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Materials and Methods 
 
Datasets 
 
We used three large pan-cancer whole genome cohorts: the Genomics England Limited 
(GEL) version 8 cohort of the 100,000 Genomes Project (7), the ICGC cohort (9, 11) and the 
Hartwig cohort (12). 
 
The GEL cohort contains 15,838 cancer whole genomes involving 23 tumor-types. We 
performed two steps of quality control: an automated check of sequencing and mapping quality 
parameters (table S2), and a visual curation (e.g., missing data and evidence of contamination 
from other samples). We included 12,222 samples across 19 organs for mutational signature 
analysis. We excluded formalin-fixed paraffin embedded samples (FFPE) and samples with 
short fragment size and low mapping rate.  Around 6.5% of samples had a few cycles of PCR 
(table S1). The GEL version 8 dataset can be accessed via 
https://www.genomicsengland.co.uk/about-gecip/for-gecip-members/data-and-data-access.  
 
The ICGC cohort contains 3,001 cancer whole genomes across 19 organs, comprising 2471 
samples from PCAWG (EGAS00001001692) and 530 additional breast cancers (450 
from EGAS00001001178 and 80 from EGAD00001002740). 
 
The Hartwig cohort contains 3,417 metastatic cancer whole genomes across 18 organs. Data 
can be accessed via at www.hartwigmedicalfoundation.nl/en. 
 
The count of single nucleotide variants, double nucleotide variants, indels and rearrangements 
in the three cohorts can be found in table S1. 
 
Each cohort uses a different nomenclature for classifying cancer samples into tissues-of-origin. 
In order to perform comparisons across the three cohorts, we used a common organ name for 
all cohorts (table S5). 
 
The number of samples for each organ of each cohort can be found in tables S3 and S4, and 
the full list of samples is available in table S6. 
 
Mutational Signature Extraction 
 
For each sample in each cohort, we constructed single and double base substitution (SBS and 
DBS) mutational catalogs (tables S16 and S17) as previously described (5, 14). We performed 
independent signature extractions per organ for each cohort.  
 
We used a signature extraction framework that improves upon our recent work (17), which 
permits distinguishing common from rare signatures (Fig. 1C). 
 
First, we clustered the mutational catalogs in each organ for each of the three cohorts, in order 
to seek out samples that had distinctive, unusual mutational profiles. We used hierarchical 
clustering with average linkage and used 1 – cosine similarity as distance (fig. S1A). We then 
followed the dendrogram, and manually split the catalogs into two sets, one with the 
unusual/rare profiles and one with common/recurrent profiles, which was used as the initial set 
for the signature extraction (fig. S1B). From this initial set, we excluded GEL samples that 
were created using PCR library preparations, and samples with unusual/rare profiles. By 



excluding these samples, the number of mutational signatures in the initial set was limited to 
common patterns, reducing the mixing of signatures in the extraction process.  
 
Second, we performed signature extraction (17) on this initial set (fig. S1C). In table S6 we 
indicate which samples were used. In brief, given a matrix of catalogs 𝐶, we applied non-
negative matrix factorization (NMF) to 20 matrices 𝐶’, bootstrapped from 𝐶. To solve NMF 
we used the Lee and Seung multiplicative algorithm that optimizes the Kullback-Leibler 
divergence (KLD) (46), producing a matrix of signatures 𝑆 and a matrix of exposures 𝐸 for 
each NMF run, such that 𝐶’ ≈ 𝑆𝐸.  We repeated NMF at least 300 times for each bootstrap 
matrix, using random initializations, and selected only the solutions that had a final KLD within 
0.1% of the best solution found (the solution with the lowest KLD). Then, we clustered all the 
selected solutions using clustering with matching and computed the data-model error as the 
average KLD, the goodness of clustering as the average silhouette width (ASW), and the 
consensus signatures as the medoid of each cluster. Finally, we repeated the above procedure 
for different values of number of signatures 𝑘 and manually selected 𝑘 as the trade-off between 
data-model error and the ASW. Thus, for each organ in each cohort we reported a set of 
signatures, that we term common signatures. 
 
