V = e(V)local n = `control_time' matrix results[`n',1] = b[1,1] / 7466 // capture beta results as 1K Euro $= (V[1,1]^{.5})/7466$ matrix results[`n',2] 11 capture standard error as 1K Euro matrix results[`n',3] b[1,1]/(`control_post'-= (`control'-`treat')) matrix results[`n',4] = `n' gen no_lon = loenmv<1 //dummy for no salary</pre>

7

8

9

10

11

12 13

14

15

16 17

18

19 20

21 22

23

24

25

26 27

28

29

30

31 32

33

34 35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53

54 55

56

57

58

59

```
**estimate DiD LP-model for pre-trends
        xi: reghdfe loenmv T*, abs(alder female count time
treatment edu) cl(pnr id), if count <0</pre>
        eststo est3_`control_time'
        matrix b = e(b)
                         //regression coefficient
        matrix V = e(V)
                         // standard error^2
        matrix results_pre[`n',1] =
                                           b[1,1]
        matrix results_pre[`n',2] =
                                           V[1,1]^.5
        matrix results_pre[`n',3] =
                                           b[1,1]/(`control_post'-
(`control'-`treat'))
        matrix results_pre[`n',4] =
                                           `n'
}
esttab est1_* using [home]/tables/dynamic1.rtf, ///
         replace se(1) b(1) compress nogap star(+ .1 * .05 ** .01
*** .001) ///
        keep(T*)
esttab est2_* using [home]/tables/dynamic2.rtf, ///
         replace se(3) b(3) compress nogap star(+ .1 * .05 ** .01
*** .001) ///
        keep(T*)
esttab est3 * using [home]/tables/pre trends.rtf, ///
         replace se(3) b(3) compress nogap star(+ .1 * .05 ** .01
*** .001) ///
        keep(T*)
forvalue control time=1/5{
         local end = 2012 // last incident year in data
        if `control_time' ==1
                                  eststo clear
        qui{
                 **build dataset for joint estimate across years
                 forvalue count=2003/`end'{
                          if `count'==2003{
                                  use $data/
sample_control_`count'_`control_time'.dta, clear
                                  gen time = `count' //incident year
indicator
                          }
                          else append using $data/
sample_control_`count'_`control_time'.dta
                          replace time = `count' if time ==.
                          **exclude individuals in years where they
do not appear in data,
                          **due to either death or migration, as
well as periods from when
                          **the control group sufer their concussion
```

4

5

6 7

8 9

10

11

12

13 14

19

20

21

22 23

24

25

26 27

28

29

30

31

32

33 34 35

36

37

38

39

40 41

42

43

44

45

46

47

48

49

50 51

52

53

54 55

56

57

58 59

```
drop if merge ==1 | count >
`control_time'-1
                 }
                 gen female = koen==2
                          **Generate educational groups
                 gen edu =0
                 replace edu = 1 if inrange(hffsp, 20000000, 39000000)
| ///
(hffsp >4000000 & hffsp!=.)
                 //build ident, so we can multivariate cluster for
individuals
                 //who occur both as control and exposure during the
period (id)
                 bysort pnr time: gen helpx = _n ==1
                 gen id= sum(helpx)
                 drop helpx
                 **Calculate number of observations for exposure and
control
                 count if count==0 & treatment ==1
                 local Ntreated = r(N)
                 count if count==0 & treatment ==0
                 local Ncontrol = r(N)
                 **generate concussion variable
                 gen treat = inrange(count,0,`control_time'-1) &
treatment ==1
                 replace treat = time_from_incident if count ==0 &
treatment ==1
                 **Generate pre-concussion income difference
for
                 **use in calculating marginal effects
                 sum loenmv if count <0 & treatment ==0</pre>
                 local control =r(mean)
                 sum loenmv if count <0 & treatment ==1</pre>
                 local treat =r(mean)
                 sum loenmv if count>=0 & treatment ==0
                 local control_post =r(mean)
                 forvalue t=-4/4{
                          local n = t'*-1
                          if `t' < -1 gen T_`n' = treatment ==1 &</pre>
count ==`t'
                          if `t' > -1 gen T`t' = treatment ==1 &
count ==`t'
                 }
```

5 6

7

8

```
gen post = count > -1
                            **estimate DiD model on salary
                             reghdfe loenmv treat, abs(alder female post time
           treatment edu) cl(pnr id)
                            eststo est1_`control_time'
10
                             if `control_time'==1 matrix results = J(5,5,.) //
11
           matrix to capture results
12
                             if `control time'==1 matrix results p = J(5,5,.) //
13
           matrix to capture results
14
15
16
17
                            matrix b = e(b)
18
                            matrix V = e(V)
19
                             local n = `control_time'
20
21
                            matrix results[`n',1]
                                                       = b[1,1] / 7466 //
22
           capture beta results as 1K Euro
23
                            matrix results[`n',2]
                                                       = (V[1,1]^{.5})/
24
           7466
                    // capture standard error as 1K Euro
25
                            matrix results[`n',3]
                                                                b[1,1]/
                                                       =
26
           (`control_post'-(`control'-`treat'))
27
                            matrix results[`n',4]
                                                       =
                                                                `n'
28
29
30
                    }
31
                    *examining balance of samples
32
                    di in ve `control time'
33
                    bysort treatment: sum female alder edu if count ==0
34
35
36
           }
37
38
39
40
           symat results
41
42
           gen upper = results1+results2*1.96
43
           gen lower = results1-results2*1.96
44
45
           scatter results1 results4 if results4 ==1, mcolor(navy) || ///
46
           scatter results1 results4 if results4 ==2, mcolor(navy)
                                                                      47
           scatter results1 results4 if results4 ==3, mcolor(navy) || ///
48
           scatter results1 results4 if results4 ==4, mcolor(navy) || ///
49
           scatter results1 results4 if results4 ==5, mcolor(navy) || ///
50
           rspike upper lower results4 if results4 ==1, lcolor(navy) || ///
51
           rspike upper lower results4 if results4 ==2, lcolor(navy) || ///
52
           rspike upper lower results4 if results4 ==3, lcolor(navy) || ///
53
           rspike upper lower results4 if results4 ==4, lcolor(navy) || ///
54
           rspike upper lower results4 if results4 ==5, lcolor(navy)
55
                                                                        ///
56
           ysc(range(-2 1)) ylab(-2(.5)1) ///
57
           xsc(range(.5 5.5)) xlab(1(1)5) ///
58
           yline(0) ysize(10) xsize(12) graphr(c(white)) ///
59
           xti("Years between exposure and control incident") scale(.95) ///
60
```

```
2
3
           legend(label(1 " Control," "{&Delta}=1 yr") ///
4
           label(2 " Control," "{&Delta}=2 yr") ///
5
          label(3 " Control," "{&Delta}=3 yr") ///
6
          label(4 " Control," "{&Delta}=4 yr") ///
7
           label(5 " Control," "{&Delta}=5 yr") ///
8
          c(1) order(1 2 3 4 5) pos(3) size(small) ///
9
          c(1) symx(4) region(lc(white))) ///
10
          yti("Effect in 1K Euro ({&delta}{subscript: Salary})",
11
          height(7)) ///
12
          legend(off)
13
14
          graph export $highdef/est2003 2011.png, replace width(3900)
15
16
17
18
          **Reports marginal effects for period 2003-2011 in percent
19
20
          gen upper2 = (results3+results2/(results1/results3)*1.96)*100
21
          gen lower2 = (results3-results2/(results1/results3)*1.96)*100
22
           replace results3 = results3*100
23
24
          scatter results3 results4 , mcolor(navy) || ///
25
           rspike upper2 lower2 results4, lcolor(navy) ///
26
          ysc(range(-5 0)) ylab(-5(.5)0) ///
27
          xsc(range(.5 5.5)) xlab(1(1)5) ///
28
          yline(0) ysize(10) xsize(12) graphr(c(white)) ///
29
          /*title("Percentage change in salary, 2003-10")*/ ///
30
          yti("Salary change (in %)", height(7)) ///
31
          xti("Years between exposure and control incident") scale(.95) ///
32
          legend(label(1 " Control," "{&Delta}=1 yr") ///
33
           label(2 " Control," "{&Delta}=2 yr") ///
34
          label(3 " Control," "{&Delta}=3 yr") ///
label(4 " Control," "{&Delta}=4 yr") ///
35
36
           label(5 " Control," "{&Delta}=5 yr") ///
37
38
          c(1) order(1 2 3 4 5) pos(3) size(small) ///
39
          c(1) symx(4) region(lc(white))) legend(off)
40
          /*
41
          note("Marginal effects for exposure dummy across spacing of control
42
          groups. Decrease " ///
43
          "calculated by dividing {&delta} with the normalized control groups'
44
          average salary " ///
45
          "post-concussion. Control groups suffer concussions 1, 2, 3, 4, and
46
           5 years (&Delta) after" ///
47
          "the exposure group. Both control and exposure group are 30-49 years
48
          of age when" ///
49
          "exposure group suffers concussion. 95% confidence intervals.")*/
50
51
          graph export $highdef/marginal2003 2011.png, replace width(3900)
52
53
54
55
56
57
          58
          ******
59
          **
60
```

4

5

6

7

8 9 10

11

12 13

14

15

16 17

18

19

20

21

22

23

24

25 26

27

28

29

30

31

32 33 34

35 36 37

38 39

40

41

42

43

44

45

46

47 48

49 50

51

52 53

54

55 56

57

58

59 60 **BMJ** Open

```
**
                Results for individuals with at least highschool
**
**
******
forvalue control_time=1/5{
        local end = 2012 // last incident year in data
        **build dataset for joint estimate across years
        forvalue count=2003/`end'{
                if `count'==2003{
                        use $data/
sample_control_`count'_`control_time'.dta, clear
                        gen time = `count' //incident year
indicator
                }
                else append using $data/
sample_control_`count'_`control_time'.dta
                replace time = `count' if time ==.
                **exclude individuals in years where they do not
appear in data,
                **due to either death or migration, as well as
periods from when
                **the control group sufer their concussion
                drop if merge ==1 | count > `control_time'-1
        }
        gen female = koen==2
        **Generate educational groups
        qui{
                gen edu =0
                replace edu = 1 if inrange(hffsp,20000000,39000000)
| ///
                                                         (hffsp
>40000000 & hffsp!=.)
        }
        keep if edu==1
        //build ident, so we can multivariate cluster for
individuals
        //who occur both as control and exposure during the period
(id)
        bysort pnr time: gen helpx = _n ==1
        gen id= sum(helpx)
        drop helpx help
```

4

5

6

7

8 9

10

11

12

13

14 15

16 17

18

19

20

21

22

23

24 25

26 27

28

29

30 31

32

33

34 35

36 37 38

39

40

41 42

43

44

45

46

47

48

49 50 51

52 53 54

55

56

57

58

59

60

Calculate number of observations for exposure and control count if count==0 & treatment ==1 local Ntreated = r(N)count if count==0 & treatment ==0 local Ncontrol = r(N)generate concussion variable gen treat = inrange(count,0,`control_time'-1) & treatment ==1 replace treat = time from incident if count ==0 & treatment ==1 ******Generate pre-concussion income difference for **use in calculating marginal effects sum loenmv if count <0 & treatment ==0</pre> local control =r(mean) sum loenmv if count <0 & treatment ==1</pre> local treat =r(mean) sum loenmv if count>=0 & treatment ==0 local control_post =r(mean) gen post = count >=0 **estimate DiD model on salary xi: reghdfe loenmv treat, abs(alder female post time treatment) cl(id pnr) if `control_time'==1 matrix results_edu = J(5,5,.) // matrix to capture results if `control_time'==1 matrix results_p_edu = J(5,5,.) // matrix to capture results matrix b = e(b)matrix V = e(V)local n = `control_time' matrix results_edu[`n',1] = b[1,1] / 7466 // capture beta results as 1K Euro matrix results edu[`n',2] $= (V[1,1]^{.5})/$ 7466 // capture standard error as 1K Euro matrix results_edu[`n',3] = b[1,1]/(`control post'-(`control'-`treat')) matrix results_edu[`n',4] = `n' } ****** ** Results for individuals with no high school+ ** ** **

Page 63 of 109

1 2 3

4

5 6 7

8

9 10

11

12

13

14

16 17

19

21

23

24

25

27

29

31

33

34 35

37

39

41

42

43

45

46

47

48

49

51

53

55

56 57 **BMJ** Open

```
******
          forvalue control time=1/5{
                  local end = 2012 // last incident year in data
                  **build dataset for joint estimate across years
                  forvalue count=2003/`end'{
                          if `count'==2003{
                                   use $data/
          sample_control_`count'_`control_time'.dta, clear
15
                                   gen time = `count' //incident year
          indicator
18
                          }
                          else append using $data/
20
          sample_control_`count'_`control_time'.dta
                          replace time = `count' if time ==.
22
                          **exclude individuals in years where they do not
          appear in data,
                          **due to either death or migration, as well as
26
          periods from when
                          **the control group sufer their concussion
28
                          drop if merge ==1 | count > `control_time'-1
30
                  }
32
                  gen female = koen==2
36
                  //build ident, so we can multivariate cluster for
          individuals
38
                  //who occur both as control and exposure during the period
          (id)
40
                  bysort pnr time: gen helpx = _n ==1
                  gen id= sum(helpx)
                  drop helpx help
44
                  **Generate educational groups
                  qui{
                          gen edu =0
                          replace edu = 1 if inrange(hffsp,20000000,39000000)
          | ///
50
                                                                    (hffsp
          >40000000 & hffsp!=.)
52
                  }
54
                  keep if edu==0
58
59
                  **Calculate number of observations for exposure and control
60
```

4

5

6

7 8

9

10

11

12

13 14

15

16

17 18

19

20

21

22

23

24 25

26

27

28 29

30

31

32

37

38

39 40

41

42

43

44

45

46

51 52

53

54

55

56

57

58

59

60

count if count==0 & treatment ==1 local Ntreated = r(N)count if count==0 & treatment ==0 local Ncontrol = r(N)**generate concussion variable gen treat = inrange(count,0,`control_time'-1) & treatment ==1 replace treat = time_from_incident if count ==0 & treatment ==1 ******Generate pre-concussion income difference for **use in calculating marginal effects sum loenmv if count <0 & treatment ==0</pre> local control =r(mean) sum loenmv if count <0 & treatment ==1</pre> local treat =r(mean) sum loenmv if count>=0 & treatment ==0 local control_post =r(mean) gen post = count >=0 **estimate DiD model on salary xi: reghdfe loenmv treat, abs(alder female post time treatment) cl(id pnr) if `control_time'==1 matrix results_noedu = J(5,5,.) // matrix to capture results if `control_time'==1 matrix results_p_noedu = J(5,5,.) // matrix to capture results matrix b = e(b)matrix V = e(V)local n = `control_time' matrix results_noedu[`n',1] = b[1,1] / 7466 // capture beta results as 1K Euro matrix results_noedu[`n',2] $= (V[1,1]^{.5})/$ // capture standard error as 1K Euro 7466 matrix results noedu[`n',3] b[1,1]/ = (`control post'-(`control'-`treat')) `n' matrix results noedu[`n',4] = } ****** ** Draw figure for subgroups ** ** ** *****

5 6

7

8

9

10

11 12

13

14 15

16

17 18

19

20

21 22

23

24 25

26 27

28 29 30

31

32 33

34 35 36

37

38

39 40

41 42

43

44

45

46

47

48

49

50

51

52

53 54

55

56 57 58

59

```
local t = -.15
foreach x in noedu edu{
        svmat results_`x'
        replace results_`x'4= results_`x'4+`t'
        svmat results_p_`x'
        replace results_p_`x'4= results_p_`x'4+`t'
        gen upper'x' = results 'x'1+results 'x'2*1.96
        gen lower`x' = results_`x'1-results_`x'2*1.96
        gen upper2`x' = (results_`x'3+results_`x'2/(results_`x'1/
results `x'3)*1.96)*100
        gen lower2`x' = (results_`x'3-results_`x'2/(results_`x'1/
results_`x'3)*1.96)*100
        replace results_`x'3 = results_`x'3*100
        gen upper_p_`x' = results_p_`x'1+results_p_`x'2*1.96
        gen lower_p_`x' = results_p_`x'1-results_p_`x'2*1.96
        local t = t'+.1
}
keep results* upper* lower*
keep if _n <=5
**generate locals for figure
foreach x in noedu edu{
        if "`x'" == "nopay" local color = "navy"
        if "`x'" == "pay"
                                  local color = "red"
        if "`x'" == "noedu" local color = "green"
        if "`x'" == "edu"
                                  local color = "purple"
        local figure_`x' "scatter results_`x'1 results_`x'4,
mcolor(`color') || rspike upper`x' lower`x' results_`x'4,
lcolor(`color') vertical"
        if "`x'" == "nopay" local figure2 `x' "scatter results `x'3
results_`x'4, mcolor(`color') || rspike upper2`x' lower2`x'
results_`x'4, lcolor(`color' ) vertical "
        else local figure2_`x' "scatter results_`x'3 results_`x'4,
mcolor(`color') || rspike upper2`x' lower2`x' results_`x'4,
lcolor(`color') vertical "
        local figure_p_`x' "scatter results_p_`x'1 results_p_`x'4,
mcolor(`color') || rspike upper_p_`x' lower_p_`x' results_p_`x'4,
lcolor(`color') vertical "
}
`figure_noedu' || `figure_edu' ///
legend( ///
```

4

5

6

7

8

9

10

11

12

13

14

15

16

17 18

19

20

21

22

23 24

25 26

32

33

34

35 36

37

38

39 40

41

42

43

44

45

46

47

48

49

50

51

52 53

54 55

56

57 58

```
label(1 "Less than" "high school") ///
label(3 "At least" "high school") ///
c(1) order(1 3 ) pos(3) size(small) ///
c(1) symx(4) region(lc(white))) ///
ysc(range(-4 2)) ylab(-4(1)2) ///
xsc(range(.5 5.5)) xlab(1(1)5) ///
yline(0) ysize(10) xsize(12) graphr(c(white)) ///
///title("Parameter estimates across control group, 2003-10") ///
xti("Years between exposure and control incident") scale(.95) ///
yti("Effect in 1K Euro ({&delta}{subscript: Salary})",
height(7)) ///
/*note("Parameter estimates for exposure dummy across spacing of
control groups." ///
"Control groups suffer concussions 1, 2, 3, 4, and 5 years (&Delta)
after the exposure group." ///
"Both control and exposure group are 30-49 years of age when
exposure group suffers " ///
"concussion. 95% confidence intervals.")
*/
graph export $highdef/grouped_est2003_2011.png, replace width(3900)
preserve
`figure2_noedu' || `figure2_edu' ///
legend( ///
label(1 "Less than" "high school") ///
label(3 "At least" "high school") ///
c(1) order(1 3 5) pos(3) size(small) ///
c(1) symx(4) region(lc(white))) ///
ysc(range(-12 3)) ylab(-12(3)3) ///
xsc(range(.5 5.5)) xlab(1(1)5) ///
yline(0) ysize(10) xsize(12) graphr(c(white)) ///
/// title("Percentage change in salary, 2003-10") ///
yti("Salary change (in %)", height(7)) ///
xti("Years between exposure and control incident") scale(.95) ///
/*note("Marginal effects for exposure dummy across spacing of
control groups." ///
"change calculated by {&delta} with the normalized control groups'
average" ///
"salary post-concussion. Control groups suffer concussions 1, 2, 3,
4, and 5 years (&Delta) after" ///
"the exposure group. Both control and exposure group are 30-49 years
of age when" ///
"exposure group suffers concussion. 95% confidence intervals.")*/
graph export $highdef/grouped_marginal2003_2011.png, replace
width(3900)
restore
```

3		
4	****	*****
5		արտանակավարտերի անհանական անձան ա Դուստություն անձան անձ
6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
7	**	Deculte different and around
8	**	Results different age-groups
9	**	
10	**	
10	*****	***************************************
10	****	
12		
15	forvalue $y = 20(5)^{1}$	551
14	for $y = 20(3)$	control time - 1/5
15	TOTVALUE	$1001101_1100 = 1/31$
16		local end = 2012 // last incluent year in data
17		
18		**build dataset for joint estimate across years
19		forvalue count=2003/`end'{
20		if `count'==2003{
21		use \$data/
22	sample control `	count' `control time' dta clear
23	Sump cc_controt_	<pre>count _ controt_time futu, ctcur gen time = `count! //incident year</pre>
24	indicator	gen time – count //incluent year
25	Indicator	
26		}
27		else append using \$data/
28	<pre>sample_control_`</pre>	count'_`control_time'.dta
20		replace time = `count' if time ==.
30		
21		**exclude individuals in years where they
21 22	do not annear in	data
32		wedue to either death or migration as
33		**QUE LO EILHER GEALH OF MIGRALION, AS
34	well as periods	rrom when
35		**the control group sufer their concussion
36		drop if merge ==1 count >
37	`control_time'-1	
38		
39		
40		}
41		5
42		a_{n} for $a_{n} = k_{n}$
43		
44		
45		//build ident, so we can multivariate cluster for
46	individuals	
47		//who occur both as control and exposure during the
48	period (id)	
49	-	
50		bysort onr time: gen helpx = n ==1
50		den id- sum(helpx)
57		dron holny holn
52		drop netpx netp
55		1
54		gen nopay = loenmv <1
55		
50		**Generate age group
5/		local z = `y'+4
58		<pre>gen help = count == 0 & inrange(alder,`y',`z')</pre>
59		bysort id: egen helpx =max(help)
60		

	keep if helpx == 1 drop helpx help	
control	<pre>**Calculate number of observatio count if count==0 & treatment == local Ntreated = r(N) count if count==0 & treatment == local Ncontrol = r(N)</pre>	ns for exposure and 1 0
treatment ==1 treatment ==1	<pre>**generate concussion variable gen treat = inrange(count,0,`con replace treat = time_from_incide</pre>	trol_time'-1) & nt if count ==0 &
for	<pre>**Generate pre-concussion income **use in calculating marginal ef sum loenmv if count <0 & treatme local control =r(mean) sum loenmv if count <0 & treatme local treat =r(mean) sum loenmv if count>=0 & treatme local control_post =r(mean) gen post = count >=0</pre>	e difference fects ent ==0 ent ==1 ent ==0
time treatment)	<pre>**estimate DiD model on salary xi: reghdfe loenmv treat, abs(al cl(id pnr)</pre>	der female post
J(5,5,.) // matr J(5,5,.) // matr	<pre>if `control_time'==1 matrix resu tix to capture results if `control_time'==1 matrix resu tix to capture results</pre>	lts_`y' = lts_p_`y' =
	<pre>matrix b = e(b) matrix V = e(V) local n = `control_time'</pre>	
7466 // captu 7466 // captu (`control_post'-	<pre>matrix results_`y'[`n',1] ure beta results as 1K Euro matrix results_`y'[`n',2] ure standard error as 1K Euro matrix results_`y'[`n',3] = -(`control'-`treat')) matrix results_`y'[`n',4] =</pre>	= b[1,1] / = (V[1,1]^.5)/ b[1,1]/ `n'
}		

```
1
2
3
           }
4
5
6
7
           local t = -.15
                            //Jitter estimates along x-axis
8
           forvalue x = 20(5)55{
9
                    svmat results_`x'
10
                     replace results_`x'4= results_`x'4+`t'
11
                     svmat results_p_`x'
12
                     replace results_p_`x'4= results_p_`x'4+`t'
13
14
                     gen upper`x' = results_`x'1+results_`x'2*1.96
15
                     gen lower`x' = results_`x'1-results_`x'2*1.96
16
17
18
                     gen upper2`x' = (results_`x'3+results_`x'2/(results_`x'1/
19
           results_`x'3)*1.96)*100
20
                    gen lower2`x' = (results_`x'3-results_`x'2/(results_`x'1/
21
           results_`x'3)*1.96)*100
22
                     replace results_`x'3 = results_`x'3*100
23
24
                     gen upper_p_`x' = results_p_`x'1+results_p_`x'2*1.96
25
                     gen lower_p_`x' = results_p_`x'1-results_p_`x'2*1.96
26
27
                     local t = t'+.1
28
29
           }
30
31
           keep results* upper* lower*
32
           keep if _n <=5
33
34
35
           **generate locals for figure
36
37
           forvalue x = 20(5)55{
38
                     if `x' == 20 local color = "black"
39
                     if
                         x' == 25 local color = "orange"
40
                     if `x' == 30 local color = "navy'
41
                     if `x' == 35 local color = "red"
42
                     if `x' == 40 local color = "green"
43
                     if `x' == 45 local color = "purple"
44
                     if `x' == 50 local color = "sienna"
45
                     if `x' == 55 local color = "teal"
46
47
                     local figure_`x' "scatter results_`x'1 results_`x'4,
48
           mcolor(`color') || rspike upper`x' lower`x' results_`x'4,
49
           lcolor(`color') vertical"
50
                    local figure2_`x' "scatter results_`x'3 results_`x'4,
51
           mcolor(`color') || rspike upper2`x' lower2`x' results_`x'4,
52
53
           lcolor(`color') vertical "
           local figure_p_`x' "scatter results_p_`x'1 results_p_`x'4,
mcolor(`color') || rspike upper_p_`x' lower_p_`x' results_p_`x'4,
54
55
56
           lcolor(`color') vertical "
57
           }
58
59
           /**/
60
```

```
2
3
           `figure_20' || `figure_25' || `figure_30' || `figure_35' ///
4
                        figure_40' || `figure_45' || `figure_50' ||
                    || `
5
           `figure 55'
                        111
6
           legend( ///
7
           label(1 "Age 20-24") ///
8
           label(3 "Age 25-29") ///
9
           label(5 "Age 30-34") ///
10
           label(7 "Age 35-39") ///
11
           label(9 "Age 40-44") ///
12
           label(11 "Age 45-49") ///
13
           label(13 "Age 50-54") ///
14
           label(15 "Age 55-59") ///
15
           c(1) order(1 3 5 7 9 11 13 15) pos(3) size(small) ///
16
           c(1) symx(4) region(lc(white))) ///
17
18
           ysc(range(-4 2)) ylab(-4(1)2) ///
19
           xsc(range(.5 5.5)) xlab(1(1)5) ///
20
           yline(0) ysize(10) xsize(12) graphr(c(white)) ///
21
           /// title("Parameter estimates across control group, 2003-10") ///
22
           xti("Years between exposure and control incident") scale(.95) ///
23
           yti("Effect in 1K Euro ({&delta}{subscript: Salary})",
24
           height(7)) ///
25
           /*note("Parameter estimates for exposure dummy across spacing of
26
           control groups." ///
27
           "Control groups suffer concussions 1, 2, 3, 4, and 5 years (&Delta)
28
           after the exposure group." ///
29
           "Age group described age at time of exposure incident. 95%
30
           confidence intervals.")*/
31
32
           graph export $highdef/age_est2003_2011.png, replace width(3900)
33
34
           */
35
36
           `figure2_20' || `figure2_25' || `figure2_30' || `figure2_35' ///
37
                    || `figure2_40' || `figure2_45' || `figure2_50' ||
38
           `figure2 55'
                         ///
39
           legend( ///
40
           label(1 "Age 20-24") ///
41
           label(3 "Age 25–29") ///
42
           label(5 "Age 30-34") ///
43
           label(7 "Age 35-39") ///
44
           label(9 "Age 40-44") ///
45
           label(11 "Age 45-49") ///
46
           label(13 "Age 50-54") ///
47
           label(15 "Age 55-59") ///
48
           c(1) order(1 3 5 7 9 11 13 15) pos(3) size(small) ///
49
           c(1) symx(4) region(lc(white))) ///
50
           ysc(range(-12 3)) ylab(-12(3)3) ///
51
           xsc(range(.5 5.5)) xlab(1(1)5) ///
52
53
           yline(0) ysize(10) xsize(12) graphr(c(white)) ///
54
           yti("Salary change (in %)", height(7)) ///
55
           xti("Years between exposure and control incident") scale(.95)
56
57
58
           graph export $highdef/age marginal2003 2011.png, replace width(3900)
59
60
```

```
2
3
          `figure_p_30' || `figure_p_35' || `figure_p_40' ||
4
          `figure_p_45'
                        /// ///
5
          legend(label(1 "Age 30-34") ///
6
          label(3 "Age 35-39") ///
7
          label(5 "Age 40-44") ///
8
          label(7 "Age 45-49") ///
9
          c(1) order(1 3 5 7) pos(3) size(small) ///
10
          c(1) symx(4) region(lc(white))) ///
11
          ysc(range(-.02 .050)) ylab(-0.02(.01)0.05) ///
12
          xsc(range(.5 5.5)) xlab(1(1)5) ///
13
          yline(0, lcolor(black)) ysize(10) xsize(12) graphr(c(white)) ///
14
          title("Parameter estimates across control group, 2003–10") ///
15
          yti("Effect on Pr(Salary=0)", height(7)) ///
16
          xti("Years between exposure and control incident ({&Delta})")
17
18
          scale(.95) ///
19
          note("Parameter estimates for exposure dummy across spacing of
20
          control groups." ///
21
          "Control groups suffer concussions 1, 2, 3, 4, and 5 (&Delta) years
22
          after the exposure group." ///
23
          "Age group described age at time of exposure incident. 95%
24
          confidence intervals.")
25
26
          graph export $highdef/age_nopay2003_2011.png, replace width(3900)
27
28
29
          30
          ******
31
32
          **
                          Results accross gender
33
          **
34
          **
35
          **
36
          37
          ******
38
39
          forvalue y=0/1{
40
                  forvalue control time=1/5{
41
                          local end = 2012 // last incident year in data
42
43
                          **build dataset for joint estimate across years
44
                          forvalue count=2003/`end'{
45
                                   if `count'==2003{
46
                                           use $data/
47
          sample_control_`count'_`control_time'.dta, clear
48
                                           gen time = `count' //incident year
49
          indicator
50
                                   }
51
                                  else append using $data/
52
          sample_control_`count'_`control_time'.dta
53
54
                                   replace time = `count' if time ==.
55
56
                                  **exclude individuals in years where they
57
          do not appear in data,
58
                                  **due to either death or migration, as
59
          well as periods from when
60
```

