
SUPPLEMENTAL MATERIALS AND METHODS 

Our quasi-experimental, difference-in-differences event time approach compares two groups of individuals from 
the same cohort, where both groups experience concussions, but at two different time points (tc,tc+Δ). For the 
simple situation where we have three periods (t=0,1,2) and the exposure group (T) experiences their concussion at 
the start of period 1 (tc=1), and the control group (C) at the start of period 2 (tc+Δ=2), the effect of concussion on 
salary (Y) is: 

Δ = #Y%& − Y%() − (Y+& − Y+() 
The effect of concussion on salary in t=1 is estimated by comparing the average difference in salary between 

exposure and control groups for the post-concussion period t=1 #Y%& − Y%()	to the average difference in salary for 

the pre-concussion, or baseline, interval t=0 (Y+& − Y+().  Assuming the exact timing of a concussion is random for 
small enough sizes of Δ, and under the additional assumption that the exposure group would have had parallel 
trends in salary as the control group absent suffering concussion at tc, δ captures the causal effect of concussion 
among those who suffer concussions – also known as the average effect on the treated (AT). The AT does not 
capture how concussions would affect a random person. The AT captures how concussions causally affect those 
who suffer concussions.  

For our study, the parallel trends assumption states that exposure and control groups have parallel developments 
in salary leading up to the exposure group’s concussion and the exposure and control groups would have further 
exhibited parallel salary trajectories if the concussion had not occurred. To test the parallel trends assumption, we 
estimate a dynamic version of the model specification (shown in supplementary table S1), which explicitly allows 
us to test whether the parallel trend assumption for our sample is probable. 

To validate that the timing of concussion is random with our study period, we present estimates for effect of 
exposure across different periods between exposure and control incident (Δ). Most recorded concussions outside 
contact sports and military engagements stem from unforeseen events, such as falls or striking/being struck by an 
object25,26, so assuming random timing is likely valid. People who regular engage in activities that result in high 
risk of multiple concussions may be different than the average concussion patient and would be more likely to end 
up in the exposure sample than in the control sample, which could induce bias. To avoid such potential bias, we 
restrict our sample to individuals without prior diagnoses for intracranial injuries ten years prior to exposure.  

At t=-1, i.e. one year before the exposure group suffered a concussion, the control groups were slightly smaller 
than the exposure group, and two control groups (Δ=4 and 5) differed slightly but significantly in terms of average 
patient age (p <. 001; supplementary table S2), male to female ratio (p <.  001), and for control group Δ=5, in the 
frequency of individuals with at least a high school degree (p < .001). However, the differences are numerically 
small. To test that composition differences between exposure and control do not drive our results, we provide 
separate results for individuals with and without high school degree, for males and females, and for different age 
groups across all different values of Δ. 

Further, our design inherently leads to the possibility of timing issues—our exposure group always suffers their 
concussion earlier (in terms of calendar time and age) than the control groups do. If the labor market is constantly 
improving or worsening during the period we consider, this could substantially influence our results. Therefore, 
we also estimate separate models across exposure incident year and control group. Estimating separate models 
allow us the added benefit of being able to examine whether the business cycle influences the effect of concussions 
on salary. 

 

Statistical model 

To estimate the impact of concussion on salary, we define the following variables: Exposure or control group g, 
which includes individuals i, at times to exposure-groups concussion incident t. First, we estimate a standard 
difference in differences model for each separate control group Δ={1, 2, 3, 4, and 5} using ordinary least squares: 

𝑆𝑎𝑙𝑎𝑟𝑦345 = 𝛽+ + 𝛾𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒3 + 𝜃𝑝𝑜𝑠𝑡5 + 𝛿𝑝𝑜𝑠𝑡	 × 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒345 +𝑿𝒊𝜷	
+∑ 𝐼(𝐴𝑔𝑒)𝜂K3LMNOP

Q3LRST +∑ 𝐼(𝑦𝑒𝑎𝑟)S+%S
ULKVR%WWW 𝜂ULKV + 𝜖345   (S1)      

where Salarygit measures annual salaried income deflated to 2015-level, exposureg indicates whether the 
observation belongs to the exposure or control group, postt captures the period after the exposure group’s 
concussion occurred, and postt×exposuregit captures the effect concussion, measured as share of year t ≥ 0 affected 
by concussion. In this way, someone who suffers a concussion July 1 has postt×exposuregit = 0.5 for t = 0 and 
postt×exposuregit = 1 for t > 0. Xi is a set of covariates that includes a high school indicator and a gender dummy, 

𝜖345 is the error-term, and the two last sets of indicator variables 𝐼(𝐴𝑔𝑒) and 𝐼(𝑌𝑒𝑎𝑟) capture age and incident 

year levels (control group indexed against incident year). Under the parallel trends assumption, 𝛿 then captures 
the annual effect of concussion on salary. In eq. 1, exposureg normalizes any pre-exposure differences between the 
exposure and control group, thereby creating a joint baseline pre-exposure. 
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We estimate robust individual-level clustered standard errors to account for the possibility that individuals 
enter the data twice both as control (0) and exposure (1) individuals (g={0,1}), and that they are observed for 

multiple periods (t={-4,…,	Δ-1}). To calculate the relative salary decrease after concussion, we exploit the parallel 
trends assumption to generate the expected counterfactual salary level, i.e. had the concussion not occurred, and 

calculate the decline expressed in percentage as: %	change = 𝛿	/	𝐸(𝑆𝑎𝑙𝑎𝑟𝑦c
345|𝑔 = 1, 𝑝𝑜𝑠𝑡5 = 1, 𝑝𝑜𝑠𝑡5 ×

𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒345 = 0). In this way, we provide both absolute estimates measured in 1K Euro, as well as percentage 

change. 