Third, for each organ in each cohort, we took all samples into consideration and attempted to 
identify additional signatures that could be present in the samples (Fig. 1C). To do so we fitted 
the common signatures 𝑆 to all the samples (KLD optimization), and identified the samples 
with a high normalized error, calculated as the sum of absolute deviations between the original 
catalog 𝑐 and reconstructed catalog 𝑆𝑒, divided by the total mutations in the catalog (fig. S1D).  
In addition to the high normalized error, we also required that the samples had a residual error 
above a minimum number of mutations, which was manually tuned for each extraction (3-400 
mutations for SBS and 40-50 mutations for DBS).  A sample residual error (fig. S1E) was 
calculated after estimating the sample exposures using least squares (limSolve R package) with 
the constraint that the difference between original and reconstructed catalogs should be mostly 
positive (𝑐 − 𝑆𝑒 > −𝜏 ∙ ∑ 𝑐!! ), 𝜏 = 0.003. We then clustered the residual errors using 
hierarchical clustering with average linkage and 1 – cosine similarity as distance (fig. S1, F 
and G). Finally, for each cluster of residual errors, we extracted one signature using a version 
of NMF where the signature matrix 𝑆 contained the common signatures as constants, and one 
additional column that was estimated to contain the new signature, using the NNLM R package, 
(fig. S1H). Thus, for each organ in each cohort we reported an additional set of signatures, that 
we term rare signatures. 
 
The total number of common and rare SBS and DBS signatures found is 757 and 301 
respectively (tables S9 and S10). The number of common and rare signatures found in each 
organ in each cohort can be found in tables S11 and S12. It should be noted that the terms 
common and rare refer to the step at which the signature was identified in a specific organ. In 
practice, a specific mutational pattern could be considered rare in one per organ extraction of 
one cohort and be a common pattern in another. 
 
Mutational signature exposures 
 
We fitted common and rare signatures to each sample catalog independently. Rare signatures 
were fitted only into the samples where the signatures were identified. 
 
In the case of SBS signatures, as described previously (17), for each sample we performed 200 
signature fits using bootstrapped catalogs and KLD optimization, obtaining an ensemble of 200 



exposure estimates for each signature, and chose as a point estimate the median of the 
exposures. Finally, to increase specificity and reduce the false positive assignment we set to 
zero the point estimate exposure of a signature, if the proportion of exposures below a certain 
threshold (5% of the total number of mutations) was higher than 5% (empirical p-value of 
0.05). Exposures of fewer than 50 mutations were also set to zero. 
 
In the case of DBSs, the number of mutations were too low to perform the bootstrap-based fit 
described above, so we performed a single signature fit instead. To increase specificity, 
exposures were set to zero if they contributed to less than 25% of the total number of mutations 
and if they were less than 25 mutations. 
 
Reference signatures 
 
To be able to describe and discuss signatures across organs and cohorts, we determined a set 
of reference signatures to denote unifying processes (Fig. 1G). Each signature extracted in each 
cohort-organ combination could then be mapped to one or more reference signatures. 
 
We clustered all organ signatures from all three cohorts (757 in the case of SBS, 301 DBS) 
using hierarchical clustering with average linkage and 1 – cosine similarity as distance. We 
then manually identified clusters by following the hierarchical clustering dendrogram (tables 
S13 and S14). Manual clustering was necessary because it was not possible to use a single 
threshold for the dendrogram that would be appropriate for all recurrent patterns. The clusters 
were selected so that all the signatures within each cluster were highly similar. We then 
computed the average of each cluster and termed these ‘distinct patterns’ (Fig. 1G and tables 
S15 and S16). 
 
Next, we considered that each distinct pattern (187 for SBS and 60 for DBS) was either: i) a 
reliably recurrent distinct pattern that we could observe in multiple independent extractions; ii) 
a mix of two or more distinct patterns; iii) a singleton pattern found only in one organ in one 
cohort (Tables S17 and S18). 
 
We clustered the recurrent distinct patterns to determine whether some distinct patterns could 
be a variant of the same pattern. Cluster means were then reported as a first set of highly reliable 
reference signatures. 
 
To identify mixed distinct patterns, we performed a signature fit (KLD optimization) of each 
possible combination of two distinct patterns into each distinct pattern. Mixed patterns were 
not considered reference signatures, but rather a combination of reference signatures obtained 
from recurrent distinct patterns. 
 