	`control_time'-1	<pre>**the control group sufer their concussion drop if merge ==1 count ></pre>
		}
	individuals period (id)	gen female = koen==2
		<pre>//build ident, so we can multivariate cluster for</pre>
		//who occur both as control and exposure during the
		bysort pnr time: gen helpx = _n ==1 gen id= sum(helpx) drop helpx help
		gen nopay = loenmv <1
		<pre>**Generate age group local z = `y'+4 gen help = count == 0 & female==`y' bysort id: egen helpx =max(help) keep if helpx == 1 drop helpx help</pre>
	control	<pre>**Calculate number of observations for exposure and count if count==0 & treatment ==1</pre>
		<pre>local Ntreated = r(N) count if count==0 & treatment ==0 local Ncontrol = r(N)</pre>
	trootmont1	<pre>**generate concussion variable gen treat = inrange(count,0,`control_time'-1) &</pre>
	treatment ==1	<pre>replace treat = time_from_incident if count ==0 &</pre>
	for	<pre>**Generate pre-concussion income difference</pre>
		<pre>**use in calculating marginal effects sum loenmv if count <0 & treatment ==0 local control =r(mean) sum loenmv if count <0 & treatment ==1 local treat =r(mean) sum loenmv if count>=0 & treatment ==0 local control_post =r(mean) gen post = count >=0</pre>

treatment) cl(id	*∗estimate DiD model on salary xi: reghdfe loenmv treat, abs(al pnr)	der post time
J(5,5,.) // matr	<pre>if `control_time'==1 matrix resu ix to capture results if `control_time'==1 matrix resu ix to capture results</pre>	lts_`y' = lts_p_`y' =
7466 // captu 7466 // captu (`control_post'-	<pre>matrix b = e(b) matrix V = e(V) local n = `control_time' matrix results_`y'[`n',1] ure beta results as 1K Euro matrix results_`y'[`n',2] ure standard error as 1K Euro matrix results_`y'[`n',3] = (`control'-`treat')) matrix results_`y'[`n',4] =</pre>	<pre>= b[1,1] / = (V[1,1]^.5)/ b[1,1]/ `n'</pre>
} }		
<pre>local t =05 foreach x in 0 1- svmat re replace svmat re replace</pre>	<pre>//Jitter estimates along x-axis { esults_`x' results_`x'4= results_`x'4+`t' esults_p_`x' results_p_`x'4= results_p_`x'4+`*</pre>	t'
gen uppe gen lowe	er`x' = results_`x'1+results_`x'2 er`x' = results_`x'1-results_`x'2	*1.96 *1.96
gen uppe results_`x'3)*1.9 gen lowe results_`x'3)*1.9 replace	er2`x' = (results_`x'3+results_`x 96)*100 er2`x' = (results_`x'3-results_`x 96)*100 results_`x'3 = results_`x'3*100	'2/(results_`x'1/ '2/(results_`x'1/
gen uppe gen lowe	er_p_`x' = results_p_`x'1+results er_p_`x' = results_p_`x'1-results_	_p_`x'2*1.96 _p_`x'2*1.96
local t	= 't'+.1	
}	nork lovork	
keep if _n <=5	μειτ ιυωειτ	

4 5

6

7

```
**generate locals for figure
           foreach x in 0 1{
                   if `x' == 0 local color = "red"
                   if `x' == 1 local color = "green"
                   local figure_`x' "scatter results_`x'1 results_`x'4,
10
          mcolor(`color') || rspike upper`x' lower`x' results_`x'4,
11
           lcolor(`color') vertical"
12
                   local figure2 x' "scatter results x'3 results x'4,
13
          mcolor(`color') || rspike upper2`x' lower2`x' results_`x'4,
14
           lcolor(`color') vertical "
15
                   local figure_p_`x' "scatter results_p_`x'1 results_p_`x'4,
16
          mcolor(`color') || rspike upper_p_`x' lower_p_`x' results_p_`x'4,
17
18
           lcolor(`color') vertical "
19
           }
20
21
22
           `figure_0' || `figure_1' ///
23
           legend(label(1 "Men") ///
24
           label(3 "Women") ///
25
           c(1) order(1 3) pos(3) size(small) ///
26
           c(1) symx(4) region(lc(white))) ///
27
           ysc(range(-4 2)) ylab(-4(1)2) ///
28
           xsc(range(.5 5.5)) xlab(1(1)5) ///
29
          yline(0) ysize(10) xsize(12) graphr(c(white)) ///
30
           /// title("Parameter estimates across control group, 2003-10") ///
31
          xti("Years between exposure and control incident") scale(.95) ///
32
           yti("Effect in 1K Euro ({&delta}{subscript: Salary})",
33
           height(7)) ///
34
           /*note("Parameter estimates for exposure dummy across spacing of
35
36
           control groups." ///
37
           "Control groups suffer concussions 1, 2, 3, 4, and 5 years (&Delta)
38
           after the exposure group." ///
39
           "95% confidence intervals.")*/
40
41
           graph export $highdef/gender_est2003_2011.png, replace width(3900)
42
43
           `figure2_0' || `figure2_1'
                                         111
44
           legend( ///
45
           label(1 "Men") ///
46
           label(3 "Women") ///
47
           c(1) order(1 3 5 7) pos(3) size(small) ///
48
           c(1) symx(4) region(lc(white))) ///
49
          ysc(range(-12 3)) ylab(-12(3)3) ///
50
          xsc(range(.5 5.5)) xlab(1(1)5) ///
51
          yline(0) ysize(10) xsize(12) graphr(c(white)) ///
52
53
          /// title("Percentage change in salary, 2003-10") ///
54
          yti("Salary change (in %)", height(7)) ///
55
          xti("Years between exposure and control incident") scale(.95) ///
56
           /* note("Parameter estimates for exposure dummy across spacing of
57
           control groups." ///
58
           "Control groups suffer concussions 1, 2, 3, 4, and 5 years (&Delta)
59
          after the exposure group." ///
60
```

```
1
2
3
          "95% confidence intervals.")*/
4
5
          graph export $highdef/gender_marginal2003_2011.png, replace
6
          width(3900)
7
8
          `figure_p_0' || `figure_p_1'
                                       111
9
          legend( ///
10
          label(1 "Men") ///
11
          label(3 "Women") ///
12
          c(1) order(1 3 5 7) pos(3) size(small) ///
13
          c(1) symx(4) region(lc(white))) ///
14
          ysc(range(-.02 .050)) ylab(-0.02(.01)0.05) ///
15
          xsc(range(.5 5.5)) xlab(1(1)5) ///
16
          yline(0, lcolor(black)) ysize(10) xsize(12) graphr(c(white)) ///
17
18
          /// title("Parameter estimates across control group, 2003-10") ///
19
          yti("Effect on Pr(Salary=0)", height(7)) ///
20
          xti("Years between exposure and control incident ({&Delta})")
21
          scale(.95) ///
22
          /*note("Parameter estimates for exposure dummy across spacing of
23
          control groups." ///
24
          "Control groups suffer concussions 1, 2, 3, 4, and 5 years (&Delta)
25
          after the exposure group." ///
26
          "95% confidence intervals.")*/
27
28
          graph export $highdef/gender_nopay2003_2011.png, replace width(3900)
29
30
31
32
          33
          ******
34
          **
35
          **
                                  Generate descriptive figures of wage
36
          development for exposure
37
                                   and control group
          **
38
          **
39
          **
40
          41
          *****
42
43
44
           forvalue control time=1/5{
45
                  local end = 2012 // last incident year in data
46
47
                  **build dataset for joint estimate across years
48
                  forvalue count=2003/`end'{
49
                          if `control_time' ==1 & `count'==2003{
50
                                  use $data/
51
          sample_control_`count'_`control_time'.dta, clear
52
53
                                  gen time = `count' //incident year
54
          indicator
55
                          }
56
                          else append using $data/
57
          sample_control_`count'_`control_time'.dta
58
59
                          **Drops exposure-group already in the data
60
```

if `control_time' > 1 drop if time ==. & treatment ==1 replace time = `count' if time ==. replace control1 = `control time' if control`control time'==1 if `control_time' > 1 drop control`control_time' **exclude individuals in years where they do not appear in data, **due to either death or migration, as well as periods from when **the control group suffer their concussion } } **Generate mean salary for each period relative to exposure groups concussion **separately for exposure and each control group bysort control1 count: egen mean_loen = mean(loenmv) **Generate mean Pr(sal= for each period relative to exposure groups concussion **separately for exposure and each control group gen no_lon = loenmv < 1</pre> bysort control1 count: egen mean_no_lon = mean(no_lon) **generate group size bysort control1 count: gen Ncount=_N if count ==0 **generate pre-exposure mean levels for normalization gen pre = count <0 bysort control1 pre: egen pre_mean_loen = mean(loenmv) if pre==1 bysort control1 pre: egen pre_mean_no_lon = mean(no_lon) if pre==1 **reduce data set size bysort control1 count: keep if n ==1 keep count mean* pre_* control1 Ncount **standardize to 1k euro replace mean loen = mean loen/7466 replace pre_mean_loen = pre_mean_loen/7466 sort control1 count ******Pre-tratment normalization of salary

4

5 6

7

8

9

10

11 12

13

14

15 16 17

18

19

20

21 22

23

24

25 26

27 28

29

30

31

32

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53 54

55

56

57

58

59

```
gen norm_mean_lon =mean_loen
gen norm_mean_no_lon =mean_no_lon
forvalue t = 1/5{
        qui sum pre_mean_loen if control == 0
        local treat = r(mean)
        qui sum pre_mean_loen if control == `t'
        local control = r(mean)
        **normalize with pre-concussion difference
        qui replace norm_mean_lon = mean_loen - (`control'-`treat')
if control ==`t'
        qui sum pre_mean_no_lon if control == 0
        local treat = r(mean)
        qui sum pre_mean_no_lon if control == `t'
         local control = r(mean)
        **normalize with pre-concussion difference
        qui replace norm_mean_no_lon = mean_no_lon - (`control'-
`treat') if control ==`t'
}
**local indicators of group sizes
forvalue t=0/5{
        qui sum Ncount if control == `t'
        local C`t' = r(mean)
}
graph twoway ///
        connect mean_l count if control1== 0, ///
        lcolor(black) mcolor(black) || ///
        connect mean_l count if control1== 1, ///
        lcolor(blue) mcolor(blue) || ///
        connect mean_l count if control1== 2, ///
        lcolor(green) mcolor(green) || ///
        connect mean_l count if control1== 3, ///
        lcolor(purple) mcolor(purple) || ///
        connect mean_l count if control1== 4, ///
        lcolor(red) mcolor(red) || ///
        connect mean_l count if control1== 5, ///
        lcolor(orange) mcolor(orange) ///
        legend( ///
                 label(1 "Exposure" ///
                                  "N=`C0'") ///
                 label(2 "Control {&Delta}=1" ///
                                  "N=`C1'") ///
                 label(3 "Control {&Delta}=2" ///
                                  "N=`C2'") ///
                 label(4 "Control {&Delta}=3" ///
                                  "N=`C3'") ///
                 label(5 "Control {&Delta}=4" ///
```

4

5

6

7

8

9

"N=`C4'") /// label(6 "Control {&Delta}=5" /// "N=`C5'") /// c(1) order(1 2 3 4 5 6) pos(3) size(small) /// c(1) symx(4) region(lc(white))) /// ysc(range(26 33)) ylab(26(1)33) /// xsc(range(-5 5)) xlab(-5(1)5) /// 10 xline(0, lcolor(red)) ysize(10) xsize(12) 11 graphr(c(white)) /// 12 title("Impact of Concussion on Salary") /// 111 13 yti("Deflated Salaried Income in 1K EUR", height(7)) /// 14 xti("Years since exposure group concussion") scale(.95) /// 15 /* note("Control groups suffer concussion 1, 2, 3, 4, and 5 16 years (&Delta) after exposure group." /// 17 "Both control and exposure group at 30-49 years of 18 19 age at beginning of year =0." /// 20 "Vertical line indicates time of exposure group 21 concussion.")*/ 22 23 graph export \$highdef/FigureS2.png, replace width(3900) 24 25 26 graph twoway /// 27 connect norm_mean_l count if control1== 1, /// 28 lcolor(blue) mcolor(blue) || /// 29 connect norm_mean_l count if control1== 2, /// 30 lcolor(green) mcolor(green) || /// 31 connect norm_mean_l count if control1== 3, /// 32 lcolor(purple) mcolor(purple) || /// 33 connect norm_mean_l count if control1== 4, /// 34 35 lcolor(red) mcolor(red) || /// 36 connect norm_mean_l count if control1== 5, /// 37 lcolor(orange) mcolor(orange) || /// 38 connect mean_l count if control1== 0, /// 39 lcolor(black) mcolor(black) /// 40 legend(/// 41 label(1 "Control {&Delta}=1" /// 42 "N=`C1'") /// 43 label(2 "Control {&Delta}=2" /// 44 "N=`C2'") /// 45 label(3 "Control {&Delta}=3" /// 46 "N=`C3'") /// 47 label(4 "Control {&Delta}=4" /// 48 "N=`C4'") /// 49 label(5 "Control {&Delta}=5" /// 50 "N=`C5'") /// 51 label(6 "Exposure" /// 52 "N=`C0'") /// 53 c(1) order(6 1 2 3 4 5) pos(3) size(small) /// 54 55 c(1) symx(4) region(lc(white))) /// 56 ysc(range(26 31)) ylab(26(1)31) /// 57 xsc(range(-5 5)) xlab(-5(1)5) /// 58 xline(0, lcolor(red)) ysize(10) xsize(12) 59 graphr(c(white)) /// 60

BMJ Open

///	title("Impact of Concussion on Salary") /// yti("Deflated Norm. Salaried Income in 1K EUR",
height(7	7)) /// xti("Years since exposure group's concussion") scale(.95) /*///
years (&	<pre>variable for the second s</pre>
ane at k	"Both control and exposure group at 30–49 years of periodic vertices -0 " ///
aye at i	"Vertical line indicates time of exposure group
concussi	ion." /// "Salary levels normalized with pre-concussion level
differer	nce between" ///
	"each control group and the exposure group")*/
graph e>	<pre>kport \$highdef/Figure2.png, replace width(3900)</pre>
graph tw	voway ///
	<pre>connect mean_no_l count if control1== 0, /// lcolor(black) mcolor(black) ///</pre>
	<pre>connect mean_no_l count if control1== 1, ///</pre>
	color(blue) mcolor(blue) /// connect mean no l count if control1== 2, ///
	<pre>lcolor(green) mcolor(green) ///</pre>
	<pre>connect mean_no_t count if controli== 3, /// lcolor(purple) mcolor(purple) ///</pre>
	<pre>connect mean_no_l count if control1== 4, /// lealer(red) mealer(red) +/ (//</pre>
	connect mean_no_l count if control1== 5, ///
	<pre>lcolor(orange) mcolor(orange) /// logond(///</pre>
	label(1 "Exposure" ///
	N=CO''') ///
	"N=`C1'") ///
	label(3 "Control {Δ}=2" /// "N=`C2'") ///
	label(4 "Control {Δ}=3" ///
	label(5 "Control {Δ}=4" /// "N=`C4'") ///
	label(6 "Control {Δ}=5" /// "N=`C5'") ///
	c(1) order(1 2 3 4 5 6) pos(3) size(small) ///
	ysc(range(.2 .325)) ylab(.2(.025).325) ///
	<pre>xsc(range(-5 5)) xlab(-5(1)5) /// xline(0 lcolor(red)) vsize(10) xsize(12)</pre>
graphr(d	c(white)) ///
///	<pre>title("Impact of Concussion on Prob(Salary=0)") /// vti("Prob(Salary=0)", boight(7)) ///</pre>
	<pre>xti("Years since exposure group concussion") scale(.95) ///</pre>
/*	note("Control groups suffer concussion 1, 2, 3, 4, and 5

4

5

6

7

8 9

10 11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35 36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53

54

55

56

57

58 59

60

years (&Delta) after exposure group." /// "Both control and exposure group at 30–49 years of age at beginning of year =0." /// "Vertical line indicates time of exposure group concussion.")*/ graph export \$highdef/FigureS3.png, replace width(3900) graph twoway /// connect norm mean no l count if control1== 1, /// lcolor(blue) mcolor(blue) || /// connect norm_mean_no_l count if control1== 2, /// lcolor(green) mcolor(green) || /// connect norm_mean_no_l count if control1== 3, /// lcolor(purple) mcolor(purple) || /// connect norm_mean_no_l count if control1== 4, /// lcolor(red) mcolor(red) || /// connect norm_mean_no_l count if control1== 5, /// lcolor(orange) mcolor(orange) || /// connect mean_no_l count if control1== 0, /// lcolor(black) mcolor(black) /// legend(/// label(1 "Control {&Delta}=1" /// "N=`C1'") /// label(2 "Control {&Delta}=2" /// "N=`C2'") /// label(3 "Control {&Delta}=3" /// "N=`C3'") /// label(4 "Control {&Delta}=4" /// "N=`C4'") /// label(5 "Control {&Delta}=5" /// "N=`C5'") /// label(6 "Exposure" /// "N=`C0'") /// c(1) order(6 1 2 3 4 5) pos(3) size(small) /// c(1) symx(4) region(lc(white))) /// ysc(range(.2 .325)) ylab(.2(.025).325) /// xsc(range(-5 5)) xlab(-5(1)5) /// xline(0, lcolor(red)) ysize(10) xsize(12) graphr(c(white)) /// title("Impact of Concussion on Prob(Salary=0)") /// 111 yti("Norm. Prob(Salary=0)", height(7)) /// xti("Years since exposure group concussion") scale(.95) /// /* note("Control groups suffer concussion 1, 2, 3, 4, and 5 years (&Delta) after exposure group." /// "Both control and exposure group at 30–49 years of age at beginning of year =0." /// "Vertical line indicates time of exposure group concussion." /// "Probability levels normalized with pre-concussion level difference between" /// "each control group and the exposure group")*/ graph export \$highdef/Figure2A.png, replace width(3900)

10

11

12

13

14 15

16

17

18

19 20 21

23 24

25

26

27

29

31

32

33

34

35 36 37

38

39

40

41

42

43

44 45

46

47

48

49

50

51

52 53

54 55

56

57

```
*******
         **
                Effects across the salary distribution
         **
         **
         **
         **
         ******
         forvalue control time=5/5{
22
                 local end = 2012 // last incident year in data
                **build dataset for joint estimate across years
                forvalue count=2003/`end'{
                        if `count'==2003{
                               use $data/
28
         sample_control_`count'_`control_time'.dta, clear
                               gen time = `count' //incident year
30
         indicator
                        }
                        else append using $data/
         sample_control_`count'_`control_time'.dta
                        replace time = `count' if time ==.
                        **exclude individuals in years where they do not
         appear in data,
                        **due to either death or migration, as well as
         periods from when
                        **the control group sufer their concussion
                        drop if merge ==1 | count > `control_time'-1
                }
                gen female = koen==2
                qui{
                        gen edu =0
                        replace edu = 1 if inrange(hffsp,20000000,39000000)
         | ///
                                                              (hffsp
         >40000000 & hffsp!=.)
                }
                //build ident, so we can multivariate cluster for
         individuals
                //who occur both as control and exposure during the period
58
         (id)
59
```

4

5

6 7 8

9

10

11

12

13 14

15

16 17

18 19

20

21

22

23 24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46 47

48 49

50

55 56

57

58

```
bysort pnr time: gen helpx = _n ==1
        gen id= sum(helpx)
        drop helpx
        **generate concussion variable
        gen treat = inrange(count,0,`control_time'-1) & treatment
==1
         replace treat = time_from_incident if count ==0 & treatment
==1
        **effect across salary distribution
        if `control_time'==5 matrix results = J(81,5,.) // matrix
to capture results
        local n = `control_time'
        gen post = count >=0
        replace count = count+6
        local v =0
        qui{
                 forvalue t= 0(14932)1045240{
                          local top = 42
                          local v =1+`v'
                          if `n' ==5 matrix results[`v',1]= `t'
                          gen D = personindk <=`t'</pre>
                          reg D treat i.treatment i.post i.edu
i.alder i.female i.time, cl(pnr)
                          matrix V = e(V)
                          matrix b = e(b)
                          matrix results[`v',2]
                                                   = b[1,1]
                          margins, at(treat= (0 1) treatment=1
post=1)
                          matrix results [v', 5] = V[1,1]^{.5}
                          matrix M = r(b)
                                                   = M[1,2] //
                          matrix results[`v',4]
                          matrix results[`v',3]
                                                  = M[1,1] //
                          drop D
                 }
        }
}
svmat results
gen 15 = results2 - 1.96 * results5
gen u5 = results2+1.96*results5
replace results1 = results1/7466
gen dif6 = results4-results3
gen udif6 = u5
gen ldif6 = 15
```

))
') ///
0)
g1)
'/

BMJ Open

1 2 3

4

5

6

7

8

9 10

11 12

18

19

20

21

22

23

24

25

26 27 28

29

30 31

32

33

34 35

36 37

38

39

40

41

42

43 44

45

46

47

48

49

50

51 52 53

54

55

56

57

58

59

60

xti("Total Income in 1K Euro (X)") scale(1) /// yti("Effect of Concussion on Pr(Total Income < X)") ///</pre> legend(label(1 "95% CI") /// label(2 "Effect of concussion") /// c(1) order(2 1) pos(6) size(small) /// symx(4) region(lc(white))) , name(g2) ,graphr(c(white)) graph combine g1 g2 graph export "[home]\highdef\figure s2.tif", replace width(1000) ***** ** Effects across the salary distribution ** ** ** ** ****** forvalue control_time=5/5{ local end = 2012 // last incident year in data **build dataset for joint estimate across years forvalue count=2003/`end'{ if `count'==2003{ use \$data/ sample_control_`count'_`control_time'.dta, clear gen time = `count' //incident year indicator } else append using \$data/ sample_control_`count'_`control_time'.dta replace time = `count' if time ==. **exclude individuals in years where they do not appear in data, **due to either death or migration, as well as periods from when **the control group sufer their concussion drop if merge ==1 | count > `control_time'-1 } gen female = koen==2qui{ gen edu =0 replace edu = 1 if inrange(hffsp,20000000,39000000) | /// (hffsp >40000000 & hffsp!=.)

4 5

6

7

8

9 10

11

12

13 14 15

16

17 18

19

21

23

25

27

29

31

32

33

34 35

37

39

41

42

43

45

46

47

48

49

50

51

53

55

```
}
                   //build ident, so we can multivariate cluster for
           individuals
                   //who occur both as control and exposure during the period
           (id)
                   bysort pnr time: gen helpx = _n ==1
                   gen id= sum(helpx)
                   drop helpx
                   **generate concussion variable
                   gen treat = inrange(count,0,`control_time'-1) & treatment
           ==1
                    replace treat = time_from_incident if count ==0 & treatment
20
           ==1
22
                   **effect across salary distribution
                   if `control_time'==5 matrix results = J(81,5,.) // matrix
24
           to capture results
26
                   local n = `control_time'
                   gen post = count >=0
28
                    replace count = count+6
                    local v =0
30
                   **Estimate Pr(salary < X) across income distribution</pre>
                   qui{
                            forvalue t= 0(14932)895950{
                                     local top = 42
36
                                     local v =1+`v'
                                     if `n' ==5 matrix results[`v',1]= `t'
38
                                     gen D = loenmv <=`t'
                                     reg D treat i.treatment i.post i.edu
40
           i.alder i.female i.time, cl(pnr)
                                     matrix V = e(V)
                                     matrix b = e(b)
                                     matrix results[`v',2]
                                                              = b[1,1]
44
                                     margins, at(treat= (0 1) treatment=1
           post=1)
                                     matrix results[`v',5]
                                                               = V[1,1]^{.5}
                                     matrix M = r(b)
                                     matrix results[`v',4]
                                                               = M[1,2] //
                                     matrix results[`v',3]
                                                               = M[1,1] //
                                     drop D
                            }
52
                   }
54
           }
56
           svmat results
58
           *Generate 95% confidence intervals
59
           gen 15 = results2 - 1.96 * results5
60
```

BMJ Open

1 2 3

4 5

6

7 8

9

10

11

12

13 14

15

16 17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35 36

37 38

39 40

41

42

43

44

45

46

47

48

49

50

51

52 53

54

55

56 57

58

59

```
gen u5 = results2+1.96*results5
*Correct to €
replace results1 = results1/7466
*Obtain difference between observed and counterfactual wage
distribution
gen dif6 = results4-results3
gen udif6 = u5
gen ldif6 = 15
gr two rline udif6 ldif6 results1, ///
        yaxis(2) color(gray) lp(dash) ysc(range(-.006 .04) axis(2))
|| ///
        line dif6 results1, yaxis(2) yline(0, axis(2)) ///
        lcolor(black) ylab(0(.01).0325) ysc(range(-.006 .04)
axis(2)) || ///
        line results4 results1, yaxis(1) lcolor(red) || ///
        line results3 results1, yaxis(1) lcolor(blue) ///
         ysc(range(0 1)) ylab(0(.1)1, nogrid) xlab(0(10)120)
xsc(range(0 120)) ///
        ysize(10) xsize(12) graphr(c(white)) ///
        xti("Salary in 1K Euro") scale(1) ///
        yti("Effect of Concussion on Pr(Salary < X)", axis(2)) ///</pre>
        yti("{&Phi}(Salary)", axis(1)) ///
        legend( ///
        label(2 "Effect of concussion (left axis)") ///
        label(3 "Concussion salary distribution (right axis)") ///
        label(4 "Counterfactual salary distribution (right
axis)") ///
        c(1) order(2 3 4) pos(6) size(small) ///
                           symx(4) region(lc(white)))
cap graph drop g1 g2
gr two ///
        line results4 results1, yaxis(1) lcolor(red) || ///
        line results3 results1, yaxis(1) lcolor(blue) ///
         ysc(range(.2 1)) ylab(0.2(.1)1) xlab(0(10)120,
labs(small)) ///
         xsc(range(0 120)) ///
        ysize(10) xsize(10) graphr(c(white)) ///
        xti("Salary in 1K Euro") scale(1) ///
        yti("Cumulative Distribution of Salary", axis(1)) ///
        legend( ///
        label(1 "Observed Post-Concussion Salary Distribution") ///
        label(2 "Counterfactual No-Concussion Salary
Distribution") ///
        c(1) order(1 2 4) pos(6) size(small) ///
                           symx(4) region(lc(white))) , name(g1)
gr two rline udif6 ldif6 results1, ///
        color(gray) lp(dash) ysc(range(-.002 .035)) || ///
        line dif6 results1, yline(0) ///
```

4

5

6

7

8

9

10

11

12

13 14

16

17 18 19

21

23

24 25

27

31

35

37

39

41

43

45

47

48

49

51

54

56

```
lcolor(black) ylab(0(.01).0325) ysc(range(-.002 .
           035)) ///
                   xlab(0(10)120, labs(small)) xsc(range(0 120))
                                                                        111
                   ysize(10) xsize(10) graphr(c(white)) ///
                   xti("Salary in 1K Euro (X)") scale(1) ///
                   yti("Effect of Concussion on Pr(Salary < X)") ///</pre>
                            legend( label(1 "95% CI") ///
                    label(2 "Effect of concussion") ///
                   c(1) order(2 1) pos(6) size(small) ///
                                      symx(4) region(lc(white))) , name(q2)
           graph combine g1 g2
                                     ,graphr(c(white))
15
           graph export "[home]\highdef\figure 3.tif", replace width(1000)
20
22
           **ESTIMATE SICK LEAVE
           forvalue control time=1/5{
26
                    local end = 2012 // last incident year in data
                   if `control_time' ==1
                                             eststo clear
28
29
                   **build dataset for joint estimate across years
30
                   forvalue count=2003/`end'{
                            if `count'==2003{
32
                                     use $data/
33
           sample_control_`count'_`control_time'.dta, clear
34
                                     gen time = `count' //incident year
36
           indicator
                            }
38
                            else append using $data/
           sample_control_`count'_`control_time'.dta
40
                            replace time = `count' if time ==.
42
                            **exclude individuals in years where they do not
           appear in data,
44
                            **due to either death or migration, as well as
           periods from when
46
                            **the control group sufer their concussion
                            drop if merge ==1 | count > `control_time'-1
                   }
50
                   merge m:1 pnr t using $data/temp.dta, keep(1 3) nogen
                    replace share = 0 if share==.
52
53
                   gen female = koen==2
55
                   //build ident, so we can multivariate cluster for
           individuals
58
                   //who occur both as control and exposure during the period
59
           (id)
60
```

5

6

7 8 9

10

11

12

13

14

15

16 17

18 19 20

21

22

23

24

25 26

27

28

29

30

31 32

33

34 35

36

37

38

39

40

41 42

43

44

45

46 47

48 49

50

51

52 53

54

55

56

57

```
bysort pnr time: gen helpx = _n ==1
        gen id= sum(helpx)
        drop helpx
        **Generate educational groups
        qui{
                 gen edu =0
                 replace edu = 1 if inrange(hffsp, 20000000, 39000000)
| ///
                                                             (hffsp
>40000000 & hffsp!=.)
        }
        **Calculate number of observations for exposure and control
        count if count==0 & treatment ==1
        local Ntreated = r(N)
        count if count==0 & treatment ==0
        local Ncontrol = r(N)
        **generate concussion variable
        gen treat = inrange(count,0,`control_time'-1) & treatment
==1
         replace treat = time_from_incident if count ==0 & treatment
==1
        **Generate pre-concussion income difference
                                                             for
        **use in calculating marginal effects
        sum loenmv if count <0 & treatment ==0</pre>
        local control =r(mean)
        sum loenmv if count <0 & treatment ==1</pre>
        local treat =r(mean)
        sum loenmv if count>=0 & treatment ==0
        local control_post =r(mean)
        forvalue t=-4/4{
                 local n = t'*-1
                 if `t' < -1 gen T `n' = treatment ==1 & count ==`t'
                 if `t' > -1 gen T`t' = treatment ==1 & count ==`t'
        }
        **estimate DiD model on salary
        reghdfe share T*, abs(alder female count time treatment
edu) cl(pnr id)
        eststo est1 `control time'
        if `control_time'==1 matrix results = J(5,5,.) // matrix to
capture results
        if `control_time'==1 matrix results_p = J(5,5,.) // matrix
to capture results
```

4

5

6 7

8

9

10

11

12

13

14 15

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34 35 36

37

38

39

40

41 42

43 44

45

46

47

48 49

50

51

52 53

54 55

56 57

58

59

```
matrix b = e(b)
        matrix V = e(V)
        local n = `control_time'
        matrix results[`n',1]
                                  = b[1,1] / 7466 // capture beta
results as 1K Euro
        matrix results[`n',2]
                                  = (V[1,1]^{.5})/7466
                                                            //
capture standard error as 1K Euro
        matrix results[`n',3]
                                  =
                                           b[1,1]/(`control_post'-
(`control'-`treat'))
        matrix results[`n',4]
                                           `n'
                                  =
        gen no_share = share >0 //dummy for no salary
        **Generate pre-concussion probability difference
                                                            for
        **use in calculating marginal effects
        sum no_share if count <0 & treatment ==0</pre>
        local control =r(mean)
        sum no_share if count <0 & treatment ==1</pre>
        local treat =r(mean)
        sum no share if count>=0 & treatment ==0
        local control_post =r(mean)
        **estimate DiD LP-model on P(salary=0)
        xi: reghdfe no_share T*, abs(alder female count time
treatment edu) cl(pnr id)
        eststo est2_`control_time'
        matrix b = e(b)
                        //regression coefficient
        matrix V = e(V) // standard error^2
        matrix results_p[`n',1]
                                           b[1,1]
                                  =
        matrix results_p[`n',2]
                                           V[1,1]^.5
                                  =
        matrix results_p[`n',3]
                                  =
                                           b[1,1]/(`control_post'-
(`control'-`treat'))
                                           `n'
        matrix results_p[`n',4]
                                  =
}
esttab est1 * using [home]/tables/dynamic share1.rtf, ///
        replace se(3) b(3) compress nogap star(+ .1 * .05 ** .01
*** .001) ///
        keep(T*)
esttab est2_* using [home]/tables/dynamic_share2.rtf, ///
        replace se(3) b(3) compress nogap star(+ .1 * .05 ** .01
*** .001) ///
        keep(T*)
**ESTIMATE SICK LEAVE
forvalue control_time=1/5{
        local end = 2012 // last incident year in data
        if `control_time' ==1 eststo clear
```