We expect δ from eq. (1) to likely be negative. Yet, a decrease in annual salary can arrive through two 
different channels. Concussions may affect salary through either decreasing income among those employed or by 
reducing the number of individuals who are employed and earning any salary at. To parse out which of the two 
channels is driving the results, we examine how concussion affects the salary distribution among the exposure 
group following. Following Chernozhukov et al.27 we estimate a series of regressions across the whole salary 
distribution, where, for a finite set of points, we predict how concussion affects the likelihood of having earnings 
on the left side of each finite point, as follows: 

∑ 𝑝h
ijk	(lKmKVU)
hR+ = 𝛽+h + 𝛿h𝑝𝑜𝑠𝑡5 × 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒345 + 𝜃𝑝𝑜𝑠𝑡5 + 𝛾h𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒3 +𝑿𝒊𝜷 +

∑ 𝐼(𝐴𝑔𝑒)𝜂K3L,hMNOP
Q3LRST +∑ 𝐼(𝑦𝑒𝑎𝑟)S+%S

ULKVR%WWW 𝜂ULKV,h + 𝜖345,h   (S2) 

where 𝑝h = Pr	(𝑆𝑎𝑙𝑎𝑟𝑦345 ≤ 𝑗) and j is the interval from 0 to 𝑚𝑎𝑥(𝑆𝑎𝑙𝑎𝑟𝑦). Across the salary distribution, we 

can now predict the probability of earning less than j for those with and without concussions. From equation 2, we 

predict 𝑝h
% = 𝐸(𝑝h|𝑝𝑜𝑠𝑡5 × 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒345 = 1, 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 3 = 1, 𝑡 ≥ 0) and the counterfactual 𝑝h

+ =
𝐸#𝑝ht𝑝𝑜𝑠𝑡5 × 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒345 = 0, 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒3 = 1, 𝑡 ≥ 0).	 Plotting 𝑝h

% and 𝑝h
+ over each value of salary j, and 

assuming rank stability, gives the cumulative density function of salary for the treated (𝑝h
%) and the counterfactual 

observation of the treated had they not suffered concussions (𝑝h
+). The difference between 𝑝h

% and 𝑝h
+ is simply 𝛿h. 

If the value of 𝛿h monotonically moves towards zero as j increases until 𝑝h
% ≈ 𝑝h

+ ≈ 1 it indicates that exit from 

employment fully drives the effect of concussion on salary. If instead the value of 𝛿h is constant or increasing 

across parts of the distribution, it instead indicates that a decrease in salary among those still receiving salary drives 
at least part of the effect. 

Eq. 1 and eq. 2 are based on the parallel trends assumption. The assumption states that exposure and control 
groups follow parallel salary trajectories until individuals in the exposure group experiences a concussion, and that 
the parallel trends would have continued had the concussion not occurred. Whereas we cannot verify the 
counterfactual situation of parallel trends after exposure, we can use a dynamic model to test for systematic 
differences in salary trends between exposure and control group in the years leading up to the exposure group’s 
concussion event. To do so, we estimate the following dynamic model: 

𝑆𝑎𝑙𝑎𝑟𝑦345 = 𝛽+ +∑ 𝛿5 × 𝐼#𝑡3) × 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒3 +Pw%
5xw%,5RwM ∑ 𝐼#𝑡3)𝜂5Pw%

5RwM + 𝛾𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒3 +𝑿𝒊𝜷 +
∑ 𝐼(𝐴𝑔𝑒)𝜂K3LMNOP
Q3LRST +∑ 𝐼(𝑦𝑒𝑎𝑟)S+%S

ULKVR%WWW 𝜂ULKV + 𝜖345  (S3) 

Where we interact exposure group status (exposureg) with indicators I(tg) capturing time from concussion. If the 
parallel trends assumption holds, then it must be the case {δ-4, δ-3, δ-2}=0, whereas the size and sign of {δ0…δΔ-1} 
captures the dynamic effect of a concussion from the year of incidence and Δ-1 years onward. By estimating the 
effect of concussion on salary among different years of the study period, we are also able to capture how the impact 
of concussion on salary evolves year to year after the concussion has occurred. We further estimate eq. 3 for a 
series of related labor market outcomes (annual total income, annual amount of sickness benefits received, annual 
probability of being employed), to generate a more thorough understanding on how concussions affect labor 
market outcomes—i.e., if people experience a decrease in salary due to a concussion, are they then compensated 
through different types of welfare state services. 
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