We investigated the singleton distinct patterns to determine if patterns were likely variants of 
the reference signatures, and if not, they were reported as additional reference signatures, some 
of which may have been reported in other studies. 
 
A total of 120 SBS and 39 DBS reference signatures were identified (tables S19, S20, S21 and 
S22). 
 
A conversion matrix was constructed to map the cohort-organ signatures to the reference 
signatures (tables S25 and S26). Most signatures can be mapped exactly to one reference 
signature (entry 1 in the conversion matrix) based on the distinct patterns clustering. Cohort-



organ signatures that clustered into mixed distinct patterns were mapped to multiple reference 
signatures using the coefficients determined at the identification of mixed distinct patterns. 
 
We used the conversion matrix and information about common/rare signatures to rename the 
cohort-organ signatures in a meaningful way. For example, “GEL-Ovary_common_SBS1+18” 
indicates that the signature is from the GEL cohort, Ovary organ, was identified among the 
common signatures, it is an SBS signature and according to the conversion matrix it is a mix 
of reference signatures SBS1 and SBS18.  
 
Finally, we used the conversion matrix to convert the cohort-organ signature exposures into 
reference signature exposures (tables S23 and S24). 
 
Quality control of reference signatures 
 
Each reference signature was given a QC status of “green”, “amber” or “red”, according to 
additional evidence. For example, signatures observed in multiple cohorts and multiple organs, 
or observed in previous studies, were considered “green”, while patterns that were only 
observed in a single extraction were usually considered “amber” denoting some uncertainty. 
The “red” status was given to patterns considered mathematical or alignment artefacts. 
 
After quality control, 82/120 SBS and 27/39 DBS reference signatures had QC “green” status 
(tables S19 and S20). 
 
When seeking etiologies and/or potential artefacts for the signatures, we performed the 
following additional QC: 

• Genetically: 
o we check relatedness of samples (because some patients do have more than 

one sample in the 100,000 Genomes Project) 
o we seek potential germline variants as a contributing cause for a signature and  
o we go through somatic driver mutations 

• In many cases, medical records were searched for:  
o past medical histories 
o past occupational exposures and  
o past treatment histories.  

 
Organ-specificity of signatures 
 
For all common signatures in 16 organs that were mutually present across GEL, ICGC and 
Hartwig, we sought the most similar signature in another cohort (minimum cosine similarity 
of 0.85) and checked whether it belonged to the same organ. For each organ in each cohort, 
this resulted in a proportion of signatures that best matched signatures of the same organ in a 
different cohort (fig. S2A). These proportions could be calculated in all cohort directions: from 
ICGC to GEL, GEL to ICGC, GEL to Hartwig, Hartwig to GEL, ICGC to Hartwig and Hartwig 
to ICGC, resulting in six proportions per organ (fig. S2B). 
 
We calculated the proportion of signatures that matched different organs as well, for example 
the proportion of GEL-Breast common signatures that best matched ICGC-Ovarian signatures, 
resulting in 12 proportion values for each match of different organs (fig. S2C). 
 



Finally, we used a Tukey test (confidence level 0.95, p-value threshold 0.05) to determine 
whether the proportion of signatures matching the same organ was significantly higher than 
the proportion of signatures matching different organs (fig. S2D). The total number of organ 
comparisons was 16, thus we counted how many times a comparison with the same organ was 
found to be significantly higher than the different organs comparisons, according to the Tukey 
test. In fig. S2E, we simply reported *** for significantly higher than all other 15 organ 
comparisons, ** for higher than 11 other organ comparisons and * for higher than 7 other organ 
comparisons. 
 
Notice that these proportions do not simply indicate organ signatures similarity across cohorts, 
but rather that looking across an entire other cohort the most similar signatures are in a given 
organ. If the largest proportions are consistently found in same organ comparisons, this in turn 
implies organ-specificity of signatures. In some organs, such as biliary and stomach, while 
there were similar signatures in the same organ across cohorts, these were not consistently the 
most similar when considering all organs in a cohort, and organ-specificty was not detected. 
 
Additional evaluations of DBS reference signatures 
 
We performed three additional evaluations of the DBS signatures. 
 