(hffsp

gen time = `count' //incident year

use \$data/

2 3 4 **build dataset for joint estimate across years 5 forvalue count=2003/`end'{ 6 if `count'==2003{ 7 8 sample_control_`count'_`control_time'.dta, clear 9 10 indicator 11 } 12 else append using \$data/ 13 sample_control_`count'_`control_time'.dta 14 replace time = `count' if time ==. 15 16 17 **exclude individuals in years where they do not 18 appear in data, 19 **due to either death or migration, as well as 20 periods from when 21 **the control group sufer their concussion 22 drop if merge ==1 | count > `control_time'-1 23 } 24 25 merge m:1 pnr t using \$data/temp2.dta, keep(1 3) nogen 26 replace syg_barsel_13= 0 if syg_barsel_13==. 27 28 gen female = koen==2 29 30 //build ident, so we can multivariate cluster for 31 individuals 32 //who occur both as control and exposure during the period 33 (id) 34 35 36 bysort pnr time: gen helpx = _n ==1 37 gen id= sum(helpx) 38 drop helpx 39 40 41 **Generate educational groups 42 qui{ 43 gen edu =0 44 replace edu = 1 if inrange(hffsp, 20000000, 39000000) 45 | /// 46 47 >40000000 & hffsp!=.) 48 } 49 50 51 **Calculate number of observations for exposure and control 52 53 count if count==0 & treatment ==1 54 local Ntreated = r(N)55 count if count==0 & treatment ==0 56 local Ncontrol = r(N)57 58 **generate concussion variable 59 gen treat = inrange(count,0,`control_time'-1) & treatment 60

```
2
3
           ==1
4
                    replace treat = time_from_incident if count ==0 & treatment
5
           ==1
6
7
                    **Generate pre-concussion income difference
                                                                          for
8
                    **use in calculating marginal effects
9
                    sum loenmv if count <0 & treatment ==0</pre>
10
                    local control =r(mean)
11
                    sum loenmv if count <0 & treatment ==1</pre>
12
                    local treat =r(mean)
13
                    sum loenmy if count>=0 & treatment ==0
14
                    local control post =r(mean)
15
16
                    forvalue t=-4/4{
17
18
                             local n = t'*-1
19
                             if `t' < -1 gen T_`n' = treatment ==1 & count ==`t'</pre>
20
                             if `t' > -1 gen T`t' = treatment ==1 & count ==`t'
21
22
                    }
23
24
                    **estimate DiD model on salary
25
                    reghdfe syg_barsel_13 T*, abs(alder female count time
26
           treatment edu) cl(pnr id)
27
                    eststo est1_`control_time'
28
                    if `control_time'==1 matrix results = J(5,5,.) // matrix to
29
           capture results
30
                    if `control_time'==1 matrix results_p = J(5,5,.) // matrix
31
           to capture results
32
33
34
                    matrix b = e(b)
35
36
                    matrix V = e(V)
37
                    local n = `control_time'
38
39
                    matrix results[`n',1] = b[1,1] / 7466 // capture beta
40
           results as 1K Euro
41
                    matrix results[`n',2]
                                               = (V[1,1]^{.5})/7466
                                                                          11
42
           capture standard error as 1K Euro
43
                    matrix results[`n',3]
                                               =
                                                        b[1,1]/(`control_post'-
44
           (`control'-`treat'))
45
                    matrix results[`n',4]
                                                        `n'
                                               =
46
47
48
49
50
                    **Generate pre-concussion probability difference
                                                                          for
51
                    **use in calculating marginal effects
52
53
54
                    **estimate DiD LP-model on P(salary=0)
55
                    xi: reghdfe kont_dag T*, abs(alder female count time
56
           treatment edu) cl(pnr id)
57
                    eststo est2_`control_time'
58
                    matrix b =e(b)
                                    //regression coefficient
59
                    matrix V = e(V) // standard error<sup>2</sup>
60
```
```
matrix results_p[`n',1]
                                        b[1,1]
                               =
       *matrix results_p[`n',2] =
l'-`treat'))
        matrix results_p[`n',2] =
                                        V[1,1]^.5
                                        b[1,1]/(`control_post'-
(`control'-`treat'))
                                        `n'
       matrix results_p[`n',4]
                                =
}
esttab est1 * using [home]/tables/dynamic sickpay1.rtf, ///
        replace se(3) b(3) compress nogap star(+ .1 * .05 ** .01
*** .001) ///
        keep(T*)
esttab est2_* using [home]/tables/dynamic_welfare2.rtf, ///
        replace se(3) b(3) compress nogap star(+ .1 * .05 ** .01
*** .001) ///
        keep(T*)
```

Supplemental results

tor beet terren on

Table S1. Test of parallel trends assumption pre-exposure incident against each control group separately using eq. S3 in supplementary methods. Separate exposure dummies for all time periods (except the year prior to exposure, which serves as reference period).

Time to exposure group's concussion (exposure)	Δ=1 Est (S.E.) p-value	Δ=2 Est (S.E.) p-value	Δ=3 Est (S.E.) p-value	Δ=4 Est (S.E.) p-value	Δ=5 Est (S.E.) p-value
Exposure-4y	-0.368	0.046	0.120	0.159	0.042
	(0.226)	(0.363)	(0.362)	(0.313)	(0.329)
	p=.104	p=.900	p=.741	p=.612	p=.899
Exposure-3y	-0.094	0.227	0.167	0.537	0.113
	(0.317)	(0.510)	(0.354)	(0.372)	(0.393)
	p=.768	p=.656	p=.637	p=.148	p=.774
Exposure-2y	-0.548	-0.082	-0.163	-0.124	0.082
	(0.312)	(0.347)	(0.236)	(0.247)	(0.250)
	p=.079	p=.812	p=.491	p=.617	p=.744
Exposure-1y	Ref.	Ref.	Ref.	Ref.	Ref.
N*T	284115	273725	266120	260647	256337

Note: The table shows test for differences in pre-exposure trends between exposure and control group model using interactions between pre-exposure time dummies and the exposure indicator. There is no indication of substantial or significant pre-exposure differences in salary trajectories between exposure group and any of the control groups.

Table S2. Effect of concussion on different labor market outcome parameters using separate exposure dummies for all time periods (except the year prior to exposure, which serves as reference period): In this exploratory analysis, the exposure group is compared to the control group Δ =5, which suffers a concussion five years after the exposure group. Outcomes include annual salaried income (annual salary), total annual income (total income), annual sick leave benefits received (sick leave benefits) as well as a binary indicator of employment (probability of employment). Monetary outcomes were measured at 2015-level in \in 1,000.

Time to exposure group's concussion (exposure)	Annual Salary Est. (S.E.) p-value	Total income Est. (S.E.) p-value	Sick leave benefits Est. (S.E.) p-value	Probability of employment Est. (S.E.) p-value
Exposure-4y	0.012	0.164	0.035	0.001
	(0.212)	(0.173)	(0.036)	(0.004)
	p=.954	p=.343	p=.320	p=.803
Exposure-3y	0.059	0.305	0.022	-0.001
	(0.252)	(0.233)	(0.034)	(0.003)
	p=.814	p=.190	p=.529	p=.739
Exposure-2y	0.043	0.122	0.002	0.001
	(0.160)	(0.147)	(0.029)	(0.003)
	p=.788	p=.405	p=.946	p=.739
Exposure-1y				
Exposure	-0.611	-0.338	0.166	-0.003
I	(0.168)	(0.140)	(0.030)	(0.003)
	p<.001	0.016	p<.001	p=.317
Exposure+1v	-1.389	-0.608	0.288	-0.020
I J	(0.209)	(0.162)	(0.039)	(0.003)
	p<.001	p<.001	p<.001	p<.001
Exposure+2v	-1.568	-0.847	0.132	-0.023
1 1	(0.261)	(0.231)	(0.039)	(0.004)
	p<.001	p<.001	p=.001	p<.001
Exposure+3v	-1.393	-0.497	0.031	-0.022
± v	(0.246)	(0.219)	(0.040)	(0.004)
	p<.001	p=.023	p=.432	p<.001
Exposure+4v	-1.319	-0.499	-0.076	-0.018
± v	(0.253)	(0.218)	(0.042)	(0.004)
	p<.001	p=.022	p=.075	p<.001
N*T	577762	577758	577872	577872

Note: Annual salary include all income from salary and employee fringe benefits, employee stock options, employer paid sick leave, net gains (including interests and capital gains) from own companies. Total income includes all income absent wealth. Sick leave includes only public health benefits (sick leave and paternity leave). Employment is a binary indicator measured last week of November for each year. Results obtained from estimations following Eq. (1). Models include controls for high school diploma, gender, age, and observation year. Results obtained using reghtfe in Stata. Total number of observations (N*T) differ slightly between outcomes because all income information is not available for all observation all years.

Source: Own calculations on data from Statistics Denmark.

Table S3. Demographic factors for exposure group and control groups (Δ =1, 2, 3, 4, 5) averaged over the 5 years leading up to the concussion event in each of the groups. Factors include patient age (in years), share of sample female (1=100% female), and share of individuals with at least a high school degree (1=100%).

		Exposure	Control, ∆=1	Control, ∆=2	Control, ∆=3	Control, ∆=4	Control, ∆=5
	Mean	.430	.438	.447	.458	.464	.473
Pr(Female=1)	S.D.	(.495)	(.496)	(.497)	(.498)	(.499)	(.499)
	p-value		.030	< 001	< 001	< 001	< 001
	Mean	36.899	37.354	37.754	38.065	38.343	38.592
Age	S.D.	(11.856)	(11.857)	(11.718)	(11.630)	(11.584)	(11.491)
	p-value		<.001	<.001	<.001	<.001	<.001
	Mean	.624	.632	.640	.646	.653	.660
Pr(High school=1)	S.D.	(.484)	(.482)	(.480)	(.478)	(.476)	(.474)
	p-value		.026	<.001	<.001	<.001	<.001
Total individuals		37848	34551	31851	29922	28580	27484

Note: S.D.: Standard deviation. P-values calculated using two-sided t-tests. All test performed between exposure group and each control group separately.

Figure S1. Unnormalized Average Salary for Treatment and Control Groups Measured in 1K € at 2015-levels

Note: Salary of the exposure group compared to salary of the 5 control groups, who experienced their concussions $\Delta = \{1, 2, 3, 4, \text{ and } 5\}$ years later than the exposure group. Salary progression is shown for the 5 years before and the 5 years after the exposure group suffered a concussion event. Table SI demonstrates that the trends for salary progression pre-exposure incident are parallel between exposure group and each control group.

Figure S2. (Left Panel)The Cumulative Distribution for Total Income Post-Treatment among the Treatment Group and Their Counterfactual, and (Right Panel) the Difference between the Two CDFs Expressed as the Effect of Concussion on the Probability of Total Income Below that Income-Level Expressed on the X-Axis following Exposure Event.

Note: The figure shows the observed cumulative salary distribution following a concussion (red) and the expected counterfactual salary distribution absent the concussion (blue). The black line shows the difference between the observed and the counterfactual distribution, and the grey dash lines show the 95 % confidence interval. The bell-shape of the difference between the two distributions as the total income increase from 0 to 40,000 \in indicates that the main part of the effect of concussions on total incomes is driven by low-income people shifting total income downwards following concussion, but not going to total income equal to zero.

Note: Relative salary drop of the exposure group compared to the control groups, who suffer a concussion 1, 2, 3, 4, and 5 years after the exposure group. Relative salary changes are shown across different age groups. Graph shows parameter estimates and 95% CI.

Figure S4. Percentage Effect of Concussion on Relative Salary Across High School Completion.

Note: Relative salary drop of the exposure group compared to the control groups, who suffer a concussion 1, 2, 3, 4, and 5 years after the exposure group. Relative salary changes are shown across whether individuals had obtained at least a high school diploma (ISCED > 2). Graph shows parameter estimates and 95% CI.

Note: Relative salary drop of the exposure group compared to the control groups, who suffer a concussion 1, 2, 3, 4, and 5 years after the exposure group. Relative salary changes are shown across gender. Graph shows parameter estimates and 95% CI.

Figure S6. Effect of Concussion on Absolute Salary in 1K Euro Across Age groups.

Note: Absolute salary drop of the exposure group compared to the control groups, who suffer a concussion 1, 2, 3, 4, and 5 years after the exposure group. Absolute salary changes are shown across different age groups. Graph shows parameter estimates and 95% CI.

Note: Absolute salary drop of the exposure group compared to the control groups, who suffer a concussion 1, 2, 3, 4, and 5 years after the exposure group. Absolute changes in salary are shown across whether individuals had obtained at least a high school diploma (ISCED > 2). Graph shows parameter estimates and 95% CI.

Figure S8. Effect of Concussion on Absolute Salary in 1K Euro Across Gender.

Note: Absolute salary drop of the exposure group compared to the control groups, who suffer a concussion 1, 2, 3, 4, and 5 years after the exposure group. Absolute changes in salary are shown across gender. Graph shows parameter estimates and 95% CI.

BMJ Open

	Item No.	STROBE items	Location in manuscript where items are reported	RECORD items	Location in manuscript where items are reported
Title and abstra	ct	1	1	-	-
	1	(a) Indicate the study's design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced	title abstract	RECORD 1.1: The type of data used should be specified in the title or abstract. When possible, the name of the databases used should be included.	title abstract
		summary of what was done and what was found		RECORD 1.2: If applicable, the geographic region and timeframe within which the study took place should be reported in the title or abstract.	title abstract
			1º1/0	RECORD 1.3: If linkage between databases was conducted for the study, this should be clearly stated in the title or abstract.	abstract
Introduction			-		_
Background rationale	2	Explain the scientific background and rationale for the investigation being reported	abstract introduction	0/1	
Objectives	3	State specific objectives, including any prespecified hypotheses	introduction		
Methods			•		
Study Design	4	Present key elements of study design early in the paper	introduction		
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	materials and methods		

Participants	6	(a) Cohort study - Give the	materials and	RECORD 6.1: The methods of study	materials and
1 al tio ip al to	Ũ	eligibility criteria and the	methods	population selection (such as codes or	methods
		sources and methods of selection	methous	algorithms used to identify subjects)	methous
		of participants Describe		should be listed in detail. If this is not	
		methods of follow-up		nossible an explanation should be	
		Case control study Give the		possible, an explanation should be	
		cuse-control study - Give the		provided.	
		eligibility chiefia, and the		DECORD (2) Any validation studios	materials and
		sources and methods of case		RECORD 6.2. Any validation studies	materials and
		ascertainment and control		of the codes of algorithms used to	methods
		selection. Give the rationale for		select the population should be	
		the choice of cases and controls		referenced. If validation was conducted	
		Cross-sectional study - Give the		for this study and not published	
		eligibility criteria, and the		elsewhere, detailed methods and results	
		sources and methods of selection		should be provided.	
		of participants			
				RECORD 6.3: If the study involved	not included
		(b) Cohort study - For matched		linkage of databases, consider use of a	
		studies, give matching criteria		flow diagram or other graphical display	
		and number of exposed and		to demonstrate the data linkage	
		unexposed		process, including the number of	
		<i>Case-control study</i> - For		individuals with linked data at each	
		matched studies, give matching		stage.	
		criteria and the number of		1.	
		controls per case			
Variables	7	Clearly define all outcomes,	materials and	RECORD 7.1: A complete list of codes	materials and
		exposures, predictors, potential	methods	and algorithms used to classify	methods
		confounders, and effect	main text	exposures, outcomes, confounders, and	
		modifiers. Give diagnostic		effect modifiers should be provided. If	
		criteria, if applicable.		these cannot be reported, an	
				explanation should be provided.	
Data sources/	8	For each variable of interest,	materials and		
measurement		give sources of data and details	methods		
		of methods of assessment			
		(measurement).			
		Describe comparability of			
		assessment methods if there is			
		more than one group			

Bias	9	Describe any efforts to address potential sources of bias	materials and methods and results		
Study size	10	Explain how the study size was arrived at	materials and methods		
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	materials and methods		
Statistical methods	12	 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) <i>Cohort study</i> - If applicable, explain how loss to follow-up was addressed <i>Case-control study</i> - If applicable, explain how matching of cases and controls was addressed <i>Cross-sectional study</i> - If applicable, describe analytical methods taking account of sampling strategy (e) Describe any sensitivity analyses 	a) materials and methods b) materials and methods c) materials and methods d-e) NA	r M	
Data access and cleaning method	s			RECORD 12.1: Authors should describe the extent to which the investigators had access to the database population used to create the study population.	materials and methods materials and methods

Linkage				RECORD 12.2. Authors should provide information on the data cleaning methods used in the study. RECORD 12.3: State whether the study included person-level, institutional-level, or other data linkage across two or more databases. The methods of linkage and methods of linkage quality evaluation should be provided	materials and methods
Results				provided.	
Participants	13	 (a) Report the numbers of individuals at each stage of the study (<i>e.g.</i>, numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed) (b) Give reasons for non- participation at each stage. (c) Consider use of a flow diagram 	(a-c) materials and methods	RECORD 13.1: Describe in detail the selection of the persons included in the study (<i>i.e.</i> , study population selection) including filtering based on data quality, data availability and linkage. The selection of included persons can be described in the text and/or by means of the study flow diagram.	materials and methods
Descriptive data	14	 (a) Give characteristics of study participants (<i>e.g.</i>, demographic, clinical, social) and information on exposures and potential confounders (b) Indicate the number of participants with missing data for each variable of interest (c) <i>Cohort study</i> - summarise follow-up time (<i>e.g.</i>, average and total amount) 	 a) materials and methods and Supplementary Table S3 b) materials and methods, Table 1 c) materials and methods 	201	
Outcome data	15	Cohort study - Report numbers of outcome events or summary measures over time Case-control study - Report numbers in each exposure	materials and methodsand Supplementary Table S3, results		

		of exposure <i>Cross-sectional study</i> - Report numbers of outcome events or summary measures			
Main results	16	 (a) Give unadjusted estimates and, if applicable, confounder- adjusted estimates and their precision (e.g., 95% confidence interval). Make clear which confounders were adjusted for and why they were included (b) Report category boundaries when continuous variables were categorized (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period 	a) results b) results c) results		
Other analyses	17	Report other analyses done— e.g., analyses of subgroups and interactions, and sensitivity analyses	results		
Discussion					
Key results	18	Summarise key results with reference to study objectives	results and discussion	051	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	results and discussion	RECORD 19.1: Discuss the implications of using data that were not created or collected to answer the specific research question(s). Include discussion of misclassification bias, unmeasured confounding, missing data, and changing eligibility over time, as they pertain to the study being reported.	NA
Interpretation	20	Give a cautious overall interpretation of results considering objectives	discussion		

		limitations, multiplicity of analyses, results from similar studies, and other relevant evidence			
Generalisability	21	Discuss the generalisability (external validity) of the study results	discussion		
Other Informatio	n				
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Title page		
Accessibility of protocol, raw data, and programming code			Reference to supplementary data throughout the text	RECORD 22.1: Authors should provide information on how to access any supplemental information such as the study protocol, raw data, or programming code.	materials and methods

*Reference: Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, Sørensen HT, von Elm E, Langan SM, the RECORD Working Committee. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) Statement. PLoS Medicine 2015; ense. in press.

*Checklist is protected under Creative Commons Attribution (CC BY) license.

BMJ Open

The Effect of Concussion on Salary and Employment-A Population-Based Event Time Study using a Quasi-Experimental Design

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-038161.R2
Article Type:	Original research
Date Submitted by the Author:	10-Sep-2020
Complete List of Authors:	Fallesen, Peter; Stockholm University, Swedish Institute for Social Research Campos, Benito; Heidelberg University Hospital Department of Neurosurgery; Technical University of Denmark, Department of Health Tech
Primary Subject Heading :	Public health
Secondary Subject Heading:	Neurology
Keywords:	HEALTH ECONOMICS, Neurosurgery < SURGERY, Trauma management < ORTHOPAEDIC & TRAUMA SURGERY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3		
4 5	1	The Effect of Concussion on Salary and Employment-A Population-Based Event Time
6	2	Study using a Quasi-Experimental Design
7 8	3	
9		
11	4	^{1,2} Peter Fallesen, PhD, ^{3,4} Benito Campos, M.D.
12 13 14	5	
15	6	¹ Swedish Institute for Social Research, Stockholm University, SE-106 91 Stockholm, Sweden
16 17	7	² ROCKWOOL Foundation, Ny Kongensgade 6, DK-1472 Copenhagen C, Denmark
18	8	³ Department of Neurosurgery, University of Heidelberg, INF400, 69120 Heidelberg, Germany
19 20	9	⁴ Department of Health Tech, Technical University of Denmark, DK-2800 Kongens Lyngby,
21	10	Denmark
22 23	11	
24	12	Address of Correspondence: Peter Fallesen, Swedish Institute for Social Research,
25 26	13	Stockholm University, SE-106 91 Stockholm, Sweden, peter.fallesen@sofi.su.se,
27	14	+4561333184
28 29	15	
30	16	Keywords: administrative data; concussion; income; productivity
31 32 33	17	Abstract word count: 245
34 35	18	Text word count: 3989 (excluding references and figure/table legends)
36 37	19	Number of references: 21
38 39	20	Number of tables and/or figures: 2 tables and 4 figures
40 41	21	Number of videoc: 0
42	21	
43 44	22	
45	23	
46 47	24	
48		
49 50		
51		
52 53		
54		
55 56		1
57 50		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

59

60

BMJ Open

2 3		
4 5	25	Abstract
6 7 8	26	Objective: Concussions are the most frequent traumatic brain injuries. Yet, the socio-economic
9 10	27	impact of concussions remains unclear. Socio-economic effects of concussions on working age
11 12	28	adults were studied on a population scale.
13 14 15	29	Design: This population-based, event time study uses administrative data as well as hospital
16 17	30	and emergency room records for the population of Denmark.
18 19 20	31	Setting: We study all Danish patients, aged 20-59 y, who were treated at a public hospital or
20 21 22	32	at an emergency room between 2003-2017 after suffering a concussion without other
23 24	33	intracranial or extracranial injuries (n=55,424 unique individuals). None of the patients had a
25 26 27	34	prior diagnosis of intra- or extracranial injuries within the past ten years leading up to the
28 29	35	incident.
30 31	36	Primary and Secondary Outcome Measures: As primary endpoint, we investigate the mean
32 33 34	37	effect of concussion on annual salaried income within a five-year period after trauma. In an
35 36	38	exploratory analysis, we study whether the potential impact of concussion on annual salaried
37 38	39	income is driven by patient age, education, or economic cycle.
39 40 41	40	Results: Concussion was associated with an average change in annual salary income of -
42 43	41	1,223€ (95% CI, -1,540€; -905€, p<.001) corresponding to a salary change of -4.2 % (95% CI,
44 45	42	-5.2 %; -3.1 %). People between 30-39 y and those without high school degrees suffered the
46 47 48	43	largest salary decreases. Affected individuals leaving the workforce drove the main part of the
49 50	44	decrease. Absolute annual effect sizes were countercyclical to the unemployment rate.
51 52	45	Conclusions: Concussions have a large and long-lasting impact on salary and employment of
53 54 55	46	working-age adults on a nationwide scale.
56 57		2
58		

17		
47	Stre	noths and limitations of this study
49	-	Natural experiments used to obtain plausible causal effects between concussion and
-		
50		salary/employment.
51	-	Large, population-based sample with multiple data layers.
52	-	Analysis includes how economic cycles affect outcome measures.
53	-	Data only captures concussions registered in ERs and hospitals.
54	-	Because concussions do not occur at random, causal estimate relies on stronger
55	3	essumptions than for a randomized control trial.
	47 48 49 50 51 52 53 54 55 56	 47 48 50 51 52 53 55 56

ן ר	
2 3	
4	~
5	3
б	_
7	5
8	
9	5
10	
11 12	6
12 13	
14	6
15	
16	6
17	
18	6
19	Ũ
20	6
21	U
22 วว	6
25 74	0
25	6
26	0
27	
28	6
29	
30	6
31	
32	6
33	
34 25	7
35	
37	7
38	,
39	7
40	1
41	7
42	'
43	7
44 4 -	/
45 46	7
40 47	/
48	_
49	1
50	_
51	7
52	
53	7
54	
55	
00 57	
57 58	
50	

57 Introduction

8 Concussions are by far the most frequently occurring intracranial injuries affecting 9 approximately 450 to 600 per 100,000 people every year[1]. Immediate symptoms may last 0 for days or weeks. Further, Danish cohort data[2] indicates that 10-15% of patients diagnosed 1 with concussion suffer from long-term symptoms such as headache, fatigue, and intolerance to 2 stress, whereas other studies place the upper bound as high as 30%[3,4]. Clinical practice has 3 encouraged patients to restrict social, mental, and physical activity in the weeks following a 4 concussion (see[5] for review), although prolonged inactivity may prolong symptoms. Thus, 5 symptoms, comorbidities, and suggested treatment are associated with short- to long-term 6 absence from work and lower productivity.

7 Yet, the causal effect of concussion on economic burdens for individuals and society through 8 decreased labour market activity has not been identified. First, concussion is a sudden incident 9 and thus not amenable to prospective study nor randomization. Cohort and case-control 0' studies[6–10] provide some valuable evidence on employment and labour market outcomes 1 among those who suffered concussions but are prone to selection bias. Individuals at high risk 2 of concussions may differ on unobserved characteristics (e.g., risk aversion, routine activities) '3 from those at low risk. People who are more likely to suffer concussions may also, on average, '4 have more precarious or unstable employment trajectories prior to the incident, which may '5 further bias prospective studies. Given the high incidence rate of concussion, even small losses 6 of productivity and discrete drops in employment would have a significant socioeconomic 7 impact and thus, it would require large patient cohorts with suitable controls to grasp the full 8 socioeconomic impact of concussions. Thus, absent the possibility of randomization, using a

4

natural or quasi-experimental design is the only likely option to parse out the *causal* effect of
 concussions on labour market activity.[11]

We examine how concussions affect salary and employment of working age individuals in Denmark, a representative north-European industrial nation with a strong welfare state and a flexible labour market. We use administrative longitudinal data linked to hospital and emergency room diagnostic data on all Danes, who received a primary diagnosis of concussion between 2003 and 2017. To address the problem of unmeasured bias between those that do and do not experience a concussion, we use a quasi-experimental event-study approach[12,13] where we compare similar individuals, who experienced their concussions at different time points. Under mild assumptions of parallel trends in wage progression prior to concussion and random timing of concussion event within a five-year time frame, the approach recovers a robust estimation of the effect of concussion on annual salary and employment status.

ו כ		
2 2		
5 4		~
5		9
6		
7		9
8		
9		9,
10		<i>.</i>
11		0
12		9.
13		~
14		9
15		
10		9'
1/ 10		
10		9
20		
20		9
22		-
23	1	0
24	T	U
25	1	Λ
26	I	U
27		
28	1	0
29		
30	1	0
31		
32	1	04
33 74		
54 25	1	0
32	1	0.
30	1	0
38	I	U
39	1	~
40	I	0
41		_
42	1	0
43		
44	1	0
45		
46	1	1
47		
48	1	1
49 50	-	-
5U 51	1	1 /
ン I 5 つ	1	1.
52 52		
54	1	1.
55		
56		
57		
58		
59		

2 Material & Methods

Data Sources and Sample Construction

4 Concussion data originates from the Danish National Patient Registry (DNPR) (see[14] for 5 description). DNPR is published annually and holds information on all hospitalizations at public 6 hospitals in Denmark since 1977, on all emergency room visits and outpatient treatments at 7 public hospitals since 1994, and almost all private hospital treatments since 2003. With one 8 single, short-lived exception, private hospitals do not operate emergency rooms in Denmark. 9 Since 2003, the data cover 95% of all treatments at private hospitals[14], yet only 13 0 concussion were diagnosed in private hospital settings throughout the period covered by the 1 data.

2 The combined exposure and control cohort includes all Danes aged 20-59 y, who received a 3 primary diagnosis of concussion (ICD-10 code S06.0, ICD-8 code N850) between 2003 and 4 2017 and did not sustain any kind of additional intracranial or extracranial injury. Individuals)5 who regularly engage in activities associated with a high risk of sustaining multiple concussions 6 may differ from the average concussion patient and would likely be over-represented in the)7 exposure sample. To avoid such potential bias, all individuals who were diagnosed with any 8 kind of brain trauma during a ten-year period prior to the concussion event were excluded. 9 Altogether, the study included a cohort of 55,424 individuals. Only attrition is through mortality 0 and out-migration, and out-migrated or deceased patients with missing spells in the follow up period is excluded in those periods. 1

As a measure of productivity, a price-index deflated annual salaried income was used. Salary information comes from Statistics Denmark's Income Statistics database. The database

60

3 4 114 includes all declared annual incomes including income from self-employment. The Danish Tax 5 6 115 Authorities supply the data to Statistics Denmark. Overall accuracy is considered very good.[15] 7 8 Table 1 reports number of observations for the samples and number of observations with 9 116 10 ¹¹ 117 missing salary information. As evident, only between 0.01 to 0.02 percent of observations 12 13 14 118 across exposure and control groups have missing salary information. These observations were 15 disregarded in the main analysis. Through social security numbers, information on salaried 16119 17 18 120 income were linked to records on diagnosed concussions. Further, information on high school 19 20 121 or equivalent level degree at time of concussion was obtained using the Danish Education 21 22 23 122 Database. The Danish Population Database provided demographic information on age and 24 25 1 2 3 gender for all respondents. Since the data used in the study come from de-identified 26 ²⁷ 124 administrative registers that Statistics Denmark makes available for research purposes for 28 29 ₃₀ 125 approved institutions, no approval from an ethics committee was needed to carry out the study. 31 32 1 2 6 The research was carried out as part of project no. 706630 approved by Statistics Denmark. 33 ³⁴ 127 Statistical analysis was carried out using Stata MP 15.1 35 36 37 128 38

³⁹129 Quasi-experimental design

41 42 130 The study used a quasi-experimental, difference-in-differences event time approach previously 43 44 131 described in a health setting by Dobkin et al.[12] The approach compare two groups of 45 ⁴⁶ 132 individuals from the same cohort, where both groups experience concussions, but at two 47 48 49 133 different time points (t_c , t_c + Δ). Specifically, the sample of 55,496 individuals was divided into six 50 51 134 different subgroups: i) The exposure group, which includes all patients, who suffered their 52 53 135 concussion during the period 2003-2012 (n=37,848) and ii) five control groups, which comprise 54

7

57 58

55

56

40

patients who experienced their concussions $\Delta = \{1 (n=34,551), 2 (n=31,851), 3 (n=29,922), 4 \}$ 136 137 (n=28,530), and 5 (n=27,421)} years later than the exposure group and did not experience any kind of brain injury in the 10+ Δ years before the concussion event (note that the design allows 138 individuals to both be part of the exposure and control group). The model is built on the assumption that the exact timing of a concussion is random for small enough values of Δ , and on the additional assumption that the exposure and the control groups would have displayed parallel trends in salary if the control group had not suffered a concussion at t_c (i.e., assuming 143 that control and exposure group(s) would have continued to show similar trends in salaried earnings had the exposure group not experienced concussions). Table 1 show the number of patients in the exposure group and the five control groups for each year relative to exposure group's concussion incident. Using multiple comparison groups makes it possible to gage the validity of the assumption that the exact timing of a concussion is random for small enough sizes of Δ

To estimate the impact of concussion on labour market outcomes, the analysis focuses on the change in annual salary as the primary outcome, and, in further exploratory analyses, studies additional outcomes such as income from health-related benefits, income from welfare benefits, and employment rates. The data are nested within a three-level structure: Exposure or control group *g*, which includes individuals *I*, at times to exposure-groups concussion incident *t*. First, a standard difference in differences model for each separate control group Δ ={1, 2, 3, 4, and 5} is estimated using ordinary least squares:

 $Salary_{git} = \beta_0 + \gamma Exposure_g + \theta Post_t + \delta Post \times Exposure_{git} + X_i \beta + \sum_{Age = 20}^{59 + \Delta} I(Age) \eta_{Age} + \sum_{Year = 1999}^{2012} I(Year) \eta_{Year} + \epsilon_{git}$ (1)

60

2	
3	
4	158
5	100
6	150
7	139
8	
9	160
10	
11	161
12	
13	162
14	102
15	162
16	103
1/	
18	164
19	
20	165
21 22	100
22 วว	166
23 24	100
24	
25	167
20	
27 28	168
20	
30	169
30	107
32	170
32	1/0
34	
35	171
36	
37	172
38	
39	173
40	175
41	
42	174
43	
44	175
45	
46	176
47	1/6
48	
49	177
50	
51	178
52	
53	179
54	- 17
55	
56	
57	
58	
59	

1

8 where Salary_{ait} measures annual salaried income deflated to 2015-level; *Exposure*_q indicates whether the observation belongs to the exposure or control group; Post, captures the period 9 0 after the exposure group's concussion occurred; *Post_t*×*Exposure_{ait}* captures the effect 1 concussion, measured as share of year $t \ge 0$ affected by concussion (i.e., for year of incident 2 exposure is expressed as share of year spent with post-exposure, for following years it is equal 3 to 1); X_i is a set of covariates that includes a high school indicator and a gender dummy; ϵ_{ait} is 4 the error-term; and the two last sets of indicator variables I(Age) and I(Year) capture age and 5 incident year (for control group, the year indexed against). Under an assumption of parallel 6 trends in salaried earnings (i.e., assuming that control and exposure group(s) would have 7 continued to show similar trends in salaried earnings had the exposure group not experienced 8 concussions), δ then captures the annual causal effect of concussion on salary for people 9 exposed to concussions (see Supplemental Methods for further details). For additional 0 exploratory analyses, separate models across gender, educational level, and age, as well as 1 across the salary distribution are also estimated (see Supplemental Methods, Supplemental 2 Digital Content 1, for further details). The authors document and make available all code 3 needed to reproduce the findings in the study (Supplemental Digital Content 2).