First, for each DBS reference signature we selected representative samples that had a high 
number of mutations (exposures) associated with that signature. Then we manually checked 
aligned reads at DNV locations to determine if the two substitutions that composed each DNV 
were in cis, i.e., on the same DNA molecule. 
 
Second, for each SBS reference signature that had an associated DBS reference signature (high 
correlation of SBS and DBS exposures), we performed an in-silico analysis, to determine 
whether the DBS could be explained simply by SNVs of that signature falling adjacent to each 
other by chance. For each SBS, we sampled 1 million SNV mutations randomly across the 
genome with the same trinucleotide context and proportion of mutation types defined by the 
SBS. We then constructed the in-silico DBS using the SNVs that fell next to each other (fig. 
S8, D to I). 
 
Third, for each DBS reference signature we selected representative samples that had a high 
number of mutations (exposures) associated with that signature. Then, we inspected the 
mutational context of DNVs, up to 10 bp 5-prime and 3-prime of each DNV (Fig. 3B and fig. 
S7, B to F).  
 
Replication and transcription strand bias calculation 
 
All single base substitutions were converted to a pyrimidine reference and annotated with 
respect to a replication and/or transcriptional strand. Leading and lagging strands were 
determined using replication-sequencing data from the breast cancer cell line MCF-7. 
Transcribed and non-transcribed strands, associated with gene orientation, were defined for the 
regions of the genome with transcribed genes. The mutations were further stratified into the 
respective substitution class (C>A, C>G, C>T, T>A, T>C, T>G). Mutations in each sample 
were assigned to mutational signatures based on the maximum likelihood (methodology can 
be found in (42)).  
 



Various metrics were used to determine whether strand bias was occurring for each substitution 
class in each signature: the p-value of the paired two-tailed Student’s t-test applied to the 
proportion of mutations in each strand across samples, using the “natural” bias as the true mean 
for the test; the log2 ratio between the mutations in each strand, summing all mutations across 
samples, corrected for the “natural” log2 ratio bias; the contribution of each mutation class in 
each signature. We thus determined that bias in a substitution class in a signature was present 
if the p-value was below 0.1 (ignored if only one or two samples have the signature), the 
absolute value of the log2 ratio was above 0.2 and the contribution of the mutation class to the 
signature was at least 15%. All metrics are available in table S32. 
 
HRDetect bootstrap scores 
 
HRDetect is a logistic regression classifier that uses whole genome sequencing data to compute 
the probability of a sample as being Homologous Recombination deficient. To compute the 
HRDetect score we determined the following input features: exposures of signatures SBS3 and 
SBS8, as well as rearrangement signatures 3 and 5, the proportion of short deletions at 
microhomology, and the HRD-LOH index. In particular, the rearrangement signatures 
exposures were obtained by signature fit of previously published organ specific rearrangement 
signatures (17). We computed both a single score, using the median of bootstrap fits for 
substitution and rearrangement exposures, as well a distribution of bootstrap scores, perturbing 
the input features as previously described, and reporting 5th, 50th and 95th scores from a total of 
1000 bootstrapped scores. We considered a sample to be classified as HR deficient if the 5th 
percentile score was above 0.5, i.e., if 95% of the bootstrapped scores were above 0.5, which 
corresponds to the empirical p-value of 0.05 of score>0.5 (table S31). 
 
FitMS and simulation study 
 
We provide a signature fitting algorithm called signature Fit Multi-Step (FitMS), which allows 
users to fit our mutational signatures into their own samples. FitMS is written in R and is 
available in our signature.tools.lib package (45). 
 
In general, given a mutational catalog 𝑐, a signature fit algorithm attempts to find a set of non-
negative exposures 𝑒 that indicate the number of mutations associated with each signature in a 
given signature matrix 𝑆, such that 𝑐 ≈ 𝑆𝑒. 
 
FitMS is organized in two main steps. In the first step, a set of common signatures is fitted into 
a sample, while in the second step, the algorithm attempts to improve the fit by adding a small 
number of rare signatures (one by default). 
 
We implemented two strategies in FitMS: 

1. constrainedFit: common signatures are fitted using a non-negative least squares 
algorithm with the additional constraint that the difference between the original catalog 
𝑐 and the reconstructed catalog 𝑆𝑒 should be mostly positive, 𝑐 − 𝑆𝑒 > −𝜏 ∙ ∑ 𝑐!! , with 
𝜏 = 0.003 (limSolve R package). The residual 𝑅 = 𝑐 − 𝑆𝑒 is then compared to the rare 
signatures, and if there are rare signatures with cosine similarity of at least 0.8 to 𝑅, 
then the rare signature with the highest cosine similarity is chosen. Finally, the common 
signatures and the selected rare signature are fitted into the catalog using a non-negative 
KLD optimization (NNLM R package); 



2. errorReduction: common signatures are fitted using a non-negative KLD optimization. 
All rare signatures are then fitted one at a time along with the common signatures. Rare 
signatures that caused the mean absolute deviation between 𝑐 and 𝑆𝑒 to reduce at least 
15% with respect to using the common signatures alone, are considered. Finally, if more 
than one rare signature is considered, the rare signature that induced the highest cosine 
similarity between the catalog 𝑐 and the model 𝑃𝑒 is selected. 

 
We determine the set of common and rare signatures to be fitted in a sample in an organ-
specific way.  

• For common signatures, we use the GEL organ-specific common signatures, with the 
exception of Esophagus and Head_neck, where ICGC signatures are used, because 
these organs were not available in GEL.  

• For rare signatures, we instead chose high-quality reference signatures observed as rare 
signatures across the various organs and cohorts at least twice, and that did not already 
belong to the set common signatures. 

The list of common and rare signatures that can be used in the 21 organs is available in table 
S33. 
 
To evaluate the performance of FitMS, we used a simulation study. We simulated 100 genomes 
so that each genome contained 5 of 9 random GEL-Breast common SBS signatures. In addition, 
25 of the 100 samples had one additional rare signature, randomly selected from 54 SBS 
reference signatures (Table S33). The minimum number of mutations in a sample was 5000 
and maximum 50000, sampled uniformly in log scale, so that the values close to 5000 were 
more likely. 
 
We compared the two FitMS strategies against a “fit all” algorithm, where all 9+54 signatures 
were fitted into a catalog at the same time using a non-negative KLD optimization. 
 
Each signature fit strategy estimated the exposures of the given signatures in each sample. This 
first estimate of the exposures usually tends to overfit the signatures into the samples, resulting 
in false positive exposures consisting of very small number of mutations. Thus, we set an 
exposure to zero if the number of mutations was lower than a certain threshold, given as a 
percentage of the total number of mutations in a sample. To assess how the performance of the 
algorithms changed according to the threshold used, we used different threshold values: 0, 1, 
2, 5 and 10% (fig. S53, D to I). 
 
 
Criteria for calling potential driver variants in GEL data 
 
Potential driver mutations were sought in specific cancer genes associated with mutational 
signatures. For all genes investigated, germline variants which were called as pathogenic or 
likely pathogenic in ClinVar were included as potential drivers. For tumor suppressor genes 
any germline or somatic variant which was predicted to inactivate the gene was included as a 
potential driver variant. These included both substitutions and small insertions and deletions 
resulting in; stop gain, frameshift, splice donor and splice acceptor variants and structural 
rearrangement mutations (deletions, inversion, tandem duplications or translocations) which 
disrupted the footprint of the gene. In addition, for both tumor suppressor genes and oncogenes, 



somatic missense mutations which had been previously reported recurrently in cancer were 
also considered as potential drivers, including those variants recorded as pathogenic or likely 
pathogenic in ClinVar and those present in COSMIC database greater than four times 
(https://cancer.sanger.ac.uk/cosmic). Additional published data was also used to assist driver 
assignment for the following genes, POLE (47), POLD1 (29) and MBD4 (21). 
 
Evidence to indicate all wild type alleles of tumor suppressor genes were inactivated in the 
tumor was provided by either the existence of two or more inactivating mutations or by Loss 
of Heterozygosity (LOH) of the alternate allele. LOH was indicated by a combination of copy 
number estimates provided by Canvas, tumor content and estimates of the Variant Allele 
Fraction (VAF) in the tumor. VAF was used to determine whether LOH of germline variants 
was in favor of the wildtype or mutant allele and in identifying variants with high VAF where 
LOH may have been missed by copy number analysis. 
 
Per sample mutations are available in tables S28 to S30. 
 
 