5 Standard Protocol Approvals, Registrations, and Patient Consents

6 Since the data used in the study come from de-identified administrative registers that Statistics 7 Denmark makes available for research purposes for approved institutions, no approval from an 8 ethics committee was needed to carry out the study. The research was carried out as part of 9 project no. 706630 approved by Statistics Denmark.

9

1 2	
3 ⁴ 180	
5 ¹⁰⁰ 6 101	Defie at and Dublic loughterment
7 181 8	Patient and Public Involvement
9 182 10	There was no involvement from patients or members of the public in the design, or conduct,
11 183	or reporting, or dissemination plans of the research.
12 13	
14 15	
16	
17	
19 20	
21 22	
23	
24 25	
26 27	
28	
29 30	
31 32	
33 34	
35	
30 37	
38 39	
40 41	
42	
43	
45 46	
47 48	
49	
50 51	
52 53	
54 55	
56	10
57 58	
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4 184 Results 5 6 185 Concussion leads to long-term loss in salaried income 7 8 9 Individuals who suffered a concussion (exposure group) had a lower salaried income compared 186 10 11 12¹⁸⁷ to individuals who experienced their concussion 1, 2, 3, 4 and 5 years after the exposure group 13 14 188 (control groups). Compared to patients who experienced a concussion one year after the 15 16 189 exposure group, salaried income was €423/£380 (95% CI: -€9129/-£8208; €73/£66, p=.095; 17 18 10 19¹⁹⁰ Table 2) lower, corresponding to a salary decrease of 1.5 % (95% CI: -0.3 %; 3.2 %; Figure 1). 20 21 191 Compared to patients who experienced a concussion 5 years after the exposure group, 22 23 192 however, salaried income in the exposure group was €1,243 (95% CI: -€1,564/-£1,406; -€922/-24 25 193 £829, p<.001) lower, corresponding to a salary decrease of 4.2 % (95% CI: 3.1 %; 5.3 %; Figure 26 27 28 194 1). Normalized wage progression for the control groups, who suffered a concussion 1, 2, 3, 4, 29 and 5 years after the exposure group, showed similar trends and similar levels pre-exposure, 30 195 31 ³² 196 indicating that the parallel wage trends assumption was met (Figure 2 and table S1, Figures S1 33 34 35¹197 in Supplemental Digital Content 3). 36 37 198 We hypothesized that the salary decreases resulted from a combination of lower salary and 38 39 199 exit from the labour market, either through short- or long-term absence/unemployment. In an 40 41 ... 42 200 exploratory analysis, we tested whether labour force exit drove the full effect of concussion on 43 44 201 salary (Figure 3). By comparing the cumulative distribution of salary density for the exposure 45 ⁴⁶ 202 group with the cumulative distribution of salary density for the Δ =5 control group (Figure 3, left 47 48 49 203 panel), we found that the impact of concussion on salary was significant for individuals in the 50 51 204 lower quartile of the salary distribution (at a 95 % significance level). Specifically, below a 52 53 205 threshold salaried income of 40,000€ (£36,000) the presumed impact of concussion on salary 54 55 11 56 57

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

59 60

58

2	
3	
4	206
5	200
6	207
7	207
8	• • • •
9 10	208
11	
12	209
13	
14	210
15	
16	211
17	
18	212
19	212
20	212
22	213
23	014
24	214
25	015
26	215
27	• • •
28	216
29	
30	217
32	
33	218
34	
35	219
36	
3/	220
38 20	
39 40	221
41	
42	222
43	
44	223
45	
46	224
47 10	
40 49	225
50	223
51	226
52	226
53	~~-
54	227
55	
56 57	
57 58	
59	

increased towards the bottom of the earnings pyramid; Figure 3, right panel).

Comparing the exposure group to the control group Δ =5, which suffers a concussion five years after the exposure group, concussion was associated with a 2.6% (95% CI: 3.0 %; 2.2 %, p <.001) increase in the risk of receiving \in 0 in annual salary.

Long-term loss in salaried income stems from exit from the labour market

To further examine whether exit from the labour market was caused either through short- or long-term absence/unemployment, we estimated a dynamic model using the control group Δ =5, which suffers a concussion five years after the exposure group. Sick leave benefits payments were higher in the exposure group compared to the control groups for the first two years following concussion. Sick leave benefits were no longer different from year 3 while the difference in annual salary between exposure and control groups persisted. Further, employment in the exposure group remained lower than in the control group Δ =5 and remained so for the entire post-exposure period (see table S2, Supplemental Digital Content 3 for further details). To assess whether some form of public benefits covered part of the salary loss, total income decline was compared to salary decline following concussion. Indeed, total income decline was lower than the salary decline through a five year period (see Figure S2, Supplemental Digital Content 3 for further details).

60

Younger patients without high school degree drove the effect of concussion on income loss The exposure group and all control groups differed slightly in terms of average patient age, male to female ratio, and for control group Δ =5, in the frequency of individuals with at least a 12

4 228 high school degree (see Table S3, Supplemental Digital Content 3 for further details). To ensure 6 229 that differences in gender, education, or age did not influence our results, we subdivided our 7 8 exposure group into subgroups based on gender, education status, and age at time of 9 230 10 ¹¹ 231 concussion. We then estimated the impact of concussion on salary and employment across all 12 13 14²³² values of Δ and for all subgroups (see, Figures S3-S8, Supplemental Digital Content 3 for 15 16 2 3 3 further details). Patients between age 30-39 and those without a high school degree 17 18 234 experienced the largest absolute and relative declines in salary. 19

20 ²⁰₂₁235 Finally, we addressed the role of timing of concussion across different years. Given that per 22 23 2 3 6 design our exposure group always suffered their concussion earlier than the control groups do, 24 ²⁵ 237 changing labour market conditions could moderate effects. Part of our sample suffered their 26 ²⁷ 28 238 concussion during or just prior to the Great Recession in 2009-2010, which arguably presented 29 30 2 39 the largest shock to both the global and local economy since the Great Depression in the 1930s. 31 32 2 4 0 In Denmark, the great recession was preceded by a series of years of economic growth, low 33 ³⁴₃₅241 unemployment, and increasing salaries (see Figure S8, Supplemental Digital Content 3 for 36 37 242 salary development from 1994 to 2017). We estimated the impact of concussion on salary 38 39 2 4 3 separately for each year from 2003-2012 and plotted the estimate against the percent of full-40 ⁴¹₁₂244 time unemployment in the Danish labour force (Figure 4). Suffering a concussion during an 42 43 .5 44 245 economic boom had a substantially higher impact on salary than doing so during a recession 45 when comparing to control groups who suffered concussions two to five years later than 46 2 46 47 ⁴⁸ 247 exposure group. 49

54 55

56

1 2 3

5

13

1	
2	
3	
4 5	249
6	
7	250
8	
9	251
10	
11	252
12	
14	253
15	
16	254
17	
18	255
19	200
20	256
21	250
22 23	257
23 24	231
25	258
26	230
27	250
28	239
29	260
30	200
31	
วว	2(1
32 33	261
32 33 34	261
32 33 34 35	261 262
32 33 34 35 36	261262262
32 33 34 35 36 37	261262263
32 33 34 35 36 37 38	261262263
32 33 34 35 36 37 38 39	261262263264
32 33 34 35 36 37 38 39 40 41	261262263264
32 33 34 35 36 37 38 39 40 41 42	 261 262 263 264 265
32 33 34 35 36 37 38 39 40 41 42 43	 261 262 263 264 265
32 33 34 35 36 37 38 39 40 41 42 43 44	 261 262 263 264 265 266
32 33 35 36 37 38 39 40 41 42 43 44 45	 261 262 263 264 265 266
32 33 35 36 37 38 40 41 42 43 44 45 46	 261 262 263 264 265 266 267
32 33 35 36 37 38 39 40 41 42 43 44 45 46 47	 261 262 263 264 265 266 267
32 33 35 36 37 38 39 40 41 42 43 44 45 46 47 48	 261 262 263 264 265 266 267 268
32 33 35 37 39 40 42 44 45 46 47 48 40 50	 261 262 263 264 265 266 267 268
32 33 35 36 37 39 40 42 43 45 46 47 48 49 50 51	 261 262 263 264 265 266 267 268 269
32 33 35 37 39 40 42 44 45 47 49 50 51 52	 261 262 263 264 265 266 267 268 269
323 3435 3733 37442 4444 450 51 522 53	 261 262 263 264 265 266 267 268 269 270
32 33 35 37 37 37 37 37 37 37 37 37 37 37 37 37	 261 262 263 264 265 266 267 268 269 270
32 33 35 37 37 37 37 37 37 37 37 37 37 37 37 37	 261 262 263 264 265 266 267 268 269 270
32 33 35 36 37 39 41 42 44 45 47 49 51 52 53 55 55 55 55	 261 262 263 264 265 266 267 268 269 270
333 3333 334 42 44 44 44 45 51 52 55 55 55 55 55 55 55 55 55 55 55 55	 261 262 263 264 265 266 267 268 269 270
3334333344423445675152345565785	 261 262 263 264 265 266 267 268 269 270
323333334442444444444444444444444444444	 261 262 263 264 265 266 267 268 269 270

Discussion

The impact of concussion on employment and salary remains understudied. In a systematic review of four studies on the association between mild TBI and return to work, Cancelliere and colleagues[9] found that most workers return to work within 3-6 months of suffering a mild TBI, but that the long-term impact (more than one year after concussion) was not studied. In addition, studies included small to medium sample sizes, varied measures of return to work, and employed both case-control and cohort designs. Using an inception cohort study design, Theadom and colleagues[7] collected follow up data four years after mild TBI incidents on 245 New Zealanders who were employed prior to incident. They found a 3.6 percent productivity decline among those who suffered a concussion, compared to a 2.3 population average decline. The group suffering mild TBI also reported more difficulties carrying out work-related tasks. In a related study, [7] Theadom and colleagues further found that the mild TBI group had persisting cognitive symptoms four years after suffering their concussion compared to an agesex matched control group. Also using a case-control design and data from Taiwan, Chu and colleagues[6] found that one month after incident, 26 percent of patients had still not managed to return to work, and a large share of those who did return scored below full-time employment on a work quality index. Only one other study by Graff and colleagues [10] include a large patient cohort (n=19,732). Using case-control they found an association between concussion and failing to return to work of 1.54 odds ratio, but also found that exposed individuals had lower labour market attachment and was more likely to receive health related benefits pre-incident compared to the control group.

In the present study, we overcame some of the obstacles faced by previous work on the impact 14

3 4 271 of concussions on labour market outcomes by including a vast cohort of patients and exploiting 5 6 272 a guasi-experimental design that allow us to plausibly account for unobserved difference 7 8 9 273 between exposure and control group. In such a guasi-experimental setup exposure and control 10 ¹¹ 274 groups only differ in the timing of concussion. Since everyone in the control group experiences 12 13 14 275 a concussion within five years after individuals in the exposure group, the groups are likely to 15 16276 be balanced on unobservable characteristics. This is particularly important given the number of 17 18 277 potential factors that can influence employment after concussion[16,17]. Data from Donker-19 ²⁰ 21 278 Cools et al.[17], for instance, suggests larger employers are more able to keep those who have 22 23 279 sustained brain injuries in work compared to smaller employers. Furthermore, since our data 24 25 2 8 0 did not include health-related data such as past psychiatric history, we cannot exclude that 26 ²⁷ 281 exposure and control groups differed in health-related aspects and that these differences 29 ₃₀ 282 biased our results, i.e. that an individual left the workforce for a concussion-unrelated cause 31 32 283 like a psychiatric disease triggered by the stress of a concussion event. Thus, even if we believe 33 ³⁴ 284 that our quasi-experimental setup leaves us with exposure and control groups that only differ 35 36 37 285 in the timing of concussion, especially given the reported sample sizes and the finding that 38 39 286 exposure and control groups show similar pre-exposure trends on both primary and secondary 40 ⁴¹ 287 outcomes (Figure 1 and Tables S1 and S2), this aspect needs to be discussed as a potential 42 43 288 limitation of our study. 44 45 In addition, salary and employment data reported here were compiled routinely through third-46 289 47 ⁴⁸ 290 party reporting and were mandatory for all subjects, thus giving a complete and comprehensive 49 50 291 picture of the economic impact of concussion on a nationwide scale. It should be mentioned 51

that our study also included data from individuals diagnosed in private hospitals. However,

15

57 58

52 53 292

54 55

56
Page 17 of 109

1

BMJ Open

59

60

given the setup of the Danish health care system, i.e. private hospitals predominantly do 293 294 selective and overflow surgery and have no ERs[18], only 13 patients were diagnosed at a 295 private hospital from 2003 onwards.

 $^{11}_{12}296$ Altogether, we showed that Danes between 20-59 year of age, who suffered a concussion 14 297 during the period 2003-2012 experienced average salary losses of 4.2%. The impact of 16 2 9 8 concussions on salary already materialized one year after the incident and remained sizeable ¹⁸299 for at least five years. This result is in line with a "burn-in" period in which the impact of ²⁰₂₁ 300 concussion on wages fully develops. First, concussions occur at some point during the year. 23 301 thereby not affecting already earned salary that year. Second, in Denmark, most employees ²⁵ 302 are entitled to receive their salary during sickness absence for an open ended, but not indefinite ²⁷₂₈ 303 period. The results further showed that both in absolute and relative terms, people with an зо 304 educational level at less than a high school degree saw substantially larger negative impact to 32 305 salaried earnings than did those with at least a high school degree. Also, the group with less $\frac{34}{35}306$ than a high school degree also saw an immediate impact on salary from their concussion (cf. ₃₇ 307 Figure S4), indicating that the burn-in period present for workers with at least high school 39 308 education likely expressed differences in types of employment and job protection.

In addition, total income decline was lower than the salary decline through a five year period 44 310 (see Figure S2, Supplemental Digital Content 3 for further details), suggesting that the impact 46 311 of concussions on salary largely stems from affected individuals leaving the labour force ⁴⁸₄₉ 312 completely, likely sustaining themselves through early retirement, disability pensions, self-₅₁ 313 sufficiency, or other income sources instead.

53 314 It is important to mention that our study was restricted to individuals diagnosed in ER and 16

315 hospital settings and individuals diagnosed by a GP might differ from the population studied 316 here. Rowson et al., however, show that in concussed individuals, severity of the cranial injury is not strongly correlated with strength or length of subsequent symptoms[19]. Thus, individuals 317 10 ¹¹ 318 diagnosed by a GP might suffer concussion effects as much as individuals who initially 12 13 14 319 sustained a more severe cranial injury and sought medical attention in an ER or hospital setting. 15 16 3 2 0 If this holds true, our results may have validity beyond individuals diagnosed in an ER or hospital 17 18 321 setting. 19

⁻⁰₂₁ 322 23 323 If we assume that people return to their expected salary levels after a five-year recovery period ²⁵ 324 (a very conservative assumption that is not supported by our data), the mere net annual salary 28 3 25 loss in our sample would be approximately €23.000.000 (£21.000.000) measured in 2015value. That would neither include hospital charges, medical costs for the treatment of 30 3 2 6 ³² 327 concussion, the foregone tax from income, and the increased need for welfare spending, nor 35 328 would it account for the large group of individuals who never seeks treatment[20] or receive 37 329 their diagnosis from their general practitioner rather than in a hospital or emergency room, and ³⁹ 330 thus escape our study. Thus, total public costs are likely substantially higher.

42 331 In addition, both in absolute and relative terms, the early peak-working aged individuals (30-39) 43 y) and the less-educated individuals in our cohort seemed to be most affected after suffering a 44 3 3 2 45 46 3 3 3 concussion. These findings might have and additional and yet unmeasured social impact, 47 48 49 334 especially if our results are transferrable to other nations with a less established welfare state 50 51 335 and a less flexible labour market. In such countries, the impact on the young and less-educated 52 53 336 individuals suffering a concussion and thus on society might be accentuated.

17

57 58

54 55

56

5 6

7 8

9

20

22

24

26 27

29

31

33 34

36

38

337 Comparing our hospital incidence rates to more complete canvases of incidences carried out 338 by Cassidy et al.[21], it seems likely that the actual cost in the population is more than twice as 339 large as what we estimate, assuming that individuals not diagnosed in a hospital setting on average suffer the same extent of concussion symptoms. If we were to consider the average concussion incidence rates for six other advanced European countries that are somewhat comparable to Denmark (Norway, Finland, Germany, Netherlands, England and France) and under the assumption that concussion have a similar impact on earnings in these countries, the 344 net annual salary loss would be approximately €1,099,400,000 (£988,4780,000) measured in 2015-value. While our study likely underestimates the total socioeconomic impact of concussion, it suggests that concussions has a large economic impact on a nationwide scale and on productivity and income at the patient level.

CONCLUSION

18

Using timing of concussion as a natural experiment, we provide first plausible causal estimates of the effect of concussion on salary and employment among patients treated for concussion in 40 3 5 2 an emergency room or hospital setting in Denmark, 2003-2017. Our results show that among 42 3 5 3 this patient group concussion has a large and long-term negative causal impact on salary and 354 employment. People between 30-39 y and those without high school degrees suffered the largest salary decreases.

elie

- 52

1 2	
3 4 357	Disclosures
5	
7 358	The authors report no conflict of interest.
9 359 10	
$11 \\ 12 360$	Acknowledgements:
13 14 361 15	The authors thank Torben Heien Nielsen for helpful comments on an earlier draft of the
$\frac{16}{17}$ 362	manuscript.
18 19 363	
20 21 22 364 22	Funding:
23 24 365	This work was supported by the Swedish Research Council for Health (PF), Working Life and
25 26 366 27	Welfare (Grant no. 2016-07099) with additional funding from the ROCKWOOL Foundation (PF).
²⁸ 367	The research was carried out independently of the funders.
30 31 368	
32 33 369 34	Authors contributions: P.F. and B.C. conceived of the presented idea, P.F. performed the
³⁵ 370 36	computations. P.F. and B.C. verified the statistical methods. P.F. and B.C. discussed the results
³⁷ 38 371	and wrote the manuscript. The corresponding author confirms that he had full access to all the
40 372	data in the study and had final responsibility for the decision to submit for publication.
42 373 43	
44 45 374	Data Availability Statement
46 47 375 48	The data used in this study has been made available through a trusted third party, Statistics
⁴⁹ 376 50	Denmark. Due to privacy concerns the data cannot be made available outside the hosted
51 52 377	research servers at Statistics Denmark. University-based and private Danish scientific
54 378 55	organizations can be authorized to work with data within Statistics Denmark. Such organization
56 57	19
58	
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1 2						
$\frac{3}{5}$ 379	can provide	e access to indiv	vidual scientist	s inside and out	side of Denmark. Re	equests for data
6 7 380	may	be	sent	to	Statistics	Denmark:
8 9 381 10	http://www.	.dst.dk/en/OmDS	S/organisation/	TelefonbogOrg.a	aspx?kontor=13&tlfb	ogsort=sektion
$\frac{11}{12}$ 382	or the Dar	nish Data Prote	ction Agency:	https://www.dat	atilsynet.dk/english/t	he-danish-data-
13 14 383	protection-a	agency/contact/.	The authors	document and	make available all o	code needed to
15 16 384 17 18 18 385 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	reproduce	the findings in th	e study.			
55 56 57 58 59	20					
60		For peer revi	ew only - http://bi	njopen.bmj.com/site	/about/guidelines.xhtml	

386 References

5 6

7 8 9

13

18

20

22

24 25

27

29

31

41

57 58 59

60

Cassidy JD, Carroll LJ, Peloso PM, et al. Incidence, risk factors and prevention of 387 1 mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild 388 10 11 389 Traumatic Brain Injury. J Rehabil Med 2004;:28-60. doi:10.1080/16501960410023732 12

14 3 90 2 Pinner M, Jensen R, Birket-Smith M, et al. Konsensusrapport om commotio cerebri 15 16 391 (hjernerystelse). Videnscenter for Hjerneskade 2003. 17

₁₉ 392 3 Hou R, Moss-Morris R, Peveler R, et al. When a minor head injury results in enduring symptoms: a prospective investigation of risk factors for postconcussional syndrome 21 3 9 3 ²³ 394 after mild traumatic brain injury. J Neurol Neurosurg Psychiatry 2012;83:217–23. 26 395 doi:10.1136/jnnp-2011-300767

28 3 96 4 Ruff R. Two decades of advances in understanding of mild traumatic brain injury. ³⁰ 397 J Head Trauma Rehabil 2005;20:5–18. doi:10.1097/00001199-200501000-00003

32 5 33 398 Silverberg ND, Iverson GL. Is rest after concussion "the best 34 35 399 medicine?":: recommendations for activity resumption following concussion in athletes, 36 ³⁷ 400 civilians, and military service members. The Journal of head trauma rehabilitation 2013:28:250-38 39 401 9. doi:10.1097/HTR.0b013e31825ad658

42 402 Chu SY, Tsai YH, Xiao SH, et al. Quality of return to work in patients with mild 6 43 44 403 traumatic brain injury: a prospective investigation of associations among post-concussion 45 46 47 404 symptoms, neuropsychological functions, working status and stability. Brain Injury 48 49 4 05 2017;**31**:1674–82. doi:10.1080/02699052.2017.1332783 50

51 51 406 7 Theadom A, Barker-Collo S, Jones K, et al. Work Limitations 4 Years After Mild 53 54 407 Traumatic Brain Injury: A Cohort Study. Archives of Physical Medicine and Rehabilitation 55 21 56

BMJ Open

2							
4 5 408	2017; 98 :15	560–6. doi:10.1016/j	.apmr.2017.01	.010			
6 7 409 8	8	Theadom A, Stark	ey N, Barker-C	Collo S, <i>et al.</i> Po	pulation-base	d cohort study	of the
9 410 10	impacts o	f mild traumatic I	orain injury i	n adults four	years post-i	njury. <i>PLOS</i>	ONE
$^{11}_{12}411$	2018; 13 :e0)191655. doi:10.137	1/journal.pone	.0191655			
13 14 412	9	Cancelliere C, Kri	stman VL, Ca	ssidy JD, <i>et al.</i>	Systematic F	Review of Ret	urn to
16 413 17	Work After	· Mild Traumatic Br	rain Injury: Re	esults of the Int	ternational Co	ollaboration of	n Mild
18 19 414	Traumatic	Brain Injury Prog	gnosis. <i>Archi</i> v	es of Physica	al Medicine	and Rehabi	litation
20 21 415	2014; 95 :S2	201–9. doi:10.1016/j	.apmr.2013.10	0.010			
²² ²³ 416 24	10	Graff HJ, Siersma	V, Møller A, et	al. Labour mark	et attachmen	t after mild trai	umatic
25 26 417	brain injury	: nationwide cohor	t study with 5	-year register f	ollow-up in D	enmark. BMJ	l open
27 28 418	2019; 9 :e02	26104. doi:10.1136/k	omjopen-2018	-026104			
³⁰ 419	11	Ogilvie D, Adams	J, Bauman A,	<i>et al.</i> Using nati	ural experime	ntal studies to	guide
$32 \\ 33 420$	public heal	th action: turning th	e evidence-ba	sed medicine p	aradigm on it	s head. <i>J Epi</i> o	demiol
34 35 421	Community	/ Health Published (Online First: 19	November 201	9. doi:10.113	6/jech-2019-2	13085
³⁰ 37 38422	12	Dobkin C, Finkels	stein A, Kluer	ider R, <i>et al.</i> 1	he Economic	c Consequen	ces of
³⁹ 40 423	Hospital	Admissions.	American	Economic	Review	2018; 108 :30)8–52.
41 42 424 43	doi:10.125	7/aer.20161038					
$\frac{44}{45}$ 425	13	Fadlon I, Nielsen	TH. Househol	d Responses to	o Severe Hea	alth Shocks a	nd the
46 47 426	Design of S	Social Insurance. Ca	ambridge, MA:	2015. doi:10.33	86/w21352		
48 49 427 50	14	Schmidt M, Schm	iidt SAJ, Sand	degaard JL, <i>et</i>	al. The Dani	sh National F	Patient
51 52 428	Registry: a	a review of content	t, data quality	, and research	potential. C	linical epidem	niology
53 54 429	2015; 7 :449	9–90. doi:10.2147/C	LEP.S91125				
55 56	22						
57 58							
59 60		For peer review of	only - http://bmjop	en.bmj.com/site/ab	out/guidelines.xh	tml	

1

Page 24 of 109

2		
⁴ / ₅ 430	15	Statistics Denmark. Documentation of statistics: Income Statistics - Statistics
⁶ ₇ 431	Denmark.	
8 9 432 10	2015.https	://www.dst.dk/en/Statistik/dokumentation/documentationofstatistics/income-
¹¹ 433 12	statistics (a	accessed 20 Aug 2018).
13 14 434	16	Buck PW, Laster RG, Sagrati JS, et al. Working with mild traumatic brain injury:
16 435 17	voices from	n the field. <i>Rehabil Res Pract</i> 2012; 2012 :625621. doi:10.1155/2012/625621
¹⁸ 19 436	17	Donker-Cools BHPM, Wind H, Frings-Dresen MHW. Prognostic factors of return to
20 21 437 22	work after	traumatic or non-traumatic acquired brain injury. <i>Disabil Rehabil</i> 2016; 38 :733–41.
23 438 24	doi:10.310	9/09638288.2015.1061608
²⁵ 26 439	18	Vrangbaek K, Østergren K, Birk HO, et al. Patient reactions to hospital choice in
27 28 440 29	Norway,	Denmark, and Sweden. <i>Health Econ Policy Law</i> 2007; 2 :125–52.
³⁰ 441 31	doi:10.101	7/S174413310700401X
32 33 442	19	Rowson S, Duma SM, Stemper BD, et al. Correlation of Concussion Symptom
35 443 36	Profile with	h Head Impact Biomechanics: A Case for Individual-Specific Injury Tolerance. J
³⁷ 444 38	Neurotraui	ma 2018; 35 :681–90. doi:10.1089/neu.2017.5169
39 40 445 41	20	Setnik L, Bazarian JJ. The characteristics of patients who do not seek medical
42 446 43	treatment	for traumatic brain injury. Brain Injury 2007; 21 :1–9.
44 447 45	doi:10.108	0/02699050601111419
46 47 448 48	21	Cassidy JD, Carroll LJ, Peloso PM, et al. Incidence, risk factors and prevention of
49 449 50	mild traum	natic brain injury: Results of the WHO Collaborating Centre Task Force on mild
⁵¹ 450	traumatic	brain injury. Journal of Rehabilitation Medicine 2004; 36 :28–60.
53 54 451	doi:10.108	0/16501960410023732
55 56	23	
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

⁴ / ₅ 452	
6 7 453	
8	
9	
10	
12	
13	
14	
15	
16 17	
18	
19	
20	
21	
22	
24	
25	
26 27	
28	
29	
30	
31	
33	
34	
35	
36 37	
38	
39	
40	
41 42	
43	
44	
45	
46 47	
48	
49	

454 **Figure Legends**

5 6

7 8 9

10 11

13

Figure 1. Estimated effect of concussions in percentage on salary for the exposure group 455 456 measured against each control group

12⁴⁵⁷ Note: Figure shows the percentage change in salary experienced by the exposure group 14 4 58 following their concussions compared to the expected trajectory absent the concussion (calculated from the control groups) with 95 % confidence intervals. See table 1 for separate pvalues for each estimate.

Figure 2. Salary development for exposure and control groups across time of exposure

Note: Figure shows the salary trajectories for the exposure group (black) who suffers concussion at year zero against normalized wage trajectories for the control groups who suffer their concussions one to five years later. Δ indicates the number of years between exposure and control incident. Table shows that there are no significant differences in the normalized salary levels for exposure and control group prior to exposure incident (see Figure S1, Supplemental Digital Content 3 for unnormalized salary trajectories).

Figure 3. (Left panel) The cumulative density function (cdf) for salary post-treatment among the treatment group and their counterfactual outcome had they not experienced their concussions, and (Right panel) the change in salary density for the exposure group compared to their counterfactual baseline expressed as the effect of concussion on the probability of earning below the salary-level expressed on the x-axis following exposure

25

60

1	
2 3	
4 475	event.
6 7 476 8	Note: The figure shows the observed cumulative salary distribution following concussion for the
9 477 10	exposure group (red) and the expected counterfactual salary distribution absent suffering
$^{11}_{12}478$	concussion in the exposure group (blue), when using the Δ =5 control group. The black line
13 14 479 15	shows the difference between the observed and the counterfactual distribution, and the grey
16 480 17	dash lines show the 95 % confidence interval. The close to constant decline of the difference
¹⁸ 481 19	between the two distributions as the salary increase indicates that the main part of the effect of
20 21 482 22	concussions on salary are driven by people having a salary equal to zero.
23 24 483 25	Figure 4. Effect of concussion on salary across incident years and control groups
²⁶ 484 27	together with the percentage fulltime unemployed of the labor force.
28 29 485	Note: Figure shows annual estimates of concussion against each control group separately
30 31 486 32	mapped against the share of the labor force that is full time unemployed. 95 % confidence
³³ 487 34	intervals. The estimates for the effect of concussion on salary almost uniformly increase in
35 36 488	absolute magnitude when unemployment decreases, and decrease when unemployment
38 489 39	increase, indicating that the effect of concussion on salary is countercyclical to the economic
40 490 41	cycle.
42 43 491	
44 45 46 492	Supplemental Digital Content titles & legends
47	
48 49 50	Supplemental Digital Content [#1]. Text file. Supplemental materials and methods. This file
51 494 52	contains further details on our quasi-experimental, difference-in-differences event time
53 495 54	approach.
55 56 57	26
58	
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

Supplemental Digital Content [#2]. File. Code used for the analyses.

Supplemental Digital Content [#3]. Table. Supplemental results Table S1: Test of parallel trends assumption pre-exposure incident against each control group separately using eq. S3 in supplementary methods. Separate exposure dummies for all time periods (except the year prior to exposure, which serves as reference period).

Supplemental Digital Content [#3]. Table. Supplemental results Table S2: Effect of concussion on different labor market outcome parameters using separate exposure dummies for all time periods (except the year prior to exposure, which serves as reference period): In this exploratory analysis, the exposure group is compared to the control group Δ =5, which suffers a concussion five years after the exposure group. Outcomes include annual salaried income (annual salary), total annual income (total income), annual sick leave benefits received (sick leave benefits) as well as a binary indicator of employment (probability of employment). Monetary outcomes were measured at 2015-level in € 1,000.

42 512 Supplemental Digital Content [#3]. Table. Supplemental results Table S3: Demographic 43 44 513 factors for exposure group and control groups (Δ =1, 2, 3, 4, 5) averaged over the 5 years 45 46 47 514 leading up to the concussion event in each of the groups. Factors include patient age (in years), 48 49 515 share of sample female (1=100% female), and share of individuals with at least a high school 50 ⁵¹ 516 degree (1=100%).

1 2	
3 4 518	Supplemental Digital Content [#3]. Figure. Supplemental results Figure S1: Unnormalized
5 6 7 519	Average Salary for Treatment and Control Groups Measured in 1K € at 2015-levels
8	
10 11	
$\frac{11}{12}521$	Supplemental Digital Content [#3]. Figure. Supplemental results Figure S2: The Cumulative
14 522 15	Density Function (CDF) for Total Income Post-Treatment among the Treatment Group and
16 523 17	Their Counterfactual, and the Difference between the Two CDFs Expressed as the Effect of
18 19 524	Concussion on the Probability of Total Income Below that Income-Level following Exposure
20 21 525	Event.
²² ²³ 526	
24 25	Ourselementel Disitel Content 1401 Figure Ourselementel seculte Figure O2: Descentere
26 527 27	Supplemental Digital Content [#3]. Figure. Supplemental results Figure S3: Percentage
28 528 29	Effect of Concussion on Relative Salary Across Age Groups.
³⁰ 31 529	
32 33 530	Supplemental Digital Content [#3]. Figure. Supplemental results Figure S4: Percentage
³⁴ ³⁵ 531	Effect of Concussion on Relative Salary Across High School Completion.
30 37 38 532	
39	
40 533 41	Supplemental Digital Content [#3]. Figure. Supplemental results Figure S5: Percentage
42 43 534	Effect of Concussion on Relative Salary Across Gender.
44 45 535	
$\frac{46}{47}$ 536	Supplemental Digital Content [#3]. Figure. Supplemental results Figure S6: Effect of
49 50 537	Concussion on Absolute Salary in 1K Euro Across Age groups.
51 52 538	
53 54	
55	28
57 57	
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

58 59

60

4 539 Supplemental Digital Content [#3]. Figure. Supplemental results Figure S7: Effect of 5 6 540 Concussion on Absolute Salary in 1K Euro Across Education. 7 8 9 541 10 11 12 542 Supplemental Digital Content [#3]. Figure. Supplemental results Figure S8: Effect of 13 14 5 4 3 Concussion on Absolute Salary in 1K Euro Across Gender. 15 ¹⁶ 544 17 18 Table 1. Number of observations for exposure and control groups across time since 19 5 4 5 20 ²⁰₂₁ 546 exposure and number of observations with missing salary information 22 547 23 Exposure 24 Years until exposure group Control ∆=1 Control ∆=2 Control ∆=3 Control ∆=4 Control ∆=5 25 26 -4 36,804 33,681 31,112 29,190 27,859 26,794 27 -3 36,978 33,834 31,245 29,366 27,973 26,907 28 -2 37,195 34,003 31,407 29,501 28,146 27,031 29 -1 37,449 34,224 31,582 29,687 28,288 27,220 30 31 0 37,848 34,551 31,851 29,922 28,530 27,421 32 1 37,467 31,755 29,832 28,433 27,337 33 2 36,940 29,807 28,421 27,295 34 3 36,484 28,421 27,304 35 36 4 36,084 27,314 37 333,249 170,293 188,952 207,305 226,071 244,623 **Total observations** 38 Observations with 39 81 32 31 44 35 29 missing salary 40 41 548 42 549 Control groups have not suffered a concussion in $10+\Delta$ years before incident, exposure group 43 44 45 550 has not suffered concussion the 10 years before exposure incident. 46 47 551 48 49 50 51 52 53 54 55 29 56 57

BMJ Open

control	groups that suffered the	ir concussion Δ =	1, 2, 3, 4, 5 <u>y</u>	y after the expo
group's	s concussion event, meas	sured at 2015-leve	I. N _{Exposure} : 3	7,848
	Estimated salary effect (δ)	95 % Cl	p	N _{Control}
Δ = 1 y	-423€	(-919€;73€)	.095	34,551
Δ = 2 y	-825€	(-1,108€; -543€)	<.001	31,851
∆ = 3 y	-1,019€	(-1,331€; -707€)	<.001	29,922
∆ = 4 y	-1,126€	(-1,446€; -805€)	<.001	28,530
∆ = 5 y	-1,243€	(-1,564€; -922€)	<.001	27,421

Exposure N=37848

Control ∆=1 N=34551

Control ∆=2 N=31851

Control ∆=3 N=29922

Control ∆=4 N=28530

Control ∆=5 N=27421

352x256mm (72 x 72 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 4

SUPPLEMENTAL MATERIALS AND METHODS

Our quasi-experimental, difference-in-differences event time approach compares two groups of individuals from the same cohort, where both groups experience concussions, but at two different time points $(t_c,t_c+\Delta)$. For the simple situation where we have three periods (t=0,1,2) and the exposure group (T) experiences their concussion at the start of period 1 $(t_c=1)$, and the control group (C) at the start of period 2 $(t_c+\Delta=2)$, the effect of concussion on salary (Y) is:

$$\Delta = (Y_1^{\rm T} - Y_1^{\rm C}) - (Y_0^{\rm T} - Y_0^{\rm C})$$

The effect of concussion on salary in t=1 is estimated by comparing the average difference in salary between exposure and control groups for the post-concussion period t=1 $(Y_1^T - Y_1^C)$ to the average difference in salary for the pre-concussion, or baseline, interval t=0 $(Y_0^T - Y_0^C)$. Assuming the exact timing of a concussion is random for small enough sizes of Δ , and under the additional assumption that the exposure group would have had parallel trends in salary as the control group absent suffering concussion at t_c, δ captures the causal effect of concussion among those who suffer concussions – also known as the average effect on the treated (AT). The AT does not capture how concussions would affect a random person. The AT captures how concussions causally affect those who suffer concussions.

For our study, the parallel trends assumption states that exposure and control groups have parallel developments in salary leading up to the exposure group's concussion and the exposure and control groups would have further exhibited parallel salary trajectories if the concussion had not occurred. To test the parallel trends assumption, we estimate a dynamic version of the model specification (shown in supplementary table S1), which explicitly allows us to test whether the parallel trend assumption for our sample is probable.

To validate that the timing of concussion is random with our study period, we present estimates for effect of exposure across different periods between exposure and control incident (Δ). Most recorded concussions outside contact sports and military engagements stem from unforeseen events, such as falls or striking/being struck by an object^{25,26}, so assuming random timing is likely valid. People who regular engage in activities that result in high risk of multiple concussions may be different than the average concussion patient and would be more likely to end up in the exposure sample than in the control sample, which could induce bias. To avoid such potential bias, we restrict our sample to individuals without prior diagnoses for intracranial injuries ten years prior to exposure.

At t=-1, i.e. one year before the exposure group suffered a concussion, the control groups were slightly smaller than the exposure group, and two control groups (Δ =4 and 5) differed slightly but significantly in terms of average patient age (p <. 001; supplementary table S2), male to female ratio (p <. 001), and for control group Δ =5, in the frequency of individuals with at least a high school degree (p < .001). However, the differences are numerically small. To test that composition differences between exposure and control do not drive our results, we provide separate results for individuals with and without high school degree, for males and females, and for different age groups across all different values of Δ .

Further, our design inherently leads to the possibility of timing issues—our exposure group always suffers their concussion earlier (in terms of calendar time and age) than the control groups do. If the labor market is constantly improving or worsening during the period we consider, this could substantially influence our results. Therefore, we also estimate separate models across exposure incident year and control group. Estimating separate models allow us the added benefit of being able to examine whether the business cycle influences the effect of concussions on salary.

Statistical model

To estimate the impact of concussion on salary, we define the following variables: Exposure or control group g, which includes individuals *i*, at times to exposure-groups concussion incident *t*. First, we estimate a standard difference in differences model for each separate control group $\Delta = \{1, 2, 3, 4, \text{ and } 5\}$ using ordinary least squares:

$$\begin{aligned} Salary_{git} &= \beta_0 + \gamma exposure_g + \theta post_t + \delta post \times exposure_{git} + X_i \beta \\ &+ \sum_{Age=26}^{48+\Delta} I(Age)\eta_{age} + \sum_{vear=1999}^{2012} I(year)\eta_{vear} + \epsilon_{git} \end{aligned}$$
(S1)

where Salary_{git} measures annual salaried income deflated to 2015-level, exposure_g indicates whether the observation belongs to the exposure or control group, $post_t$ captures the period after the exposure group's concussion occurred, and $post_t \times exposure_{git}$ captures the effect concussion, measured as share of year $t \ge 0$ affected by concussion. In this way, someone who suffers a concussion July 1 has $post_t \times exposure_{git} = 0.5$ for t = 0 and $post_t \times exposure_{git} = 1$ for $t \ge 0$. X_i is a set of covariates that includes a high school indicator and a gender dummy, ϵ_{git} is the error-term, and the two last sets of indicator variables I(Age) and I(Year) capture age and incident year levels (control group indexed against incident year). Under the parallel trends assumption, δ then captures the annual effect of concussion on salary. In eq. 1, exposure_g normalizes any pre-exposure differences between the exposure and control group, thereby creating a joint baseline pre-exposure.

We estimate robust individual-level clustered standard errors to account for the possibility that individuals enter the data twice both as control (0) and exposure (1) individuals ($g=\{0,1\}$), and that they are observed for multiple periods ($t=\{-4,...,\Delta-1\}$). To calculate the relative salary decrease after concussion, we exploit the parallel trends assumption to generate the expected counterfactual salary level, i.e. had the concussion not occurred, and calculate the decline expressed in percentage as: % change = $\delta / E(Salary_{git}|g=1, post_t = 1, post_t \times exposure_{git} = 0$). In this way, we provide both absolute estimates measured in 1K Euro, as well as percentage change.

We expect δ from eq. (1) to likely be negative. Yet, a decrease in annual salary can arrive through two different channels. Concussions may affect salary through either decreasing income among those employed or by reducing the number of individuals who are employed and earning any salary at. To parse out which of the two channels is driving the results, we examine how concussion affects the salary distribution among the exposure group following. Following Chernozhukov et al.²⁷ we estimate a series of regressions across the whole salary distribution, where, for a finite set of points, we predict how concussion affects the likelihood of having earnings on the left side of each finite point, as follows:

$$\sum_{j=0}^{\max(Salary)} p_j = \beta_{0j} + \delta_j post_t \times exposure_{git} + \theta post_t + \gamma_j exposure_g + X_i \beta + \sum_{Age=26}^{48+6} I(Age)\eta_{age,j} + \sum_{year=1999}^{2012} I(year)\eta_{year,j} + \epsilon_{git,j}$$
(S2)

where $p_j = \Pr(Salary_{git} \le j)$ and j is the interval from 0 to max(Salary). Across the salary distribution, we can now predict the probability of earning less than j for those with and without concussions. From equation 2, we predict $p_j^1 = E(p_j | post_t \times exposure_{git} = 1, exposure_g = 1, t \ge 0)$ and the counterfactual $p_j^0 = E(p_j | post_t \times exposure_{git} = 0, exposure_g = 1, t \ge 0)$. Plotting p_j^1 and p_j^0 over each value of salary j, and assuming rank stability, gives the cumulative density function of salary for the treated (p_j^1) and the counterfactual observation of the treated had they not suffered concussions (p_j^0) . The difference between p_j^1 and p_j^0 is simply δ_j . If the value of δ_j monotonically moves towards zero as j increases until $p_j^1 \approx p_j^0 \approx 1$ it indicates that exit from employment fully drives the effect of concussion on salary. If instead the value of δ_j is constant or increasing across parts of the distribution, it instead indicates that a decrease in salary among those still receiving salary drives at least part of the effect.

Eq. 1 and eq. 2 are based on the parallel trends assumption. The assumption states that exposure and control groups follow parallel salary trajectories until individuals in the exposure group experiences a concussion, and that the parallel trends would have continued had the concussion not occurred. Whereas we cannot verify the counterfactual situation of parallel trends after exposure, we can use a dynamic model to test for systematic differences in salary trends between exposure and control group in the years leading up to the exposure group's concussion event. To do so, we estimate the following dynamic model:

$$\begin{aligned} Salary_{git} &= \beta_0 + \sum_{t=-4}^{\Delta-1} \delta_t \times I(t_g) \times exposure_g + \sum_{t=-4}^{\Delta-1} I(t_g)\eta_t + \gamma exposure_g + X_i \beta + \\ \sum_{Age=26}^{48+\Delta} I(Age)\eta_{age} + \sum_{year=1999}^{2012} I(year)\eta_{year} + \epsilon_{git} \end{aligned} \tag{S3}$$

Where we interact exposure group status (*exposure*_g) with indicators $I(t_g)$ capturing time from concussion. If the parallel trends assumption holds, then it must be the case { δ_{-4} , δ_{-3} , δ_{-2} }=0, whereas the size and sign of { $\delta_{0...}\delta_{\Delta-1}$ } captures the dynamic effect of a concussion from the year of incidence and Δ -1 years onward. By estimating the effect of concussion on salary among different years of the study period, we are also able to capture how the impact of concussion on salary evolves year to year after the concussion has occurred. We further estimate eq. 3 for a series of related labor market outcomes (annual total income, annual amount of sickness benefits received, annual probability of being employed), to generate a more thorough understanding on how concussions affect labor market outcomes—i.e., if people experience a decrease in salary due to a concussion, are they then compensated through different types of welfare state services.

25 Faul M, Coronado V. Epidemiology of traumatic brain injury. *Handbook of clinical neurology* **127**:3-13, 2015

26 Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic Brain Injury–Related Emergency Department Visits, Hospitalizations, and Deaths — United States, 2007 and 2013. *MMWR Surveillance Summaries* **66**:1-16, 2017

27 Chernozhukov V, Fernández-Val I, Melly B. Inference on Counterfactual Distributions. *Econometrica* **81**:2205-2268, 2013

Page 38 of 109

BMJ Open

1	
2	
3	*****
4	
5	
6	***************************************
7	**********
, 8	***************************************
0	********
9	****
10	***** This study relies on restricted individual level
11	administrative data obtained
12	duministrative uata obtained
13	***** ITOM STATISTICS Denmark.
14	****
15	***** Only Danish research environments are granted authorization to
16	access data from Statistics Denmark. ***** Foreign
17	***** researchers can, however, get access to micro data through an
18	affiliation to a Danish authorized
19	wwww environment
20	πππππ CIVII Unincici
20	***** Access is given to anonymized micro data, i.e. data at an
21	individual personal or corporate level. ***** Access takes
22	***** place through researcherís own pc over the Internet.
23	****
24	<pre>***** See https://www.dst.dk/en/TilSalg/Forskningsservice for detail</pre>
25	****
26	wwww For the replication of present study contact the POCKWOOL
27	Foundation for access
28	roundation for access.
29	***** http://www.rockwoolfonden.dk/en/
30	****
31	***********
32	******
32	*****
34	***
2F	
55 26	***************************************
30	***********
3/	
38	
39	
40	******
41	*****
42	
43	***************************************
44	***********
45	***************************************
46	*********
47	****
48	***** This is the master data do-file for the full package of do-
40	files that generates the results for
7 7	***** Fallesen and (amons (2020) Evecute files in the order they
50	are listed. For each file, specify a weeker home registry in place of
51	are croced. For each rice, specing a ***** nome registry in place of
52	[nome] Further, generate subtolders [nome]/data, [home]/tables, and
53	***** [home]/highdet to capture auxiliary data sets, tables, and
54	figures.
55	****
56	*******
57	*****
58	᠂᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃
59	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
60	***************************************

1	
2	
3	***************************************
4 5	**********
5	
7	***Install user-written reghdfe command for faster computation of
8	regressions
9	ssc install reghdfe
10	
10	<pre>***Generate concussion samples and merges on covariates and outcome</pre>
12	do 01generate_sample.do
13	
14	<pre>***Generates auxilary data sets the includes social benefit</pre>
15	recipiency indicator and levels of benefits received
16	do 02generate benefits.do
17	5 _
18	***Generates auxilarv data sets the includes social benefit
19	recipiency indicator and levels of benefits received
20	do 02generate benefits.do
21	
22	***Generate results
23	do Aggenerate figures and results
24	do obgenerate_rigares_ana_resutts
25	evit clear
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
30 27	
27 20	
30	
40	
40	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
5/	
58	
59	
60	

clear all	
**************************************	********************
** ** (2020)	This program builds data for Fallesen & Campos
(2020) **	study of concussion's impact on productivity
measured **	through annual salary
** ************** ************	**************************************
∗∗Global for global dorg "I	oath to registry data E:/data/rawdata/706630"
*Global for p global data "	rocessed data [home]/data"
/*globals for	price index to calculate income at 2015-level across
<pre>years*/ /*Price index forbrug/forbrug</pre>	obtained from www.dst.dk/en/statistik/emner/priser-og- ugeriser/nettoprisindeks */
{	
global pricely	980 = .358 981 = .398
global price19	982 = .439
global price19	983 = .466
global pricely	984 = .494 985 = .517
global price19	986 = .521
global price19	987 = .537
global price19	988 = .564
global pricel	989 = .594 990 = .612
global price19	991 = .628
global price19	992 = .642
global price19	993 = .651
global pricel	394 = .062
global price19	995 = .688
global price19	997 = . 703
global price19	998 = .713
global price19	999 = .728
global price20	300 = .751 301760
global price2	302 = .788
global price2	203 = .806
global price20	304 = .817
global price20	205 = .833
global price20	000 = .00V

4

5

6

7

8

```
global price2007 = .867
          global price2008 = .899
          global price2009 = .917
          global price2010 = .936
          global price2011 = .960
          global price2012 = .978
          global price2013 = .986
10
          global price2014 = .994
11
          global price2015 =1.00
12
          global price2016 =1.005
13
          global price2017 =1.017
14
15
16
17
          /*Locate concussions and other TBIs from the Danish National Patient
18
19
          Registry */
20
          /**/
21
          forvalue t = 1977/2017{
22
                   if `t' < 1994 use $dorg/lpr_diag`t'.dta /// **uses ICD-8</pre>
23
          codes until Dec. 31, 1993
24
                            if substr(c_diag,1,2)=="85"
25
                   if `t' > 1993 use $dorg/lpr_diag`t'.dta /// **uses ICD-10
26
           codes from Jan. 1, 1994
27
                            if substr(c_diag,1,4)=="DS06"
28
                   **recovers encrypted social security number and admittance
29
          date
30
                   merge m:m recnum using $dorg/lpr_adm`t', keepus(pnr d_ind*)
31
          keep(3)
32
                   drop _merge recnum
33
34
35
36
                   **Keeps diagnosis, diagnosis type, and individual id (pnr)
37
                   keep pnr c_diag c_diagtype pnr d_ind
38
39
                   **generate year variable
40
                   gen year = year(d_ind)
41
42
                   **geenrate share of year with concussion
43
                    gen time_from_incident = 1-((d_ind-mdy(1,1,year(d_ind)))/
44
          365)
45
                   drop d_ind
46
47
                   *save as one dataset
48
                   if `t' > 1977 append using $data/concussion.dta
49
                   if `t' == 2017 sort pnr year
50
                   save $data/concussion.dta, replace
51
52
53
54
          }
55
          */
56
          57
          Sets up datasets for treatment group (x = 0)
58
          and the control groups who suffer concussion
59
          1, 2, 3, 4, 5 years later (x = 1 2 3 4 5).
60
```

4 5

6

7

8

9

10

11

12

13

14 15

16

17 18

19

20 21

22

23 24

25

26

27

28

29 30

31

32

33

34 35 36

37

38

39 40

41

42

43

44

45

46

47

48 49

50

51

52

53 54 55

56

57 58

59

60

Defined by latest year available data*/ forvalue count = 1992(1)`endtime'{ local t = count'// for ease of coding local n = t'-4// first pre-treatment event period local c = `t'+`post_period' //last post-event period local w = t'+time'//time of concussion for control use pnr alder using \$dorg/bef`t' /// Bring in all 30-49 yr olds if inrange(alder`t',20,59), clear // from the population register **year variable gen year = `t' **limit sample to those who suffer a concussion in `t' merge 1:1 pnr year using \$data/ concussion_0.dta, /// keep(3) nogen forvalue x=`n'/`c'{ //add longitudinal data merge 1:1 pnr using \$dorg/bef`x', /// keep(1 3) keepus(efalle alder koen) //add information on spouse, //age, and gender rename _merge merge`x' //indicator for whether in DK that year **Add salary information and ses information if `x' < 2017{ merge 1:m pnr using \$dorg/ ind`x', /// m:1 to account for duplicates nogen keep(1 3) keepus(erhvervsindk_13 pre_socio personindk dispon_13 aekvivadisp_13) // in data on non-important variables bysort _all: keep if _n ==1 //drop perfect duplicates **Align variable names and account for inflation rename erhvervsindk_13 loenmv rename pre_socio pre_socio`x' foreach kk in personindk dispon 13 aekvivadisp_13 loenmv{

Page 44 of 109

1 2 3

4

5

6 7

8

9

10

11

12 13

14

15

16

17 18

19

20

21

22

23

24

25 26

27

28

29

30 31

32

33 34

35 36

37 38

39 40

41 42

43

44

45 46

47

48

49

50

51

52

53 54

55 56

57

58

59

60

rename `kk' `kk'`x' } foreach kk in personindk dispon_13 aekvivadisp_13 loenmv{ replace `kk'`x' = `kk'`x'/\${price`x'} } ****Bring in educational information** merge 1:1 pnr using \$dorg/ uddany`x', /// nogen keep(1 3) keepus(hffsp) } if `x' == 2017{ merge 1:m pnr using \$dorg/ ind`x', /// m:1 to account for duplicates nogen keep(1 3) keepus(erhvervsindk_13 pre_socio personindk) // in data on non-important variables bysort _all: keep if _n ==1 //drop perfect duplicates **Align variable names and account for inflation rename erhvervsindk_13 loenmv rename pre_socio pre_socio`x' foreach kk in personindk loenmv{ rename `kk' `kk'`x' } foreach kk in personindk loenmv{ replace `kk'`x' = `kk'`x'/\${price`x'} } **Bring in educational information merge 1:1 pnr using \$dorg/ udda`x', /// nogen keep(1 3) keepus(hfaudd) rename hfaudd hfaudd x' } } **Reshape data to panel structure if `count'>= 2012 reshape long efalle alder koen loenmv pre_socio personindk dispon_13 aekvivadisp_13 hffsp merge hfaudd , i(pnr) j(t)

4

5

6 7

8

9

10 11

12

13 14

15 16

17

18

19 20

25

26

27

28 29

30

31

32 33

34

35 36

37

38

39 40

41

42

43

44

45

46 47

48

49

50

51

52

53 54

55

56

57

58

59 60 **BMJ** Open

if `count' < 2012 reshape long efalle alder koen loenmv pre_socio personindk dispon_13 aekvivadisp_13 hffsp merge i(pnr) j(t) qen count = t-year//variable for time to concussion gen treatment =1 //treatment group indicator save \$data/sample_temp.dta, replace //temporary dataset / Now build control sample for time `time' and year `count' use pnr alder using \$dorg/bef`t' /// Bring in all 30-49 yr olds if inrange(alder`t',20,59), clear // from the population register **year variable //time for concussion for control gen year = `w' group `time' **limit sample to those who suffer a concussion in `+' merge 1:1 pnr year using \$data/ concussion_`time'.dta, /// keep(3) nogen forvalue x=`n'/`c'{ //add longitudinal data merge 1:1 pnr using \$dorg/ bef`x', /// keep(1 3) keepus(efalle alder koen) //add information on spouse, //age, and gender rename _merge merge`x' //indicator for whether in DK that year if `x' < 2017{ ****Add salary and SES** information merge 1:m pnr using \$dorg/ind`x', /// 1:m to account for duplicates nogen keep(1 3) keepus(erhvervsindk_13 pre_socio personindk dispon_13 aekvivadisp_13) // in data on non-important variables

bysort _all: keep if _n ==1 //drop perfect duplicates **Align variable names and account for inflation rename erhvervsindk_13 loenmv rename pre socio pre_socio`x' foreach kk in personindk dispon_13 aekvivadisp_13 loenmv{ rename `kk' `kk'`x' } foreach kk in personindk dispon_13 aekvivadisp_13 loenmv{ replace `kk'`x' = `kk'`x'/\${price`x'} } **Bring in educational information merge 1:1 pnr using \$dorg/uddany`x', /// nogen keep(1 3) keepus(hffsp) } if `x' == 2017{ merge 1:m pnr using \$dorg/ ind`x', /// m:1 to account for duplicates nogen keep(1 3) keepus(erhvervsindk_13 pre_socio personindk) // in data on non-important variables bysort _all: keep if _n ==1 //drop perfect duplicates **Align variable names and account for inflation rename erhvervsindk 13 loenmv rename pre_socio pre_socio`x' foreach kk in personindk loenmv{ rename `kk' `kk'`x' } foreach kk in personindk loenmv{ replace `kk'`x' =

48

49

50 51 52

53

54 55

56 57

58 59

60

2 3 `kk'`x'/\${price`x'} 4 } 5 6 **Bring in educational information 7 merge 1:1 pnr using \$dorg/ 8 udda`x', /// 9 nogen keep(1 3) 10 keepus(hfaudd) 11 rename hfaudd hfaudd x' 12 } 13 } 14 15 **Reshape data to panel structure 16 if `count'>= 2012 reshape long efalle alder koen 17 18 loenmv pre_socio personindk dispon_13 aekvivadisp_13 hffsp merge 19 hfaudd , i(pnr) j(t) 20 if `count' < 2012 reshape long efalle alder koen 21 loenmv pre_socio personindk dispon_13 aekvivadisp_13 hffsp merge , 22 i(pnr) j(t) 23 gen count = t-t'//variable for 24 time to concussion for treatment 25 gen control`time' =1 //control indicator 26 save \$data/control_temp, replace 27 28 **Build sample with treatment and control `time' 29 for year `count' 30 use \$data/sample_temp 31 append using \$data/control_temp 32 33 **fixes control and treatment indicators 34 replace control`time' = 0 if control`time'==. 35 36 replace treatment = 0 if treatment==. 37 38 **Picks up changes to education variable 39 if `count' >=2012{ 40 tostring hfaudd, replace 41 rename hfaudd start 42 merge m:1 start using "\ 43 \srvfsenas1\data\Formater\SAS formater i Danmarks 44 Statistik\STATA datasaet\Disced\c udd niveau l1l2 k.dta" , nogen 45 keep(1 3)46 destring UDD, replace force 47 **Replace all with high school degree or 48 higher in HFAUDD to have HFFSP = 40000001 49 replace hffsp = 40000001 if t == 2017 & 50 inrange(UDD,30,80) 51 replace hffsp = 0 if t == 2017 & !52 53 inrange(UDD,30,80) 54 drop UDD start 55 } 56 57 sort pnr t 58 59

```
save $data/sample_control_`count'_`time'.dta,
replace
       }
}
forvalue time = 1/5{
       forvalue count =2003/2012{
               if `time' ==1 & `count' ==2003 use $data/
sample_control_`count'_`time'.dta, clear
               else append using $data/
sample_control_`count'_`time'.dta`
               if `time' ==5 & `count' ==2012 bysort pnr: keep if
_n ==1
               if `time' ==5 & `count' ==2012
                                             count
       }
}
```

Page 49 of 109

2	
3	clear
4	
5	
6	***************************************
7	******
0	***************************************
0	****
9	**
10	** Calculate share of year on nublic benefits and size
11	of herefit
12	
13	** payments for Fallesen and Campos (2020)
14	**
15	**
16	********
17	****
18	
10	
20	
20	/*globals for price index to calculate income at 2015-level across
21	years*/
22	/*Price index obtained from www.dst.dk/en/statistik/emner/priser-og-
23	forbrug/forbrugeriser/nettoprisindeks */
24	
25	alahal price1080 - 358
26	$\frac{1}{2}$
27	y(0)a(p)(e190) = .590
28	global price1982 = 439
29	global price1983 = .466
30	global price1984 = .494
31	global price1985 = .517
37	alobal price1986 = .521
32	alobal price1087 - 537
24	$\frac{1}{2} \frac{1}{2} \frac{1}$
24	ylubal price1900 – 1004
35	global price1989 = .594
36	global price1990 = .612
37	global price1991 = .628
38	global price1992 = .642
39	global price1993 = .651
40	alobal price1994 = .662
41	alobal price1005 $-$ 674
42	global price1999 = 699
43	y(0)a(p)(ce1990000)
44	global price1997 = .703
45	global price1998 = .713
46	global price1999 = .728
40	global price2000 = .751
47	global price2001 = .769
48	alobal price2002 $-$ 788
49	g_{10bal} price2002 – 1700
50	$y_{10}y_{11} = 000$
51	global price2004 = .81/
52	global price2005 = .833
53	global price2006 = .850
54	global price2007 = .867
55	global price2008 = $.899$
56	alobal price 2000 = 017
57	g_{10} g_{11} g_{12} g_{13} g
58	$g_{10} = 930$
50	global price2011 = .960
55	global price2012 = .978
00	

```
global price2013 = .986
global price2014 = .994
global price2015 =1.00
global price2016 =1.005
global price2017 =1.017
**Global for path to registry data
global dorg "e:/data/rawdata/706630"
*Global for processed data
global data "E:/data/workdata/706630/pf/FallesenCampos/data"
forvalue t=1996/2017{
        ** Read in data on social benefits recipiency share of
weeks
        ** from the DREAM database
        use $dorg/dream`t'
        gen share =0
        forvalue y = 1/52{
                         if `y' < 10 replace share = share+1 if
y_0`y' !=.
                         if y' > 9 replace share = share+1 if
y_`y' !=.
                          if `y' < 10 drop y_0`y'
                          if y' > 9 drop y_y'
        }
        **Generate annual measure of share of year receiving social
benefits
        replace share = share/52
        keep pnr share
        qen t = t'
        if `t' > 1996 append using $data/temp.dta
        save $data/temp.dta, replace
}
forvalue t=1998/2017{
        **Read in information on size of different types of social
benefits
        if `t' < 2002{
                 use pnr syg_barsel_13 konthj arblhum pre_socio
using $dorg/ind`t'.dta, clear
                 replace syg_barsel_13 = syg_barsel_13/${price`t'}
                 replace konthj = konthj /${price`t'}
                 replace arblhum = arblhum/${price`t'}
                 gen kont_dag = konthj+arblhum
                 drop konthj arblhum
        }
        if `t' >= 2002 & `t' < 2013{
```

```
2
3
                             use pnr syg_barsel_13 adagpagn konthj arblhum
4
           pre_socio using $dorg/ind`t'.dta, clear
5
                              replace syg_barsel_13 = syg_barsel_13/${price`t'}
6
                              replace adagpagn = adagpagn/${price`t'}
7
                              replace konthj = konthj /${price`t'}
8
                              replace arblhum = arblhum/${price`t'}
9
                             gen kont_dag = konthj+arblhum
10
                             drop konthj arblhum
11
                    }
12
                    if `t' >= 2013{
13
                             use pnr syg_barsel_13 adagpagn dagpenge_kontant_13
14
           pre_socio using $dorg/ind`t'.dta, clear
15
                              replace syg_barsel_13 = syg_barsel_13/${price`t'}
16
                              replace adagpagn = adagpagn/${price`t'}
17
18
                              replace dagpenge_kontant_13 =
19
           dagpenge_kontant_13 /${price`t'}
20
                             gen kont_dag = dagpenge_kontant_13-syg_barsel_13
21
                             drop dagpenge_kontant_13
22
                    }
23
                    gen t = `t'
24
                    compress
25
                    bysort pnr: keep if _n ==1
26
                    if `t' > 1998 append using $data/temp2.dta
27
                    if `t' == 2017{
28
                             sort pnr t
29
                    }
30
                    save $data/temp2.dta, replace
31
           }
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
```

1 2 3

4 5

6

7

8

9

10

11

12

13

14

15 16

17 18

19

20 21

22

23 24

25

30 31

32

33

34 35

36 37

38

39

40

41

42

43 44

45

46

47

48

49 50

51

52 53 54

55 56

57

58

59

60

clear all ****** ** This program geenrates figerus and results for ** Fallesen & Campos (2020) study of concussion's impact on productivity ** measured through annual salary ** ** ****** **Global for path to registry data global dorg "E:/data/rawdata/706630" *Global for processed data global data "[home]/data" *Global on figures global highdef "[home]\highdef" forvalue time = 1/5{ //for different control groups local post_period = 5 // local for number of years observed post // concussion for exposure group local endtime = 2017-`post_period' /*last year where we allow for exposure event to occur, in order to have long enough control period. Defined by latest year available data*/ **Matrixes to capture estimates matrix results = J(15,6,.)// For salary estimates matrix results_p = J(15,6,.)// For Pr(salary=0) estimates matrix t = J(15, 6, .)// For time indicators forvalue count = 2003(1)`endtime'{ use \$data/sample_control_`count'_`time', clear gen female = koen==2qui{ gen edu =0 replace edu = 1 if inrange(hffsp, 2000000,3900000) | ///
(hffsp >	40000000	& hffsp!=.) }			
appear i	ppear in data, eriods from when	<pre>**exclude individuals in years where they do not</pre>			
appear 1		**due to either death or migration, as well as			
perious		" *∗the control drop if merge	group sufer ==1 count	their co > `time	oncussion '-1
1		**generate con gen treat = in	cussion var range(count	riable ,0,`time	'–1) & treatment
treatmen	ı eatment ==1	replace treat	= time_fron	n_inciden	t if count ==0 &
for		**Generate pre	e-concussior	n income (difference
		<pre>**use in calcu sum loenmv if local control sum loenmv if local treat =r sum loenmv if local control_ gen post = cou</pre>	<pre>ilating marg count <0 & =r(mean) count <0 & (mean) count>=0 & post =r(mea int >=0</pre>	ginal effo treatmen treatmen treatmen an)	ects t ==0 t ==1 t ==0
treatmen	t edu ye	<pre>**estimate DiD reghdfe loenmv ar) cl(pnr) matrix b =e(b) matrix V = e(V local n = `cou</pre>) model on s / treat, abs //regres /) // stand int'-2002	salary s(alder fo ssion coe lard erro //time	emale post fficient r^2
(`contro	l_post'-	matrix results matrix results matrix results (`control'-`tre matrix results	S[`n',1] S[`n',2] S[`n',3] Sat')) S[`n',4]	= = =	b[1,1] V[1,1]^.5 b[1,1]/ `n'
	} svmat re	esults			
	rename r rename r rename r rename r	results1 est results2 se results3 marg results4 time			
graph	replace	<pre>time = time+(``</pre>	time'-3)* . 1	//jitter	estimates for

```
2
3
                    keep est* se* marg* time
4
                    keep if est !=.
5
6
                    replace est = est/7446
                                              //estimate measured as 1000 Euro
7
                    replace se = se/7446
                                              //S.E. measured as 1000 Euro
8
9
                    gen upper = est+se*1.96 // Upper CI
10
                   gen lower = est-se*1.96 // Lower CI
11
12
13
                    gen control = `time'
                                                       //indicate control group
14
15
                    if `time' >1 append using $data/results.dta
16
17
                    save $data/results.dta, replace
18
           }
19
20
           use $data/results.dta, clear
21
22
           replace time = 2002+time
23
24
25
           *reads in unemployment statistcis obtained from statistikbanken.dk/
26
           en/
27
28
           gen unemp = 5.8 if time == 2003
29
           replace unemp = 5.8 if time ==2004
30
           replace unemp = 5.1 if time ==2005
31
           replace unemp = 3.9 if time ==2006
32
           replace unemp = 2.7 if time == 2007
33
           replace unemp = 1.9 if time ==2008
34
           replace unemp = 3.6 if time ==2009
35
36
           replace unemp = 4.2 if time ==2010
37
           replace unemp = 4.0 if time ==2011
38
           replace unemp = 4.5 if time ==2012
39
40
           scatter est time if control ==1, mcolor(navy) yaxis(1) ysc(range(-4
41
           3) axis(1)) ylab(-4(1)3) || ///
42
           scatter est time if control ==2, mcolor(blue) || ///
43
           scatter est time if control ==3, mcolor(midblue) || ///
44
           scatter est time if control ==4, mcolor(gray) || ///
45
           scatter est time if control ==5, mcolor(ltblue) || ///
46
           rspike upper lower time if control ==1, lcolor(navy) || ///
47
           rspike upper lower time if control ==2, lcolor(blue) || ///
48
           rspike upper lower time if control ==3, lcolor(midblue) || ///
49
           rspike upper lower time if control ==4, lcolor(gray) || ///
50
           rspike upper lower time if control ==5, lcolor(ltblue) || ///
51
           line unemp time , lcolor(black) yaxis(2) ysc(range(0 6) axis(2))
52
53
           ylab(0(1)6, axis(2))
                                 - / / /
54
           xsc(range(2002.5 2012.5)) xlab(2003(2)2012) ///
55
           yline(0) ysize(10) xsize(12) graphr(c(white)) ///
56
           xti("Year of concussion for exposure group") scale(.95) ///
57
           legend(label(1 " Control," "{&Delta}=1 yr") ///
58
           label(2 " Control," "{&Delta}=2 yr") ///
59
           label(3 " Control," "{&Delta}=3 yr") ///
60
```

4 5

6

7

8

9

10 11 12

13 14 15

16 17

18

19 20

21

22

23

24

25

26

27

28

29

30

31 32

33 34

35

36

37

38

39

40 41

42 43

44

45

46

47 48

49

50

51 52 53

54

55

56

57

58

59

```
label(4 " Control," "{&Delta}=4 yr") ///
label(5 " Control," "{&Delta}=5 yr") ///
label(6 "% Unemp." "of LF") ///
c(1) order(1 2 3 4 5 6) pos(3) size(small) ///
c(1) symx(4) region(lc(white))) ///
yti("Effect on Salary (in EUR 1K)", height(7) axis(1)) ///
yti("Percent of Full Time Uemployed among LF", height(7) axis(2))
graph export $highdef/marg est.png, replace width(3900)
forvalue control_time=1/5{
        local end = 2012 // last incident year in data
        if `control_time' ==1
                                  eststo clear
        **build dataset for joint estimate across years
        forvalue count=2003/`end'{
                 if `count'==2003{
                          use $data/
sample_control_`count'_`control_time'.dta, clear
                         gen time = `count' //incident year
indicator
                 }
                 else append using $data/
sample_control_`count'_`control_time'.dta
                 replace time = `count' if time ==.
                 **exclude individuals in years where they do not
appear in data,
                 **due to either death or migration, as well as
periods from when
                 **the control group sufer their concussion
                 drop if merge ==1 | count > `control_time'-1
        }
        gen female = koen==2
        //build ident, so we can multivariate cluster for
individuals
        //who occur both as control and exposure during the period
(id)
        bysort pnr time: gen helpx = _n ==1
        gen id= sum(helpx)
        drop helpx
        **Generate educational groups
        qui{
                 gen edu =0
                 replace edu = 1 if inrange(hffsp,20000000,39000000)
| ///
                                                            (hffsp
>40000000 & hffsp!=.)
```

BMJ Open

1 2 3

4 5

6

7

8

9

10 11

12

13

14

15

16 17 18

19

20

21

22

23

24

25

26 27

28

29

30

31 32

33 34 35

36

37

38

39

40

41

42

43

44

45 46

47

48

49 50

51

52

53

54

55

56

57

58 59

60

} **Calculate number of observations for exposure and control count if count==0 & treatment ==1 local Ntreated = r(N)count if count==0 & treatment ==0 local Ncontrol = r(N)**generate concussion variable gen treat = inrange(count,0,`control time'-1) & treatment ==1 replace treat = time_from_incident if count ==0 & treatment ==1 ******Generate pre-concussion income difference for **use in calculating marginal effects sum loenmv if count <0 & treatment ==0</pre> local control =r(mean) sum loenmv if count <0 & treatment ==1</pre> local treat =r(mean) sum loenmv if count>=0 & treatment ==0 local control_post =r(mean) forvalue t=-4/4{ local n = t'*-1if `t' < -1 gen T_`n' = treatment ==1 & count ==`t' if `t' > -1 gen T`t' = treatment ==1 & count ==`t' } **estimate DiD model on salary reghdfe loenmv T*, abs(alder female count time treatment edu) cl(pnr id) eststo est1 `control time' if `control_time'==1 matrix results = J(5,5,.) // matrix to capture results if `control_time'==1 matrix results_p = J(5,5,.) // matrix to capture results if `control_time'==1 matrix results_pre = J(5,5,.) // matrix to capture results matrix b = e(b)matrix V = e(V)local n = `control_time' matrix results[`n',1] = b[1,1] / 7466 // capture beta results as 1K Euro $= (V[1,1]^{.5})/7466$ matrix results[`n',2] 11 capture standard error as 1K Euro matrix results[`n',3] b[1,1]/(`control_post'-= (`control'-`treat')) matrix results[`n',4] = `n' gen no_lon = loenmv<1 //dummy for no salary</pre>

7

8

9

10

11

12 13

14

15

16 17

18

19 20

21 22

23

24

25

26 27

28

29

30

31 32

33

34 35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53

54 55

56

57

58

59

```
**estimate DiD LP-model for pre-trends
        xi: reghdfe loenmv T*, abs(alder female count time
treatment edu) cl(pnr id), if count <0</pre>
        eststo est3_`control_time'
        matrix b = e(b)
                         //regression coefficient
        matrix V = e(V)
                         // standard error^2
        matrix results_pre[`n',1] =
                                           b[1,1]
        matrix results_pre[`n',2] =
                                           V[1,1]^.5
        matrix results_pre[`n',3] =
                                           b[1,1]/(`control_post'-
(`control'-`treat'))
        matrix results_pre[`n',4] =
                                           `n'
}
esttab est1_* using [home]/tables/dynamic1.rtf, ///
         replace se(1) b(1) compress nogap star(+ .1 * .05 ** .01
*** .001) ///
        keep(T*)
esttab est2_* using [home]/tables/dynamic2.rtf, ///
         replace se(3) b(3) compress nogap star(+ .1 * .05 ** .01
*** .001) ///
        keep(T*)
esttab est3 * using [home]/tables/pre trends.rtf, ///
         replace se(3) b(3) compress nogap star(+ .1 * .05 ** .01
*** .001) ///
        keep(T*)
forvalue control time=1/5{
         local end = 2012 // last incident year in data
        if `control_time' ==1
                                  eststo clear
        qui{
                 **build dataset for joint estimate across years
                 forvalue count=2003/`end'{
                          if `count'==2003{
                                  use $data/
sample_control_`count'_`control_time'.dta, clear
                                  gen time = `count' //incident year
indicator
                          }
                          else append using $data/
sample_control_`count'_`control_time'.dta
                          replace time = `count' if time ==.
                          **exclude individuals in years where they
do not appear in data,
                          **due to either death or migration, as
well as periods from when
                          **the control group sufer their concussion
```

4

5

6 7

8 9

10

11

12

13 14

19

20

21

22 23

24

25

26 27

28

29

30

31

32

33 34 35

36

37

38

39

40 41

42

43

44

45

46

47

48

49

50 51

52

53

54 55

56

57

58 59

```
drop if merge ==1 | count >
`control_time'-1
                 }
                 gen female = koen==2
                          **Generate educational groups
                 gen edu =0
                 replace edu = 1 if inrange(hffsp, 20000000, 39000000)
| ///
(hffsp >4000000 & hffsp!=.)
                 //build ident, so we can multivariate cluster for
individuals
                 //who occur both as control and exposure during the
period (id)
                 bysort pnr time: gen helpx = _n ==1
                 gen id= sum(helpx)
                 drop helpx
                 **Calculate number of observations for exposure and
control
                 count if count==0 & treatment ==1
                 local Ntreated = r(N)
                 count if count==0 & treatment ==0
                 local Ncontrol = r(N)
                 **generate concussion variable
                 gen treat = inrange(count,0,`control_time'-1) &
treatment ==1
                 replace treat = time_from_incident if count ==0 &
treatment ==1
                 **Generate pre-concussion income difference
for
                 **use in calculating marginal effects
                 sum loenmv if count <0 & treatment ==0</pre>
                 local control =r(mean)
                 sum loenmv if count <0 & treatment ==1</pre>
                 local treat =r(mean)
                 sum loenmv if count>=0 & treatment ==0
                 local control_post =r(mean)
                 forvalue t=-4/4{
                          local n = t'*-1
                          if `t' < -1 gen T_`n' = treatment ==1 &</pre>
count ==`t'
                          if `t' > -1 gen T`t' = treatment ==1 &
count ==`t'
                 }
```

5 6

7

8

```
gen post = count > -1
                            **estimate DiD model on salary
                             reghdfe loenmv treat, abs(alder female post time
           treatment edu) cl(pnr id)
                            eststo est1_`control_time'
10
                             if `control_time'==1 matrix results = J(5,5,.) //
11
           matrix to capture results
12
                             if `control time'==1 matrix results p = J(5,5,.) //
13
           matrix to capture results
14
15
16
17
                            matrix b = e(b)
18
                            matrix V = e(V)
19
                             local n = `control_time'
20
21
                            matrix results[`n',1]
                                                       = b[1,1] / 7466 //
22
           capture beta results as 1K Euro
23
                            matrix results[`n',2]
                                                       = (V[1,1]^{.5})/
24
           7466
                    // capture standard error as 1K Euro
25
                            matrix results[`n',3]
                                                                b[1,1]/
                                                       =
26
           (`control_post'-(`control'-`treat'))
27
                            matrix results[`n',4]
                                                       =
                                                                `n'
28
29
30
                    }
31
                    *examining balance of samples
32
                    di in ve `control time'
33
                    bysort treatment: sum female alder edu if count ==0
34
35
36
           }
37
38
39
40
           symat results
41
42
           gen upper = results1+results2*1.96
43
           gen lower = results1-results2*1.96
44
45
           scatter results1 results4 if results4 ==1, mcolor(navy) || ///
46
           scatter results1 results4 if results4 ==2, mcolor(navy)
                                                                      47
           scatter results1 results4 if results4 ==3, mcolor(navy) || ///
48
           scatter results1 results4 if results4 ==4, mcolor(navy) || ///
49
           scatter results1 results4 if results4 ==5, mcolor(navy) || ///
50
           rspike upper lower results4 if results4 ==1, lcolor(navy) || ///
51
           rspike upper lower results4 if results4 ==2, lcolor(navy) || ///
52
           rspike upper lower results4 if results4 ==3, lcolor(navy) || ///
53
           rspike upper lower results4 if results4 ==4, lcolor(navy) || ///
54
           rspike upper lower results4 if results4 ==5, lcolor(navy)
55
                                                                        ///
56
           ysc(range(-2 1)) ylab(-2(.5)1) ///
57
           xsc(range(.5 5.5)) xlab(1(1)5) ///
58
           yline(0) ysize(10) xsize(12) graphr(c(white)) ///
59
           xti("Years between exposure and control incident") scale(.95) ///
60
```

```
2
3
           legend(label(1 " Control," "{&Delta}=1 yr") ///
4
           label(2 " Control," "{&Delta}=2 yr") ///
5
          label(3 " Control," "{&Delta}=3 yr") ///
6
          label(4 " Control," "{&Delta}=4 yr") ///
7
           label(5 " Control," "{&Delta}=5 yr") ///
8
          c(1) order(1 2 3 4 5) pos(3) size(small) ///
9
          c(1) symx(4) region(lc(white))) ///
10
          yti("Effect in 1K Euro ({&delta}{subscript: Salary})",
11
          height(7)) ///
12
          legend(off)
13
14
          graph export $highdef/est2003 2011.png, replace width(3900)
15
16
17
18
          **Reports marginal effects for period 2003-2011 in percent
19
20
          gen upper2 = (results3+results2/(results1/results3)*1.96)*100
21
          gen lower2 = (results3-results2/(results1/results3)*1.96)*100
22
           replace results3 = results3*100
23
24
          scatter results3 results4 , mcolor(navy) || ///
25
           rspike upper2 lower2 results4, lcolor(navy) ///
26
          ysc(range(-5 0)) ylab(-5(.5)0) ///
27
          xsc(range(.5 5.5)) xlab(1(1)5) ///
28
          yline(0) ysize(10) xsize(12) graphr(c(white)) ///
29
          /*title("Percentage change in salary, 2003-10")*/ ///
30
          yti("Salary change (in %)", height(7)) ///
31
          xti("Years between exposure and control incident") scale(.95) ///
32
          legend(label(1 " Control," "{&Delta}=1 yr") ///
33
           label(2 " Control," "{&Delta}=2 yr") ///
34
          label(3 " Control," "{&Delta}=3 yr") ///
label(4 " Control," "{&Delta}=4 yr") ///
35
36
           label(5 " Control," "{&Delta}=5 yr") ///
37
38
          c(1) order(1 2 3 4 5) pos(3) size(small) ///
39
          c(1) symx(4) region(lc(white))) legend(off)
40
          /*
41
          note("Marginal effects for exposure dummy across spacing of control
42
          groups. Decrease " ///
43
          "calculated by dividing {&delta} with the normalized control groups'
44
          average salary " ///
45
          "post-concussion. Control groups suffer concussions 1, 2, 3, 4, and
46
           5 years (&Delta) after" ///
47
          "the exposure group. Both control and exposure group are 30-49 years
48
          of age when" ///
49
          "exposure group suffers concussion. 95% confidence intervals.")*/
50
51
          graph export $highdef/marginal2003 2011.png, replace width(3900)
52
53
54
55
56
57
          58
          ******
59
          **
60
```

4

5

6

7

8 9 10

11

12 13

14

15

16 17

18

19

20

21

22

23

24

25 26

27

28

29

30

31

32 33 34

35 36 37

38 39

40

41

42

43

44

45

46

47 48

49 50

51

52 53

54

55 56

57

58

59 60 **BMJ** Open

```
**
                Results for individuals with at least highschool
**
**
******
forvalue control_time=1/5{
        local end = 2012 // last incident year in data
        **build dataset for joint estimate across years
        forvalue count=2003/`end'{
                if `count'==2003{
                        use $data/
sample_control_`count'_`control_time'.dta, clear
                        gen time = `count' //incident year
indicator
                }
                else append using $data/
sample_control_`count'_`control_time'.dta
                replace time = `count' if time ==.
                **exclude individuals in years where they do not
appear in data,
                **due to either death or migration, as well as
periods from when
                **the control group sufer their concussion
                drop if merge ==1 | count > `control_time'-1
        }
        gen female = koen==2
        **Generate educational groups
        qui{
                gen edu =0
                replace edu = 1 if inrange(hffsp,20000000,39000000)
| ///
                                                         (hffsp
>40000000 & hffsp!=.)
        }
        keep if edu==1
        //build ident, so we can multivariate cluster for
individuals
        //who occur both as control and exposure during the period
(id)
        bysort pnr time: gen helpx = _n ==1
        gen id= sum(helpx)
        drop helpx help
```

4

5

6

7

8 9

10

11

12

13

14 15

16 17

18

19

20

21

22

23

24 25

26 27

28

29

30 31

32

33

34 35

36 37 38

39

40

41 42

43

44

45

46

47

48

49 50 51

52 53 54

55

56

57

58

59

60

Calculate number of observations for exposure and control count if count==0 & treatment ==1 local Ntreated = r(N)count if count==0 & treatment ==0 local Ncontrol = r(N)generate concussion variable gen treat = inrange(count,0,`control_time'-1) & treatment ==1 replace treat = time from incident if count ==0 & treatment ==1 ******Generate pre-concussion income difference for **use in calculating marginal effects sum loenmv if count <0 & treatment ==0</pre> local control =r(mean) sum loenmv if count <0 & treatment ==1</pre> local treat =r(mean) sum loenmv if count>=0 & treatment ==0 local control_post =r(mean) gen post = count >=0 **estimate DiD model on salary xi: reghdfe loenmv treat, abs(alder female post time treatment) cl(id pnr) if `control_time'==1 matrix results_edu = J(5,5,.) // matrix to capture results if `control_time'==1 matrix results_p_edu = J(5,5,.) // matrix to capture results matrix b = e(b)matrix V = e(V)local n = `control_time' matrix results_edu[`n',1] = b[1,1] / 7466 // capture beta results as 1K Euro matrix results edu[`n',2] $= (V[1,1]^{.5})/$ 7466 // capture standard error as 1K Euro matrix results_edu[`n',3] = b[1,1]/(`control post'-(`control'-`treat')) matrix results_edu[`n',4] = `n' } ****** ** Results for individuals with no high school+ ** ** **

Page 63 of 109

1 2 3

4

5 6 7

8

9 10

11

12

13

14

16 17

19

21

23

24

25

27

29

31

33

34 35

37

39

41

42

43

45

46

47

48

49

51

53

55

56 57 **BMJ** Open

```
******
          forvalue control time=1/5{
                  local end = 2012 // last incident year in data
                  **build dataset for joint estimate across years
                  forvalue count=2003/`end'{
                          if `count'==2003{
                                   use $data/
          sample_control_`count'_`control_time'.dta, clear
15
                                   gen time = `count' //incident year
          indicator
18
                          }
                          else append using $data/
20
          sample_control_`count'_`control_time'.dta
                          replace time = `count' if time ==.
22
                          **exclude individuals in years where they do not
          appear in data,
                          **due to either death or migration, as well as
26
          periods from when
                          **the control group sufer their concussion
28
                          drop if merge ==1 | count > `control_time'-1
30
                  }
32
                  gen female = koen==2
36
                  //build ident, so we can multivariate cluster for
          individuals
38
                  //who occur both as control and exposure during the period
          (id)
40
                  bysort pnr time: gen helpx = _n ==1
                  gen id= sum(helpx)
                  drop helpx help
44
                  **Generate educational groups
                  qui{
                          gen edu =0
                          replace edu = 1 if inrange(hffsp,20000000,39000000)
          | ///
50
                                                                    (hffsp
          >40000000 & hffsp!=.)
52
                  }
54
                  keep if edu==0
58
59
                  **Calculate number of observations for exposure and control
60
```

4

5

6

7 8

9

10

11

12

13 14

15

16

17 18

19

20

21

22

23

24 25

26

27

28 29

30

31

32

37

38

39 40

41

42

43

44

45

46

51 52

53

54

55

56

57

58

59

60

count if count==0 & treatment ==1 local Ntreated = r(N)count if count==0 & treatment ==0 local Ncontrol = r(N)**generate concussion variable gen treat = inrange(count,0,`control_time'-1) & treatment ==1 replace treat = time_from_incident if count ==0 & treatment ==1 ******Generate pre-concussion income difference for **use in calculating marginal effects sum loenmv if count <0 & treatment ==0</pre> local control =r(mean) sum loenmv if count <0 & treatment ==1</pre> local treat =r(mean) sum loenmv if count>=0 & treatment ==0 local control_post =r(mean) gen post = count >=0 **estimate DiD model on salary xi: reghdfe loenmv treat, abs(alder female post time treatment) cl(id pnr) if `control_time'==1 matrix results_noedu = J(5,5,.) // matrix to capture results if `control_time'==1 matrix results_p_noedu = J(5,5,.) // matrix to capture results matrix b = e(b)matrix V = e(V)local n = `control_time' matrix results_noedu[`n',1] = b[1,1] / 7466 // capture beta results as 1K Euro matrix results_noedu[`n',2] $= (V[1,1]^{.5})/$ // capture standard error as 1K Euro 7466 matrix results noedu[`n',3] b[1,1]/ = (`control post'-(`control'-`treat')) `n' matrix results noedu[`n',4] = } ****** ** Draw figure for subgroups ** ** ** *****

5 6

7

8

9

10

11 12

13

14 15

16

17 18

19

20

21 22

23

24 25

26 27

28 29 30

31

32 33

34 35 36

37

38

39 40

41 42

43

44

45

46

47

48

49

50

51

52

53 54

55

56 57 58

59

```
local t = -.15
foreach x in noedu edu{
        svmat results_`x'
        replace results_`x'4= results_`x'4+`t'
        svmat results_p_`x'
        replace results_p_`x'4= results_p_`x'4+`t'
        gen upper'x' = results 'x'1+results 'x'2*1.96
        gen lower`x' = results_`x'1-results_`x'2*1.96
        gen upper2`x' = (results_`x'3+results_`x'2/(results_`x'1/
results `x'3)*1.96)*100
        gen lower2`x' = (results_`x'3-results_`x'2/(results_`x'1/
results_`x'3)*1.96)*100
        replace results_`x'3 = results_`x'3*100
        gen upper_p_`x' = results_p_`x'1+results_p_`x'2*1.96
        gen lower_p_`x' = results_p_`x'1-results_p_`x'2*1.96
        local t = t'+.1
}
keep results* upper* lower*
keep if _n <=5
**generate locals for figure
foreach x in noedu edu{
        if "`x'" == "nopay" local color = "navy"
        if "`x'" == "pay"
                                  local color = "red"
        if "`x'" == "noedu" local color = "green"
        if "`x'" == "edu"
                                  local color = "purple"
        local figure_`x' "scatter results_`x'1 results_`x'4,
mcolor(`color') || rspike upper`x' lower`x' results_`x'4,
lcolor(`color') vertical"
        if "`x'" == "nopay" local figure2 `x' "scatter results `x'3
results_`x'4, mcolor(`color') || rspike upper2`x' lower2`x'
results_`x'4, lcolor(`color' ) vertical "
        else local figure2_`x' "scatter results_`x'3 results_`x'4,
mcolor(`color') || rspike upper2`x' lower2`x' results_`x'4,
lcolor(`color') vertical "
        local figure_p_`x' "scatter results_p_`x'1 results_p_`x'4,
mcolor(`color') || rspike upper_p_`x' lower_p_`x' results_p_`x'4,
lcolor(`color') vertical "
}
`figure_noedu' || `figure_edu' ///
legend( ///
```

4

5

6

7

8

9

10

11

12

13

14

15

16

17 18

19

20

21

22

23 24

25 26

32

33

34

35 36

37

38

39 40

41

42

43

44

45

46

47

48

49

50

51

52 53

54 55

56

57 58

```
label(1 "Less than" "high school") ///
label(3 "At least" "high school") ///
c(1) order(1 3 ) pos(3) size(small) ///
c(1) symx(4) region(lc(white))) ///
ysc(range(-4 2)) ylab(-4(1)2) ///
xsc(range(.5 5.5)) xlab(1(1)5) ///
yline(0) ysize(10) xsize(12) graphr(c(white)) ///
///title("Parameter estimates across control group, 2003-10") ///
xti("Years between exposure and control incident") scale(.95) ///
yti("Effect in 1K Euro ({&delta}{subscript: Salary})",
height(7)) ///
/*note("Parameter estimates for exposure dummy across spacing of
control groups." ///
"Control groups suffer concussions 1, 2, 3, 4, and 5 years (&Delta)
after the exposure group." ///
"Both control and exposure group are 30-49 years of age when
exposure group suffers " ///
"concussion. 95% confidence intervals.")
*/
graph export $highdef/grouped_est2003_2011.png, replace width(3900)
preserve
`figure2_noedu' || `figure2_edu' ///
legend( ///
label(1 "Less than" "high school") ///
label(3 "At least" "high school") ///
c(1) order(1 3 5) pos(3) size(small) ///
c(1) symx(4) region(lc(white))) ///
ysc(range(-12 3)) ylab(-12(3)3) ///
xsc(range(.5 5.5)) xlab(1(1)5) ///
yline(0) ysize(10) xsize(12) graphr(c(white)) ///
/// title("Percentage change in salary, 2003-10") ///
yti("Salary change (in %)", height(7)) ///
xti("Years between exposure and control incident") scale(.95) ///
/*note("Marginal effects for exposure dummy across spacing of
control groups." ///
"change calculated by {&delta} with the normalized control groups'
average" ///
"salary post-concussion. Control groups suffer concussions 1, 2, 3,
4, and 5 years (&Delta) after" ///
"the exposure group. Both control and exposure group are 30-49 years
of age when" ///
"exposure group suffers concussion. 95% confidence intervals.")*/
graph export $highdef/grouped_marginal2003_2011.png, replace
width(3900)
restore
```

3		
4	****	*****
5		արտանակավարտերի անհանական անձան ա Դուստություն անձան անձ
6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
7	**	Deculte different and around
8	**	Results different age-groups
9	**	
10	**	
10	*****	***************************************
10	****	
12		
15	forvalue $y = 20(5)^{1}$	551
14	for $y = 20(3)$	control time - 1/5
15	TOTVALUE	$1001101_1100 = 1/31$
16		local end = 2012 // last incluent year in data
17		
18		**build dataset for joint estimate across years
19		forvalue count=2003/`end'{
20		if `count'==2003{
21		use \$data/
22	sample control `	count' `control time' dta clear
23	Sump cc_controt_	<pre>count _ controt_time futu, ctcur gen time = `count! //incident year</pre>
24	indicator	gen time – count //incluent year
25	Indicator	
26		}
27		else append using \$data/
28	<pre>sample_control_`</pre>	count'_`control_time'.dta
20		replace time = `count' if time ==.
30		
21		**exclude individuals in years where they
21 22	do not annear in	data
32		wedue to either death or migration as
33		**QUE LO EILHER GEALH OF MIGRALION, AS
34	well as periods	rrom when
35		**the control group sufer their concussion
36		drop if merge ==1 count >
37	`control_time'-1	
38		
39		
40		}
41		5
42		a_{n} for $a_{n} = k_{n}$
43		
44		
45		//build ident, so we can multivariate cluster for
46	individuals	
47		//who occur both as control and exposure during the
48	period (id)	
49	-	
50		bysort onr time: gen helpx = n ==1
50		den id- sum(helpx)
57		dron holny holn
52		drop netpx netp
55		1
54		gen nopay = loenmv <1
55		
50		**Generate age group
5/		local z = `y'+4
58		<pre>gen help = count == 0 & inrange(alder,`y',`z')</pre>
59		bysort id: egen helpx =max(help)
60		

	keep if helpx == 1 drop helpx help	
control	<pre>**Calculate number of observatio count if count==0 & treatment == local Ntreated = r(N) count if count==0 & treatment == local Ncontrol = r(N)</pre>	ns for exposure and 1 0
treatment ==1 treatment ==1	<pre>**generate concussion variable gen treat = inrange(count,0,`con replace treat = time_from_incide</pre>	trol_time'-1) & nt if count ==0 &
for	<pre>**Generate pre-concussion income **use in calculating marginal ef sum loenmv if count <0 & treatme local control =r(mean) sum loenmv if count <0 & treatme local treat =r(mean) sum loenmv if count>=0 & treatme local control_post =r(mean) gen post = count >=0</pre>	e difference fects ent ==0 ent ==1 ent ==0
time treatment)	<pre>**estimate DiD model on salary xi: reghdfe loenmv treat, abs(al cl(id pnr)</pre>	der female post
J(5,5,.) // matr J(5,5,.) // matr	<pre>if `control_time'==1 matrix resu tix to capture results if `control_time'==1 matrix resu tix to capture results</pre>	lts_`y' = lts_p_`y' =
	<pre>matrix b = e(b) matrix V = e(V) local n = `control_time'</pre>	
7466 // captu 7466 // captu (`control_post'-	<pre>matrix results_`y'[`n',1] ure beta results as 1K Euro matrix results_`y'[`n',2] ure standard error as 1K Euro matrix results_`y'[`n',3] = -(`control'-`treat')) matrix results_`y'[`n',4] =</pre>	= b[1,1] / = (V[1,1]^.5)/ b[1,1]/ `n'
}		

```
1
2
3
           }
4
5
6
7
           local t = -.15
                            //Jitter estimates along x-axis
8
           forvalue x = 20(5)55{
9
                    svmat results_`x'
10
                     replace results_`x'4= results_`x'4+`t'
11
                     svmat results_p_`x'
12
                     replace results_p_`x'4= results_p_`x'4+`t'
13
14
                     gen upper`x' = results_`x'1+results_`x'2*1.96
15
                     gen lower`x' = results_`x'1-results_`x'2*1.96
16
17
18
                     gen upper2`x' = (results_`x'3+results_`x'2/(results_`x'1/
19
           results_`x'3)*1.96)*100
20
                    gen lower2`x' = (results_`x'3-results_`x'2/(results_`x'1/
21
           results_`x'3)*1.96)*100
22
                     replace results_`x'3 = results_`x'3*100
23
24
                     gen upper_p_`x' = results_p_`x'1+results_p_`x'2*1.96
25
                     gen lower_p_`x' = results_p_`x'1-results_p_`x'2*1.96
26
27
                     local t = t'+.1
28
29
           }
30
31
           keep results* upper* lower*
32
           keep if _n <=5
33
34
35
           **generate locals for figure
36
37
           forvalue x = 20(5)55{
38
                     if `x' == 20 local color = "black"
39
                     if
                         x' == 25 local color = "orange"
40
                     if `x' == 30 local color = "navy'
41
                     if `x' == 35 local color = "red"
42
                     if `x' == 40 local color = "green"
43
                     if `x' == 45 local color = "purple"
44
                     if `x' == 50 local color = "sienna"
45
                     if `x' == 55 local color = "teal"
46
47
                     local figure_`x' "scatter results_`x'1 results_`x'4,
48
           mcolor(`color') || rspike upper`x' lower`x' results_`x'4,
49
           lcolor(`color') vertical"
50
                    local figure2_`x' "scatter results_`x'3 results_`x'4,
51
           mcolor(`color') || rspike upper2`x' lower2`x' results_`x'4,
52
53
           lcolor(`color') vertical "
           local figure_p_`x' "scatter results_p_`x'1 results_p_`x'4,
mcolor(`color') || rspike upper_p_`x' lower_p_`x' results_p_`x'4,
54
55
56
           lcolor(`color') vertical "
57
           }
58
59
           /**/
60
```

```
2
3
           `figure_20' || `figure_25' || `figure_30' || `figure_35' ///
4
                        figure_40' || `figure_45' || `figure_50' ||
                    || `
5
           `figure 55'
                        111
6
           legend( ///
7
           label(1 "Age 20-24") ///
8
           label(3 "Age 25-29") ///
9
           label(5 "Age 30-34") ///
10
           label(7 "Age 35-39") ///
11
           label(9 "Age 40-44") ///
12
           label(11 "Age 45-49") ///
13
           label(13 "Age 50-54") ///
14
           label(15 "Age 55-59") ///
15
           c(1) order(1 3 5 7 9 11 13 15) pos(3) size(small) ///
16
           c(1) symx(4) region(lc(white))) ///
17
18
           ysc(range(-4 2)) ylab(-4(1)2) ///
19
           xsc(range(.5 5.5)) xlab(1(1)5) ///
20
           yline(0) ysize(10) xsize(12) graphr(c(white)) ///
21
           /// title("Parameter estimates across control group, 2003-10") ///
22
           xti("Years between exposure and control incident") scale(.95) ///
23
           yti("Effect in 1K Euro ({&delta}{subscript: Salary})",
24
           height(7)) ///
25
           /*note("Parameter estimates for exposure dummy across spacing of
26
           control groups." ///
27
           "Control groups suffer concussions 1, 2, 3, 4, and 5 years (&Delta)
28
           after the exposure group." ///
29
           "Age group described age at time of exposure incident. 95%
30
           confidence intervals.")*/
31
32
           graph export $highdef/age_est2003_2011.png, replace width(3900)
33
34
           */
35
36
           `figure2_20' || `figure2_25' || `figure2_30' || `figure2_35' ///
37
                    || `figure2_40' || `figure2_45' || `figure2_50' ||
38
           `figure2 55'
                         ///
39
           legend( ///
40
           label(1 "Age 20-24") ///
41
           label(3 "Age 25–29") ///
42
           label(5 "Age 30-34") ///
43
           label(7 "Age 35-39") ///
44
           label(9 "Age 40-44") ///
45
           label(11 "Age 45-49") ///
46
           label(13 "Age 50-54") ///
47
           label(15 "Age 55-59") ///
48
           c(1) order(1 3 5 7 9 11 13 15) pos(3) size(small) ///
49
           c(1) symx(4) region(lc(white))) ///
50
           ysc(range(-12 3)) ylab(-12(3)3) ///
51
           xsc(range(.5 5.5)) xlab(1(1)5) ///
52
53
           yline(0) ysize(10) xsize(12) graphr(c(white)) ///
54
           yti("Salary change (in %)", height(7)) ///
55
           xti("Years between exposure and control incident") scale(.95)
56
57
58
           graph export $highdef/age marginal2003 2011.png, replace width(3900)
59
60
```

```
2
3
          `figure_p_30' || `figure_p_35' || `figure_p_40' ||
4
          `figure_p_45'
                        /// ///
5
          legend(label(1 "Age 30-34") ///
6
          label(3 "Age 35-39") ///
7
          label(5 "Age 40-44") ///
8
          label(7 "Age 45-49") ///
9
          c(1) order(1 3 5 7) pos(3) size(small) ///
10
          c(1) symx(4) region(lc(white))) ///
11
          ysc(range(-.02 .050)) ylab(-0.02(.01)0.05) ///
12
          xsc(range(.5 5.5)) xlab(1(1)5) ///
13
          yline(0, lcolor(black)) ysize(10) xsize(12) graphr(c(white)) ///
14
          title("Parameter estimates across control group, 2003–10") ///
15
          yti("Effect on Pr(Salary=0)", height(7)) ///
16
          xti("Years between exposure and control incident ({&Delta})")
17
18
          scale(.95) ///
19
          note("Parameter estimates for exposure dummy across spacing of
20
          control groups." ///
21
          "Control groups suffer concussions 1, 2, 3, 4, and 5 (&Delta) years
22
          after the exposure group." ///
23
          "Age group described age at time of exposure incident. 95%
24
          confidence intervals.")
25
26
          graph export $highdef/age_nopay2003_2011.png, replace width(3900)
27
28
29
          30
          ******
31
32
          **
                          Results accross gender
33
          **
34
          **
35
          **
36
          37
          ******
38
39
          forvalue y=0/1{
40
                  forvalue control time=1/5{
41
                          local end = 2012 // last incident year in data
42
43
                          **build dataset for joint estimate across years
44
                          forvalue count=2003/`end'{
45
                                   if `count'==2003{
46
                                           use $data/
47
          sample_control_`count'_`control_time'.dta, clear
48
                                           gen time = `count' //incident year
49
          indicator
50
                                   }
51
                                  else append using $data/
52
          sample_control_`count'_`control_time'.dta
53
54
                                   replace time = `count' if time ==.
55
56
                                  **exclude individuals in years where they
57
          do not appear in data,
58
                                  **due to either death or migration, as
59
          well as periods from when
60
```

	`control_time'-1	<pre>**the control group sufer their concussion drop if merge ==1 count ></pre>
		}
		gen female = koen==2
	individuals period (id)	<pre>//build ident, so we can multivariate cluster for</pre>
		//who occur both as control and exposure during the
		bysort pnr time: gen helpx = _n ==1 gen id= sum(helpx) drop helpx help
		gen nopay = loenmv <1
		<pre>**Generate age group local z = `y'+4 gen help = count == 0 & female==`y' bysort id: egen helpx =max(help) keep if helpx == 1 drop helpx help</pre>
	control	<pre>**Calculate number of observations for exposure and count if count==0 & treatment ==1</pre>
		<pre>local Ntreated = r(N) count if count==0 & treatment ==0 local Ncontrol = r(N)</pre>
	treatment1	<pre>**generate concussion variable gen treat = inrange(count,0,`control_time'-1) &</pre>
	treatment ==1	<pre>replace treat = time_from_incident if count ==0 &</pre>
	for	<pre>**Generate pre-concussion income difference</pre>
		<pre>**use in calculating marginal effects sum loenmv if count <0 & treatment ==0 local control =r(mean) sum loenmv if count <0 & treatment ==1 local treat =r(mean) sum loenmv if count>=0 & treatment ==0 local control_post =r(mean) gen post = count >=0</pre>

treatment) cl(id	*∗estimate DiD model on salary xi: reghdfe loenmv treat, abs(al pnr)	der post time
J(5,5,.) // matr	<pre>if `control_time'==1 matrix resu ix to capture results if `control_time'==1 matrix resu ix to capture results</pre>	lts_`y' = lts_p_`y' =
7466 // captu 7466 // captu (`control_post'-	<pre>matrix b = e(b) matrix V = e(V) local n = `control_time' matrix results_`y'[`n',1] ure beta results as 1K Euro matrix results_`y'[`n',2] ure standard error as 1K Euro matrix results_`y'[`n',3] = (`control'-`treat')) matrix results_`y'[`n',4] =</pre>	<pre>= b[1,1] / = (V[1,1]^.5)/ b[1,1]/ `n'</pre>
} }		
<pre>local t =05 foreach x in 0 1- svmat re replace svmat re replace</pre>	<pre>//Jitter estimates along x-axis { esults_`x' results_`x'4= results_`x'4+`t' esults_p_`x' results_p_`x'4= results_p_`x'4+`*</pre>	t'
gen uppe gen lowe	er`x' = results_`x'1+results_`x'2 er`x' = results_`x'1-results_`x'2	*1.96 *1.96
gen uppe results_`x'3)*1.9 gen lowe results_`x'3)*1.9 replace	er2`x' = (results_`x'3+results_`x 96)*100 er2`x' = (results_`x'3-results_`x 96)*100 results_`x'3 = results_`x'3*100	'2/(results_`x'1/ '2/(results_`x'1/
gen uppe gen lowe	er_p_`x' = results_p_`x'1+results er_p_`x' = results_p_`x'1-results_	_p_`x'2*1.96 _p_`x'2*1.96
local t	= 't'+.1	
}	nork lovork	
keep if _n <=5	μειτ ιυωειτ	

4 5

6

7

```
**generate locals for figure
           foreach x in 0 1{
                   if `x' == 0 local color = "red"
                   if `x' == 1 local color = "green"
                   local figure_`x' "scatter results_`x'1 results_`x'4,
10
          mcolor(`color') || rspike upper`x' lower`x' results_`x'4,
11
           lcolor(`color') vertical"
12
                   local figure2 x' "scatter results x'3 results x'4,
13
          mcolor(`color') || rspike upper2`x' lower2`x' results_`x'4,
14
           lcolor(`color') vertical "
15
                   local figure_p_`x' "scatter results_p_`x'1 results_p_`x'4,
16
          mcolor(`color') || rspike upper_p_`x' lower_p_`x' results_p_`x'4,
17
18
           lcolor(`color') vertical "
19
           }
20
21
22
           `figure_0' || `figure_1' ///
23
           legend(label(1 "Men") ///
24
           label(3 "Women") ///
25
           c(1) order(1 3) pos(3) size(small) ///
26
           c(1) symx(4) region(lc(white))) ///
27
           ysc(range(-4 2)) ylab(-4(1)2) ///
28
           xsc(range(.5 5.5)) xlab(1(1)5) ///
29
          yline(0) ysize(10) xsize(12) graphr(c(white)) ///
30
           /// title("Parameter estimates across control group, 2003-10") ///
31
          xti("Years between exposure and control incident") scale(.95) ///
32
           yti("Effect in 1K Euro ({&delta}{subscript: Salary})",
33
           height(7)) ///
34
           /*note("Parameter estimates for exposure dummy across spacing of
35
36
           control groups." ///
37
           "Control groups suffer concussions 1, 2, 3, 4, and 5 years (&Delta)
38
           after the exposure group." ///
39
           "95% confidence intervals.")*/
40
41
           graph export $highdef/gender_est2003_2011.png, replace width(3900)
42
43
           `figure2_0' || `figure2_1'
                                         111
44
           legend( ///
45
           label(1 "Men") ///
46
           label(3 "Women") ///
47
           c(1) order(1 3 5 7) pos(3) size(small) ///
48
           c(1) symx(4) region(lc(white))) ///
49
          ysc(range(-12 3)) ylab(-12(3)3) ///
50
          xsc(range(.5 5.5)) xlab(1(1)5) ///
51
          yline(0) ysize(10) xsize(12) graphr(c(white)) ///
52
53
          /// title("Percentage change in salary, 2003-10") ///
54
          yti("Salary change (in %)", height(7)) ///
55
          xti("Years between exposure and control incident") scale(.95) ///
56
           /* note("Parameter estimates for exposure dummy across spacing of
57
           control groups." ///
58
           "Control groups suffer concussions 1, 2, 3, 4, and 5 years (&Delta)
59
          after the exposure group." ///
60
```

```
1
2
3
          "95% confidence intervals.")*/
4
5
          graph export $highdef/gender_marginal2003_2011.png, replace
6
          width(3900)
7
8
          `figure_p_0' || `figure_p_1'
                                       111
9
          legend( ///
10
          label(1 "Men") ///
11
          label(3 "Women") ///
12
          c(1) order(1 3 5 7) pos(3) size(small) ///
13
          c(1) symx(4) region(lc(white))) ///
14
          ysc(range(-.02 .050)) ylab(-0.02(.01)0.05) ///
15
          xsc(range(.5 5.5)) xlab(1(1)5) ///
16
          yline(0, lcolor(black)) ysize(10) xsize(12) graphr(c(white)) ///
17
18
          /// title("Parameter estimates across control group, 2003-10") ///
19
          yti("Effect on Pr(Salary=0)", height(7)) ///
20
          xti("Years between exposure and control incident ({&Delta})")
21
          scale(.95) ///
22
          /*note("Parameter estimates for exposure dummy across spacing of
23
          control groups." ///
24
          "Control groups suffer concussions 1, 2, 3, 4, and 5 years (&Delta)
25
          after the exposure group." ///
26
          "95% confidence intervals.")*/
27
28
          graph export $highdef/gender_nopay2003_2011.png, replace width(3900)
29
30
31
32
          33
          ******
34
          **
35
          **
                                  Generate descriptive figures of wage
36
          development for exposure
37
                                   and control group
          **
38
          **
39
          **
40
          41
          *****
42
43
44
           forvalue control time=1/5{
45
                  local end = 2012 // last incident year in data
46
47
                  **build dataset for joint estimate across years
48
                  forvalue count=2003/`end'{
49
                          if `control_time' ==1 & `count'==2003{
50
                                  use $data/
51
          sample_control_`count'_`control_time'.dta, clear
52
53
                                  gen time = `count' //incident year
54
          indicator
55
                          }
56
                          else append using $data/
57
          sample_control_`count'_`control_time'.dta
58
59
                          **Drops exposure-group already in the data
60
```

if `control_time' > 1 drop if time ==. & treatment ==1 replace time = `count' if time ==. replace control1 = `control time' if control`control time'==1 if `control_time' > 1 drop control`control_time' **exclude individuals in years where they do not appear in data, **due to either death or migration, as well as periods from when **the control group suffer their concussion } } **Generate mean salary for each period relative to exposure groups concussion **separately for exposure and each control group bysort control1 count: egen mean_loen = mean(loenmv) **Generate mean Pr(sal= for each period relative to exposure groups concussion **separately for exposure and each control group gen no_lon = loenmv < 1</pre> bysort control1 count: egen mean_no_lon = mean(no_lon) **generate group size bysort control1 count: gen Ncount=_N if count ==0 **generate pre-exposure mean levels for normalization gen pre = count <0 bysort control1 pre: egen pre_mean_loen = mean(loenmv) if pre==1 bysort control1 pre: egen pre_mean_no_lon = mean(no_lon) if pre==1 **reduce data set size bysort control1 count: keep if n ==1 keep count mean* pre_* control1 Ncount **standardize to 1k euro replace mean loen = mean loen/7466 replace pre_mean_loen = pre_mean_loen/7466 sort control1 count ******Pre-tratment normalization of salary

4

5 6

7

8

9

10

11 12

13

14

15 16 17

18

19

20

21 22

23

24

25 26

27 28

29

30

31

32

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53 54

55

56

57

58

59

```
gen norm_mean_lon =mean_loen
gen norm_mean_no_lon =mean_no_lon
forvalue t = 1/5{
        qui sum pre_mean_loen if control == 0
        local treat = r(mean)
        qui sum pre_mean_loen if control == `t'
        local control = r(mean)
        **normalize with pre-concussion difference
        qui replace norm_mean_lon = mean_loen - (`control'-`treat')
if control ==`t'
        qui sum pre_mean_no_lon if control == 0
        local treat = r(mean)
        qui sum pre_mean_no_lon if control == `t'
         local control = r(mean)
        **normalize with pre-concussion difference
        qui replace norm_mean_no_lon = mean_no_lon - (`control'-
`treat') if control ==`t'
}
**local indicators of group sizes
forvalue t=0/5{
        qui sum Ncount if control == `t'
        local C`t' = r(mean)
}
graph twoway ///
        connect mean_l count if control1== 0, ///
        lcolor(black) mcolor(black) || ///
        connect mean_l count if control1== 1, ///
        lcolor(blue) mcolor(blue) || ///
        connect mean_l count if control1== 2, ///
        lcolor(green) mcolor(green) || ///
        connect mean_l count if control1== 3, ///
        lcolor(purple) mcolor(purple) || ///
        connect mean_l count if control1== 4, ///
        lcolor(red) mcolor(red) || ///
        connect mean_l count if control1== 5, ///
        lcolor(orange) mcolor(orange) ///
        legend( ///
                 label(1 "Exposure" ///
                                  "N=`C0'") ///
                 label(2 "Control {&Delta}=1" ///
                                  "N=`C1'") ///
                 label(3 "Control {&Delta}=2" ///
                                  "N=`C2'") ///
                 label(4 "Control {&Delta}=3" ///
                                  "N=`C3'") ///
                 label(5 "Control {&Delta}=4" ///
```

4

5

6

7

8

9

"N=`C4'") /// label(6 "Control {&Delta}=5" /// "N=`C5'") /// c(1) order(1 2 3 4 5 6) pos(3) size(small) /// c(1) symx(4) region(lc(white))) /// ysc(range(26 33)) ylab(26(1)33) /// xsc(range(-5 5)) xlab(-5(1)5) /// 10 xline(0, lcolor(red)) ysize(10) xsize(12) 11 graphr(c(white)) /// 12 title("Impact of Concussion on Salary") /// 111 13 yti("Deflated Salaried Income in 1K EUR", height(7)) /// 14 xti("Years since exposure group concussion") scale(.95) /// 15 /* note("Control groups suffer concussion 1, 2, 3, 4, and 5 16 years (&Delta) after exposure group." /// 17 "Both control and exposure group at 30-49 years of 18 19 age at beginning of year =0." /// 20 "Vertical line indicates time of exposure group 21 concussion.")*/ 22 23 graph export \$highdef/FigureS2.png, replace width(3900) 24 25 26 graph twoway /// 27 connect norm_mean_l count if control1== 1, /// 28 lcolor(blue) mcolor(blue) || /// 29 connect norm_mean_l count if control1== 2, /// 30 lcolor(green) mcolor(green) || /// 31 connect norm_mean_l count if control1== 3, /// 32 lcolor(purple) mcolor(purple) || /// 33 connect norm_mean_l count if control1== 4, /// 34 35 lcolor(red) mcolor(red) || /// 36 connect norm_mean_l count if control1== 5, /// 37 lcolor(orange) mcolor(orange) || /// 38 connect mean_l count if control1== 0, /// 39 lcolor(black) mcolor(black) /// 40 legend(/// 41 label(1 "Control {&Delta}=1" /// 42 "N=`C1'") /// 43 label(2 "Control {&Delta}=2" /// 44 "N=`C2'") /// 45 label(3 "Control {&Delta}=3" /// 46 "N=`C3'") /// 47 label(4 "Control {&Delta}=4" /// 48 "N=`C4'") /// 49 label(5 "Control {&Delta}=5" /// 50 "N=`C5'") /// 51 label(6 "Exposure" /// 52 "N=`C0'") /// 53 c(1) order(6 1 2 3 4 5) pos(3) size(small) /// 54 55 c(1) symx(4) region(lc(white))) /// 56 ysc(range(26 31)) ylab(26(1)31) /// 57 xsc(range(-5 5)) xlab(-5(1)5) /// 58 xline(0, lcolor(red)) ysize(10) xsize(12) 59 graphr(c(white)) /// 60

BMJ Open

///	title("Impact of Concussion on Salary") /// yti("Deflated Norm. Salaried Income in 1K EUR",
height(7	7)) /// xti("Years since exposure group's concussion") scale(.95) /*///
years (&	<pre>variable for the second s</pre>
ane at k	"Both control and exposure group at 30–49 years of periodic vertices -0 " ///
aye at i	"Vertical line indicates time of exposure group
concussi	ion." /// "Salary levels normalized with pre-concussion level
differer	nce between" ///
	"each control group and the exposure group")*/
graph e>	<pre>kport \$highdef/Figure2.png, replace width(3900)</pre>
graph tw	voway ///
	<pre>connect mean_no_l count if control1== 0, /// lcolor(black) mcolor(black) ///</pre>
	<pre>connect mean_no_l count if control1== 1, ///</pre>
	color(blue) mcolor(blue) /// connect mean no l count if control1== 2, ///
	<pre>lcolor(green) mcolor(green) ///</pre>
	<pre>connect mean_no_t count if controli== 3, /// lcolor(purple) mcolor(purple) ///</pre>
	<pre>connect mean_no_l count if control1== 4, /// lealer(red) mealer(red) +/ (//</pre>
	connect mean_no_l count if control1== 5, ///
	<pre>lcolor(orange) mcolor(orange) /// logond(///</pre>
	label(1 "Exposure" ///
	N=CO''') ///
	"N=`C1'") ///
	label(3 "Control {Δ}=2" /// "N=`C2'") ///
	label(4 "Control {Δ}=3" ///
	label(5 "Control {Δ}=4" /// "N=`C4'") ///
	label(6 "Control {Δ}=5" /// "N=`C5'") ///
	c(1) order(1 2 3 4 5 6) pos(3) size(small) ///
	ysc(range(.2 .325)) ylab(.2(.025).325) ///
	<pre>xsc(range(-5 5)) xlab(-5(1)5) /// xline(0 lcolor(red)) vsize(10) xsize(12)</pre>
graphr(d	c(white)) ///
///	<pre>title("Impact of Concussion on Prob(Salary=0)") /// vti("Prob(Salary=0)", boight(7)) ///</pre>
	<pre>xti("Years since exposure group concussion") scale(.95) ///</pre>
/*	note("Control groups suffer concussion 1, 2, 3, 4, and 5

4

5

6

7

8 9

10 11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35 36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53

54

55

56

57

58 59

60

years (&Delta) after exposure group." /// "Both control and exposure group at 30-49 years of age at beginning of year =0." /// "Vertical line indicates time of exposure group concussion.")*/ graph export \$highdef/FigureS3.png, replace width(3900) graph twoway /// connect norm mean no l count if control1== 1, /// lcolor(blue) mcolor(blue) || /// connect norm_mean_no_l count if control1== 2, /// lcolor(green) mcolor(green) || /// connect norm_mean_no_l count if control1== 3, /// lcolor(purple) mcolor(purple) || /// connect norm_mean_no_l count if control1== 4, /// lcolor(red) mcolor(red) || /// connect norm_mean_no_l count if control1== 5, /// lcolor(orange) mcolor(orange) || /// connect mean_no_l count if control1== 0, /// lcolor(black) mcolor(black) /// legend(/// label(1 "Control {&Delta}=1" /// "N=`C1'") /// label(2 "Control {&Delta}=2" /// "N=`C2'") /// label(3 "Control {&Delta}=3" /// "N=`C3'") /// label(4 "Control {&Delta}=4" /// "N=`C4'") /// label(5 "Control {&Delta}=5" /// "N=`C5'") /// label(6 "Exposure" /// "N=`C0'") /// c(1) order(6 1 2 3 4 5) pos(3) size(small) /// c(1) symx(4) region(lc(white))) /// ysc(range(.2 .325)) ylab(.2(.025).325) /// xsc(range(-5 5)) xlab(-5(1)5) /// xline(0, lcolor(red)) ysize(10) xsize(12) graphr(c(white)) /// title("Impact of Concussion on Prob(Salary=0)") /// 111 yti("Norm. Prob(Salary=0)", height(7)) /// xti("Years since exposure group concussion") scale(.95) /// /* note("Control groups suffer concussion 1, 2, 3, 4, and 5 years (&Delta) after exposure group." /// "Both control and exposure group at 30-49 years of age at beginning of year =0." /// "Vertical line indicates time of exposure group concussion." /// "Probability levels normalized with pre-concussion level difference between" /// "each control group and the exposure group")*/ graph export \$highdef/Figure2A.png, replace width(3900)

10

11

12

13

14 15

16

17

18

19 20 21

23 24

25

26

27

29

31

32

33

34

35 36 37

38

39

40

41

42

43

44 45

46

47

48

49

50

51

52 53

54 55

56

57

```
*******
         **
                 Effects across the salary distribution
         **
         **
         **
         **
         *******
         forvalue control time=5/5{
22
                 local end = 2012 // last incident year in data
                 **build dataset for joint estimate across years
                 forvalue count=2003/`end'{
                        if `count'==2003{
                               use $data/
28
         sample_control_`count'_`control_time'.dta, clear
                               gen time = `count' //incident year
30
         indicator
                        }
                        else append using $data/
         sample_control_`count'_`control_time'.dta
                        replace time = `count' if time ==.
                        **exclude individuals in years where they do not
         appear in data,
                        **due to either death or migration, as well as
         periods from when
                        **the control group sufer their concussion
                        drop if merge ==1 | count > `control_time'-1
                 }
                 gen female = koen==2
                 qui{
                        gen edu =0
                        replace edu = 1 if inrange(hffsp,20000000,39000000)
         | ///
                                                              (hffsp
         >40000000 & hffsp!=.)
                 }
                 //build ident, so we can multivariate cluster for
         individuals
                 //who occur both as control and exposure during the period
58
         (id)
59
```

4

5

6 7 8

9

10

11

12

13 14

15

16 17

18 19

20

21

22

23 24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46 47

48 49

50

55 56

57

58

```
bysort pnr time: gen helpx = _n ==1
        gen id= sum(helpx)
        drop helpx
        **generate concussion variable
        gen treat = inrange(count,0,`control_time'-1) & treatment
==1
         replace treat = time_from_incident if count ==0 & treatment
==1
        **effect across salary distribution
        if `control_time'==5 matrix results = J(81,5,.) // matrix
to capture results
        local n = `control_time'
        gen post = count >=0
        replace count = count+6
        local v =0
        qui{
                 forvalue t= 0(14932)1045240{
                          local top = 42
                          local v =1+`v'
                          if `n' ==5 matrix results[`v',1]= `t'
                          gen D = personindk <=`t'</pre>
                          reg D treat i.treatment i.post i.edu
i.alder i.female i.time, cl(pnr)
                          matrix V = e(V)
                          matrix b = e(b)
                          matrix results[`v',2]
                                                   = b[1,1]
                          margins, at(treat= (0 1) treatment=1
post=1)
                          matrix results [v', 5] = V[1,1]^{.5}
                          matrix M = r(b)
                                                   = M[1,2] //
                          matrix results[`v',4]
                          matrix results[`v',3]
                                                  = M[1,1] //
                          drop D
                 }
        }
}
svmat results
gen l5 = results2-1.96*results5
gen u5 = results2+1.96*results5
replace results1 = results1/7466
gen dif6 = results4-results3
gen udif6 = u5
gen ldif6 = 15
```

))
') ///
0)
g1)
'/

BMJ Open

1 2 3

4

5

6

7

8

9 10

11 12

18

19

20

21

22

23

24

25

26 27 28

29

30 31

32

33

34 35

36 37

38

39

40

41

42

43 44

45

46

47

48

49

50

51 52 53

54

55

56

57

58

59

60

xti("Total Income in 1K Euro (X)") scale(1) /// yti("Effect of Concussion on Pr(Total Income < X)") ///</pre> legend(label(1 "95% CI") /// label(2 "Effect of concussion") /// c(1) order(2 1) pos(6) size(small) /// symx(4) region(lc(white))) , name(g2) ,graphr(c(white)) graph combine g1 g2 graph export "[home]\highdef\figure s2.tif", replace width(1000) ***** ** Effects across the salary distribution ** ** ** ** ****** forvalue control_time=5/5{ local end = 2012 // last incident year in data **build dataset for joint estimate across years forvalue count=2003/`end'{ if `count'==2003{ use \$data/ sample_control_`count'_`control_time'.dta, clear gen time = `count' //incident year indicator } else append using \$data/ sample_control_`count'_`control_time'.dta replace time = `count' if time ==. **exclude individuals in years where they do not appear in data, **due to either death or migration, as well as periods from when **the control group sufer their concussion drop if merge ==1 | count > `control_time'-1 } gen female = koen==2qui{ gen edu =0 replace edu = 1 if inrange(hffsp,20000000,39000000) | /// (hffsp >40000000 & hffsp!=.)

4 5

6

7

8

9 10

11

12

13 14 15

16

17 18

19

21

23

25

27

29

31

32

33

34 35

37

39

41

42

43

45

46

47

48

49

50

51

53

55

```
}
                   //build ident, so we can multivariate cluster for
           individuals
                   //who occur both as control and exposure during the period
           (id)
                   bysort pnr time: gen helpx = _n ==1
                   gen id= sum(helpx)
                   drop helpx
                   **generate concussion variable
                   gen treat = inrange(count,0,`control_time'-1) & treatment
           ==1
                    replace treat = time_from_incident if count ==0 & treatment
20
           ==1
22
                   **effect across salary distribution
                   if `control_time'==5 matrix results = J(81,5,.) // matrix
24
           to capture results
26
                   local n = `control_time'
                   gen post = count >=0
28
                    replace count = count+6
                    local v =0
30
                   **Estimate Pr(salary < X) across income distribution</pre>
                   qui{
                            forvalue t= 0(14932)895950{
                                     local top = 42
36
                                     local v =1+`v'
                                     if `n' ==5 matrix results[`v',1]= `t'
38
                                     gen D = loenmv <=`t'
                                     reg D treat i.treatment i.post i.edu
40
           i.alder i.female i.time, cl(pnr)
                                     matrix V = e(V)
                                     matrix b = e(b)
                                     matrix results[`v',2]
                                                              = b[1,1]
44
                                     margins, at(treat= (0 1) treatment=1
           post=1)
                                     matrix results[`v',5]
                                                               = V[1,1]^{.5}
                                     matrix M = r(b)
                                     matrix results[`v',4]
                                                               = M[1,2] //
                                     matrix results[`v',3]
                                                               = M[1,1] //
                                     drop D
                            }
52
                   }
54
           }
56
           svmat results
58
           *Generate 95% confidence intervals
59
           gen 15 = results2 - 1.96 * results5
60
```

BMJ Open

1 2 3

4 5

6

7 8

9

10

11

12

13 14

15

16 17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35 36

37 38

39 40

41

42

43

44

45

46

47

48

49

50

51

52 53

54

55

56 57

58

59

```
gen u5 = results2+1.96*results5
*Correct to €
replace results1 = results1/7466
*Obtain difference between observed and counterfactual wage
distribution
gen dif6 = results4-results3
gen udif6 = u5
gen ldif6 = 15
gr two rline udif6 ldif6 results1, ///
        yaxis(2) color(gray) lp(dash) ysc(range(-.006 .04) axis(2))
|| ///
        line dif6 results1, yaxis(2) yline(0, axis(2)) ///
        lcolor(black) ylab(0(.01).0325) ysc(range(-.006 .04)
axis(2)) || ///
        line results4 results1, yaxis(1) lcolor(red) || ///
        line results3 results1, yaxis(1) lcolor(blue) ///
         ysc(range(0 1)) ylab(0(.1)1, nogrid) xlab(0(10)120)
xsc(range(0 120)) ///
        ysize(10) xsize(12) graphr(c(white)) ///
        xti("Salary in 1K Euro") scale(1) ///
        yti("Effect of Concussion on Pr(Salary < X)", axis(2)) ///</pre>
        yti("{&Phi}(Salary)", axis(1)) ///
        legend( ///
        label(2 "Effect of concussion (left axis)") ///
        label(3 "Concussion salary distribution (right axis)") ///
        label(4 "Counterfactual salary distribution (right
axis)") ///
        c(1) order(2 3 4) pos(6) size(small) ///
                           symx(4) region(lc(white)))
cap graph drop g1 g2
gr two ///
        line results4 results1, yaxis(1) lcolor(red) || ///
        line results3 results1, yaxis(1) lcolor(blue) ///
         ysc(range(.2 1)) ylab(0.2(.1)1) xlab(0(10)120,
labs(small)) ///
         xsc(range(0 120)) ///
        ysize(10) xsize(10) graphr(c(white)) ///
        xti("Salary in 1K Euro") scale(1) ///
        yti("Cumulative Distribution of Salary", axis(1)) ///
        legend( ///
        label(1 "Observed Post-Concussion Salary Distribution") ///
        label(2 "Counterfactual No-Concussion Salary
Distribution") ///
        c(1) order(1 2 4) pos(6) size(small) ///
                           symx(4) region(lc(white))) , name(g1)
gr two rline udif6 ldif6 results1, ///
        color(gray) lp(dash) ysc(range(-.002 .035)) || ///
        line dif6 results1, yline(0) ///
```

4

5

6

7

8

9

10

11

12

13 14

16

17 18 19

21

23

24 25

27

31

35

37

39

41

43

45

47

48

49

51

54

56

```
lcolor(black) ylab(0(.01).0325) ysc(range(-.002 .
           035)) ///
                   xlab(0(10)120, labs(small)) xsc(range(0 120))
                                                                        111
                   ysize(10) xsize(10) graphr(c(white)) ///
                   xti("Salary in 1K Euro (X)") scale(1) ///
                   yti("Effect of Concussion on Pr(Salary < X)") ///</pre>
                            legend( label(1 "95% CI") ///
                    label(2 "Effect of concussion") ///
                   c(1) order(2 1) pos(6) size(small) ///
                                      symx(4) region(lc(white))) , name(q2)
           graph combine g1 g2
                                     ,graphr(c(white))
15
           graph export "[home]\highdef\figure 3.tif", replace width(1000)
20
22
           **ESTIMATE SICK LEAVE
           forvalue control time=1/5{
26
                    local end = 2012 // last incident year in data
                   if `control_time' ==1
                                             eststo clear
28
29
                   **build dataset for joint estimate across years
30
                   forvalue count=2003/`end'{
                            if `count'==2003{
32
                                     use $data/
33
           sample_control_`count'_`control_time'.dta, clear
34
                                     gen time = `count' //incident year
36
           indicator
                            }
38
                            else append using $data/
           sample_control_`count'_`control_time'.dta
40
                            replace time = `count' if time ==.
42
                            **exclude individuals in years where they do not
           appear in data,
44
                            **due to either death or migration, as well as
           periods from when
46
                            **the control group sufer their concussion
                            drop if merge ==1 | count > `control_time'-1
                   }
50
                   merge m:1 pnr t using $data/temp.dta, keep(1 3) nogen
                    replace share = 0 if share==.
52
53
                   gen female = koen==2
55
                   //build ident, so we can multivariate cluster for
           individuals
58
                   //who occur both as control and exposure during the period
59
           (id)
60
```

5

6

7 8 9

10

11

12

13

14

15

16 17

18 19 20

21

22

23

24

25 26

27

28

29

30

31 32

33

34 35

36

37

38

39

40

41 42

43

44

45

46 47

48 49

50

51

52 53

54

55

56

57

```
bysort pnr time: gen helpx = _n ==1
        gen id= sum(helpx)
        drop helpx
        **Generate educational groups
        qui{
                 gen edu =0
                 replace edu = 1 if inrange(hffsp, 20000000, 39000000)
| ///
                                                             (hffsp
>40000000 & hffsp!=.)
        }
        **Calculate number of observations for exposure and control
        count if count==0 & treatment ==1
        local Ntreated = r(N)
        count if count==0 & treatment ==0
        local Ncontrol = r(N)
        **generate concussion variable
        gen treat = inrange(count,0,`control_time'-1) & treatment
==1
         replace treat = time_from_incident if count ==0 & treatment
==1
        **Generate pre-concussion income difference
                                                             for
        **use in calculating marginal effects
        sum loenmv if count <0 & treatment ==0</pre>
        local control =r(mean)
        sum loenmv if count <0 & treatment ==1</pre>
        local treat =r(mean)
        sum loenmv if count>=0 & treatment ==0
        local control_post =r(mean)
        forvalue t=-4/4{
                 local n = t'*-1
                 if `t' < -1 gen T `n' = treatment ==1 & count ==`t'
                 if `t' > -1 gen T`t' = treatment ==1 & count ==`t'
        }
        **estimate DiD model on salary
        reghdfe share T*, abs(alder female count time treatment
edu) cl(pnr id)
        eststo est1 `control time'
        if `control_time'==1 matrix results = J(5,5,.) // matrix to
capture results
        if `control_time'==1 matrix results_p = J(5,5,.) // matrix
to capture results
```
4

5

6 7

8

9

10

11

12

13

14 15

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34 35 36

37

38

39

40

41 42

43 44

45

46

47

48 49

50

51

52 53

54 55

56 57

58

59

```
matrix b = e(b)
        matrix V = e(V)
        local n = `control_time'
        matrix results[`n',1]
                                  = b[1,1] / 7466 // capture beta
results as 1K Euro
        matrix results[`n',2]
                                  = (V[1,1]^{.5})/7466
                                                            //
capture standard error as 1K Euro
        matrix results[`n',3]
                                  =
                                           b[1,1]/(`control_post'-
(`control'-`treat'))
        matrix results[`n',4]
                                           `n'
                                  =
        gen no_share = share >0 //dummy for no salary
        **Generate pre-concussion probability difference
                                                            for
        **use in calculating marginal effects
        sum no_share if count <0 & treatment ==0</pre>
        local control =r(mean)
        sum no_share if count <0 & treatment ==1</pre>
        local treat =r(mean)
        sum no share if count>=0 & treatment ==0
        local control_post =r(mean)
        **estimate DiD LP-model on P(salary=0)
        xi: reghdfe no_share T*, abs(alder female count time
treatment edu) cl(pnr id)
        eststo est2_`control_time'
        matrix b = e(b)
                        //regression coefficient
        matrix V = e(V) // standard error^2
        matrix results_p[`n',1]
                                           b[1,1]
                                  =
        matrix results_p[`n',2]
                                           V[1,1]^.5
                                  =
        matrix results_p[`n',3]
                                  =
                                           b[1,1]/(`control_post'-
(`control'-`treat'))
                                           `n'
        matrix results_p[`n',4]
                                  =
}
esttab est1 * using [home]/tables/dynamic share1.rtf, ///
        replace se(3) b(3) compress nogap star(+ .1 * .05 ** .01
*** .001) ///
        keep(T*)
esttab est2_* using [home]/tables/dynamic_share2.rtf, ///
        replace se(3) b(3) compress nogap star(+ .1 * .05 ** .01
*** .001) ///
        keep(T*)
**ESTIMATE SICK LEAVE
forvalue control_time=1/5{
        local end = 2012 // last incident year in data
        if `control_time' ==1 eststo clear
```

(hffsp

gen time = `count' //incident year

use \$data/

2 3 4 **build dataset for joint estimate across years 5 forvalue count=2003/`end'{ 6 if `count'==2003{ 7 8 sample_control_`count'_`control_time'.dta, clear 9 10 indicator 11 } 12 else append using \$data/ 13 sample_control_`count'_`control_time'.dta 14 replace time = `count' if time ==. 15 16 17 **exclude individuals in years where they do not 18 appear in data, 19 **due to either death or migration, as well as 20 periods from when 21 **the control group sufer their concussion 22 drop if merge ==1 | count > `control_time'-1 23 } 24 25 merge m:1 pnr t using \$data/temp2.dta, keep(1 3) nogen 26 replace syg_barsel_13= 0 if syg_barsel_13==. 27 28 gen female = koen==2 29 30 //build ident, so we can multivariate cluster for 31 individuals 32 //who occur both as control and exposure during the period 33 (id) 34 35 36 bysort pnr time: gen helpx = _n ==1 37 gen id= sum(helpx) 38 drop helpx 39 40 41 **Generate educational groups 42 qui{ 43 gen edu =0 44 replace edu = 1 if inrange(hffsp, 20000000, 39000000) 45 | /// 46 47 >40000000 & hffsp!=.) 48 } 49 50 51 **Calculate number of observations for exposure and control 52 53 count if count==0 & treatment ==1 54 local Ntreated = r(N)55 count if count==0 & treatment ==0 56 local Ncontrol = r(N)57 58 **generate concussion variable 59 gen treat = inrange(count,0,`control_time'-1) & treatment 60

```
2
3
           ==1
4
                    replace treat = time_from_incident if count ==0 & treatment
5
           ==1
6
7
                    **Generate pre-concussion income difference
                                                                          for
8
                    **use in calculating marginal effects
9
                    sum loenmv if count <0 & treatment ==0</pre>
10
                    local control =r(mean)
11
                    sum loenmv if count <0 & treatment ==1</pre>
12
                    local treat =r(mean)
13
                    sum loenmy if count>=0 & treatment ==0
14
                    local control post =r(mean)
15
16
                    forvalue t=-4/4{
17
18
                             local n = t'*-1
19
                             if `t' < -1 gen T_`n' = treatment ==1 & count ==`t'</pre>
20
                             if `t' > -1 gen T`t' = treatment ==1 & count ==`t'
21
22
                    }
23
24
                    **estimate DiD model on salary
25
                    reghdfe syg_barsel_13 T*, abs(alder female count time
26
           treatment edu) cl(pnr id)
27
                    eststo est1_`control_time'
28
                    if `control_time'==1 matrix results = J(5,5,.) // matrix to
29
           capture results
30
                    if `control_time'==1 matrix results_p = J(5,5,.) // matrix
31
           to capture results
32
33
34
                    matrix b = e(b)
35
36
                    matrix V = e(V)
37
                    local n = `control_time'
38
39
                    matrix results[`n',1] = b[1,1] / 7466 // capture beta
40
           results as 1K Euro
41
                    matrix results[`n',2]
                                               = (V[1,1]^{.5})/7466
                                                                          11
42
           capture standard error as 1K Euro
43
                    matrix results[`n',3]
                                               =
                                                        b[1,1]/(`control_post'-
44
           (`control'-`treat'))
45
                    matrix results[`n',4]
                                                        `n'
                                               =
46
47
48
49
50
                    **Generate pre-concussion probability difference
                                                                          for
51
                    **use in calculating marginal effects
52
53
54
                    **estimate DiD LP-model on P(salary=0)
55
                    xi: reghdfe kont_dag T*, abs(alder female count time
56
           treatment edu) cl(pnr id)
57
                    eststo est2_`control_time'
58
                    matrix b =e(b)
                                    //regression coefficient
59
                    matrix V = e(V) // standard error<sup>2</sup>
60
```

```
matrix results_p[`n',1]
                                        b[1,1]
                               =
       *matrix results_p[`n',2] =
l'-`treat'))
        matrix results_p[`n',2] =
                                        V[1,1]^.5
                                        b[1,1]/(`control_post'-
(`control'-`treat'))
                                        `n'
       matrix results_p[`n',4]
                                =
}
esttab est1 * using [home]/tables/dynamic sickpay1.rtf, ///
        replace se(3) b(3) compress nogap star(+ .1 * .05 ** .01
*** .001) ///
        keep(T*)
esttab est2_* using [home]/tables/dynamic_welfare2.rtf, ///
        replace se(3) b(3) compress nogap star(+ .1 * .05 ** .01
*** .001) ///
        keep(T*)
```

Supplemental results

tor beet terren on

Table S1. Test of parallel trends assumption pre-exposure incident against each control group separately using eq. S3 in supplementary methods. Separate exposure dummies for all time periods (except the year prior to exposure, which serves as reference period).

Time to exposure group's concussion (exposure)	Δ=1 Est (S.E.) p-value	Δ=2 Est (S.E.) p-value	Δ=3 Est (S.E.) p-value	Δ=4 Est (S.E.) p-value	Δ=5 Est (S.E.) p-value
Exposure-4y	-0.368	0.046	0.120	0.159	0.042
	(0.226)	(0.363)	(0.362)	(0.313)	(0.329)
	p=.104	p=.900	p=.741	p=.612	p=.899
Exposure-3y	-0.094	0.227	0.167	0.537	0.113
	(0.317)	(0.510)	(0.354)	(0.372)	(0.393)
	p=.768	p=.656	p=.637	p=.148	p=.774
Exposure-2y	-0.548	-0.082	-0.163	-0.124	0.082
	(0.312)	(0.347)	(0.236)	(0.247)	(0.250)
	p=.079	p=.812	p=.491	p=.617	p=.744
Exposure-1y	Ref.	Ref.	Ref.	Ref.	Ref.
N*T	284115	273725	266120	260647	256337

Note: The table shows test for differences in pre-exposure trends between exposure and control group model using interactions between pre-exposure time dummies and the exposure indicator. There is no indication of substantial or significant pre-exposure differences in salary trajectories between exposure group and any of the control groups.

Table S2. Effect of concussion on different labor market outcome parameters using separate exposure dummies for all time periods (except the year prior to exposure, which serves as reference period): In this exploratory analysis, the exposure group is compared to the control group Δ =5, which suffers a concussion five years after the exposure group. Outcomes include annual salaried income (annual salary), total annual income (total income), annual sick leave benefits received (sick leave benefits) as well as a binary indicator of employment (probability of employment). Monetary outcomes were measured at 2015-level in \in 1,000.

Time to exposure group's concussion (exposure)	Annual Salary Est. (S.E.) p-value	Total income Est. (S.E.) p-value	Sick leave benefits Est. (S.E.) p-value	Probability of employment Est. (S.E.) p-value
Exposure-4y	0.012	0.164	0.035	0.001
	(0.212)	(0.173)	(0.036)	(0.004)
	p=.954	p=.343	p=.320	p=.803
Exposure-3y	0.059	0.305	0.022	-0.001
	(0.252)	(0.233)	(0.034)	(0.003)
	p=.814	p=.190	p=.529	p=.739
Exposure-2y	0.043	0.122	0.002	0.001
	(0.160)	(0.147)	(0.029)	(0.003)
	p=.788	p=.405	p=.946	p=.739
Exposure-1y				
Exposure	-0.611	-0.338	0.166	-0.003
I	(0.168)	(0.140)	(0.030)	(0.003)
	p<.001	0.016	p<.001	p=.317
Exposure+1v	-1.389	-0.608	0.288	-0.020
I J	(0.209)	(0.162)	(0.039)	(0.003)
	p<.001	p<.001	p<.001	p<.001
Exposure+2v	-1.568	-0.847	0.132	-0.023
1 1	(0.261)	(0.231)	(0.039)	(0.004)
	p<.001	p<.001	p=.001	p<.001
Exposure+3v	-1.393	-0.497	0.031	-0.022
± v	(0.246)	(0.219)	(0.040)	(0.004)
	p<.001	p=.023	p=.432	p<.001
Exposure+4v	-1.319	-0.499	-0.076	-0.018
± v	(0.253)	(0.218)	(0.042)	(0.004)
	p<.001	p=.022	p=.075	p<.001
N*T	577762	577758	577872	577872

Note: Annual salary include all income from salary and employee fringe benefits, employee stock options, employer paid sick leave, net gains (including interests and capital gains) from own companies. Total income includes all income absent wealth. Sick leave includes only public health benefits (sick leave and paternity leave). Employment is a binary indicator measured last week of November for each year. Results obtained from estimations following Eq. (1). Models include controls for high school diploma, gender, age, and observation year. Results obtained using reghtfe in Stata. Total number of observations (N*T) differ slightly between outcomes because all income information is not available for all observation all years.

Source: Own calculations on data from Statistics Denmark.

BMJ Open

Table S3. Demographic factors for exposure group and control groups (Δ =1, 2, 3, 4, 5) averaged over the 5 years leading up to the concussion event in each of the groups. Factors include patient age (in years), share of sample female (1=100% female), and share of individuals with at least a high school degree (1=100%).

		Exposure	Control, ∆=1	Control, ∆=2	Control, ∆=3	Control, ∆=4	Control, ∆=5
	Mean	.430	.438	.447	.458	.464	.473
Pr(Female=1)	S.D.	(.495)	(.496)	(.497)	(.498)	(.499)	(.499)
	p-value		.030	< 001	< 001	< 001	< 001
	Mean	36.899	37.354	37.754	38.065	38.343	38.592
Age	S.D.	(11.856)	(11.857)	(11.718)	(11.630)	(11.584)	(11.491)
p-	p-value		<.001	<.001	<.001	<.001	<.001
Pr(High school=1)	Mean	.624	.632	.640	.646	.653	.660
	S.D.	(.484)	(.482)	(.480)	(.478)	(.476)	(.474)
	p-value		.026	<.001	<.001	<.001	<.001
Total individuals		37848	34551	31851	29922	28580	27484

Note: S.D.: Standard deviation. P-values calculated using two-sided t-tests. All test performed between exposure group and each control group separately.

Figure S1. Unnormalized Average Salary for Treatment and Control Groups Measured in 1K € at 2015-levels

Note: Salary of the exposure group compared to salary of the 5 control groups, who experienced their concussions $\Delta = \{1, 2, 3, 4, \text{ and } 5\}$ years later than the exposure group. Salary progression is shown for the 5 years before and the 5 years after the exposure group suffered a concussion event. Table SI demonstrates that the trends for salary progression pre-exposure incident are parallel between exposure group and each control group.

Figure S2. (Left Panel)The Cumulative Distribution for Total Income Post-Treatment among the Treatment Group and Their Counterfactual, and (Right Panel) the Difference between the Two CDFs Expressed as the Effect of Concussion on the Probability of Total Income Below that Income-Level Expressed on the X-Axis following Exposure Event.

Note: The figure shows the observed cumulative salary distribution following a concussion (red) and the expected counterfactual salary distribution absent the concussion (blue). The black line shows the difference between the observed and the counterfactual distribution, and the grey dash lines show the 95 % confidence interval. The bell-shape of the difference between the two distributions as the total income increase from 0 to 40,000 \in indicates that the main part of the effect of concussions on total incomes is driven by low-income people shifting total income downwards following concussion, but not going to total income equal to zero.

Note: Relative salary drop of the exposure group compared to the control groups, who suffer a concussion 1, 2, 3, 4, and 5 years after the exposure group. Relative salary changes are shown across different age groups. Graph shows parameter estimates and 95% CI.

Figure S4. Percentage Effect of Concussion on Relative Salary Across High School Completion.

Note: Relative salary drop of the exposure group compared to the control groups, who suffer a concussion 1, 2, 3, 4, and 5 years after the exposure group. Relative salary changes are shown across whether individuals had obtained at least a high school diploma (ISCED > 2). Graph shows parameter estimates and 95% CI.

Note: Relative salary drop of the exposure group compared to the control groups, who suffer a concussion 1, 2, 3, 4, and 5 years after the exposure group. Relative salary changes are shown across gender. Graph shows parameter estimates and 95% CI.

Figure S6. Effect of Concussion on Absolute Salary in 1K Euro Across Age groups.

Note: Absolute salary drop of the exposure group compared to the control groups, who suffer a concussion 1, 2, 3, 4, and 5 years after the exposure group. Absolute salary changes are shown across different age groups. Graph shows parameter estimates and 95% CI.

Note: Absolute salary drop of the exposure group compared to the control groups, who suffer a concussion 1, 2, 3, 4, and 5 years after the exposure group. Absolute changes in salary are shown across whether individuals had obtained at least a high school diploma (ISCED > 2). Graph shows parameter estimates and 95% CI.

Figure S8. Effect of Concussion on Absolute Salary in 1K Euro Across Gender.

Note: Absolute salary drop of the exposure group compared to the control groups, who suffer a concussion 1, 2, 3, 4, and 5 years after the exposure group. Absolute changes in salary are shown across gender. Graph shows parameter estimates and 95% CI.

BMJ Open

	Item No.	STROBE items	Location in manuscript where items are reported	RECORD items	Location in manuscript where items are reported
Title and abstra	ct	1	1	-	1
	1	(a) Indicate the study's design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced	title abstract	RECORD 1.1: The type of data used should be specified in the title or abstract. When possible, the name of the databases used should be included.	title abstract
		summary of what was done and what was found		RECORD 1.2: If applicable, the geographic region and timeframe within which the study took place should be reported in the title or abstract.	title abstract
			· eL.e	RECORD 1.3: If linkage between databases was conducted for the study, this should be clearly stated in the title or abstract.	abstract
Introduction					
Background rationale	2	Explain the scientific background and rationale for the investigation being reported	abstract introduction	0/1	
Objectives	3	State specific objectives, including any prespecified hypotheses	introduction		
Methods					
Study Design	4	Present key elements of study design early in the paper	introduction		
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	materials and methods		

BMJ Open

Participants	6	(a) Cohort study - Give the	materials and	RECORD 6.1: The methods of study	materials and
1 al tio pullos	Ŭ	eligibility criteria and the	methods	population selection (such as codes or	methods
		sources and methods of selection	litetitous	algorithms used to identify subjects)	methous
		of participants Describe		should be listed in detail. If this is not	
		methods of follow-up		nossible an explanation should be	
		Case control study Cive the		possible, an explanation should be	
		cuse-control study - Give the		provided.	
		engionity chiena, and the		DECORD (2) Any validation studios	mentarials and
		sources and methods of case		RECORD 0.2. Any validation studies	materials and
		ascertainment and control		of the codes of algorithms used to	methods
		selection. Give the rationale for		select the population should be	
		the choice of cases and controls		referenced. If validation was conducted	
		Cross-sectional study - Give the		for this study and not published	
		eligibility criteria, and the		elsewhere, detailed methods and results	
		sources and methods of selection		should be provided.	
		of participants			
				RECORD 6.3: If the study involved	not included
		(b) Cohort study - For matched		linkage of databases, consider use of a	
		studies, give matching criteria		flow diagram or other graphical display	
		and number of exposed and		to demonstrate the data linkage	
		unexposed		process, including the number of	
		Case-control study - For		individuals with linked data at each	
		matched studies, give matching		stage.	
		criteria and the number of		И.	
		controls per case			
Variables	7	Clearly define all outcomes,	materials and	RECORD 7.1: A complete list of codes	materials and
		exposures, predictors, potential	methods	and algorithms used to classify	methods
		confounders, and effect	main text	exposures, outcomes, confounders, and	
		modifiers. Give diagnostic		effect modifiers should be provided. If	
		criteria, if applicable.		these cannot be reported, an	
				explanation should be provided.	
Data sources/	8	For each variable of interest,	materials and		
measurement		give sources of data and details	methods		
		of methods of assessment			
		(measurement).			
		Describe comparability of			
		assessment methods if there is			
		more than one group			

Bias	9	Describe any efforts to address potential sources of bias	materials and methods and results		
Study size	10	Explain how the study size was arrived at	materials and methods		
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	materials and methods		
Statistical methods	12	 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) <i>Cohort study</i> - If applicable, explain how loss to follow-up was addressed <i>Case-control study</i> - If applicable, explain how matching of cases and controls was addressed <i>Cross-sectional study</i> - If applicable, describe analytical methods taking account of sampling strategy (e) Describe any sensitivity analyses 	a) materials and methods b) materials and methods c) materials and methods d-e) NA	r M	
Data access and cleaning method	5			RECORD 12.1: Authors should describe the extent to which the investigators had access to the database population used to create the study population.	materials and methods materials and methods

Linkage				RECORD 12.2. Authors should provide information on the data cleaning methods used in the study. RECORD 12.3: State whether the study included person-level, institutional-level, or other data linkage across two or more databases. The methods of linkage and methods of linkage quality evaluation should be	materials and methods
Degulta				provided.	
Participants	13	 (a) Report the numbers of individuals at each stage of the study (<i>e.g.</i>, numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed) (b) Give reasons for non- participation at each stage. (c) Consider use of a flow diagram 	(a-c) materials and methods	RECORD 13.1: Describe in detail the selection of the persons included in the study (<i>i.e.</i> , study population selection) including filtering based on data quality, data availability and linkage. The selection of included persons can be described in the text and/or by means of the study flow diagram.	materials and methods
Descriptive data	14	 (a) Give characteristics of study participants (<i>e.g.</i>, demographic, clinical, social) and information on exposures and potential confounders (b) Indicate the number of participants with missing data for each variable of interest (c) <i>Cohort study</i> - summarise follow-up time (<i>e.g.</i>, average and total amount) 	 a) materials and methods and Supplementary Table S3 b) materials and methods, Table 1 c) materials and methods 	201	
Outcome data	15	<i>Cohort study</i> - Report numbers of outcome events or summary measures over time <i>Case-control study</i> - Report numbers in each exposure	materials and methodsand Supplementary Table S3, results		

		of exposure <i>Cross-sectional study</i> - Report numbers of outcome events or summary measures			
Main results	16	 (a) Give unadjusted estimates and, if applicable, confounder- adjusted estimates and their precision (e.g., 95% confidence interval). Make clear which confounders were adjusted for and why they were included (b) Report category boundaries when continuous variables were categorized (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period 	a) results b) results c) results		
Other analyses	17	Report other analyses done— e.g., analyses of subgroups and interactions, and sensitivity analyses	results	4.	
Discussion					
Key results	18	Summarise key results with reference to study objectives	results and discussion	00	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	results and discussion	RECORD 19.1: Discuss the implications of using data that were not created or collected to answer the specific research question(s). Include discussion of misclassification bias, unmeasured confounding, missing data, and changing eligibility over time, as they pertain to the study being reported.	NA
Interpretation	20	Give a cautious overall interpretation of results considering objectives	discussion		

		limitations, multiplicity of analyses, results from similar studies, and other relevant evidence			
Generalisability	21	Discuss the generalisability (external validity) of the study results	discussion		
Other Informatio	n				
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Title page		
Accessibility of protocol, raw data, and programming code			Reference to supplementary data throughout the text	RECORD 22.1: Authors should provide information on how to access any supplemental information such as the study protocol, raw data, or programming code.	materials and methods

*Reference: Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, Sørensen HT, von Elm E, Langan SM, the RECORD Working Committee. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) Statement. PLoS Medicine 2015; ense. in press.

*Checklist is protected under Creative Commons Attribution (CC BY) license.