QTL	MSU ID	Experimen t ID	Log2- ratio	Fold- Chang e	Stimulus	Stimulus description	Genotype	Genotype Description	Anatomica Part
qREP1.1	LOC_Os01g21240.1								
YKEP1.1	LOC_Os01g21250.1								
qRPPUE1.2	LOC_Os01g43220.1	Os00036	1.11	2.14	phosphorus (no P for 10d; shoot) vs. iron; phosphorus (no Fe and P for 10d; shoot)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal iron (0.036mM FeCl3) concentration but lacking phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450 mmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
	LOC_Os01g43250.1								
	LOC_Os01g43270.1								
	LOC_Os01g45510.1								
	LOC_Os01g45520.1								

	OS-00239	1.57	2.92	(Dular; 1μM Pi; shoot) vs	Shoot samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).		Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot
--	----------	------	------	------------------------------	--	--	---	-------

LOC_Os01g45530.1	OS-00036	1.21	2.24	phosphorus (no P for 10d; shoot) vs untreated shoot samples (sufficient Fe and P)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal iron (0.036mM FeCl3) concentration but lacking phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450 mmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
------------------	----------	------	------	--	--	------------	---	-------

OS-0005	91 1.03	3 2.04	(low Pi for 6h) vs	Seedling samples of cultivar Zhonghua 10 grown for 7 days in a nutrient solution with sufficient phosphate (0.323mM NaH2PO4), then transferred to low phosphate (0.016mM NaH2PO4) for 6h. Other components of the nutrient solution (pH 5.5): 1.425mM NH4NO3, 0.513mM K2SO4, 0.998mM CaCl2, 1.643mM MgSO4, 0.168mM Na2SiO3, 0.125mM Fe-EDTA, 0.019mM H3BO3, 0.009mM MnCl2, 0.155mM CuSO4, 0.152mM ZnSO4, 0.075mM Na2MoO4. Other conditions: 16h light at 30°C / 8h dark at 22°C.	Zhonghua 10	Japonica (Oryza sativa ssp. japonica) cultivar.	seedling
---------	---------	--------	-----------------------	---	-------------	---	----------

1.37 1.37	 Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-Nipponbare is susceptible to Xanthomonas oryzae pv. oryza strains BAI3 (from Burkina Faso), PXO99A (from the Philipp race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequen stitute, Manila, nes) with optimal nM FeCI3) nn but lacking (NaH2PO4). th conditions: nber, 12h light photons m-2s-1) h darkness at 	ency Are is bode blate lant
--	--	---

qRPPUE1.3		1.09 2.13	iron (no Fe for 10d; shoot) vs iron; phosphorus (no Fe and P for 10d; shoot)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot

LOC_Os01g45550.1	OS-00091	1.01	2.02	(low Pi for 24h) vs untreated	Seedling samples of cultivar Zhonghua 10 grown for 7 days in a nutrient solution with sufficient phosphate (0.323mM NaH2PO4), then transferred to low phosphate (0.016 mM NaH2PO4) for 24h. Other components of the nutrient solution (pH 5.5): 1.425mM NH4NO3, 0.513mM K2SO4, 0.998mM CaCl2, 1.643mM MgSO4, 0.168mM Na2SiO3, 0.125mM Fe-EDTA, 0.019mM H3BO3, 0.009mM MnCl2, 0.155mM CuSO4, 0.152mM ZnSO4, 0.075mM Na2MoO4. Other conditions: 16h light at 30°C / 8h dark at 22°C.	Zhonghua 10	Japonica (Oryza sativa ssp. japonica) cultivar.	seedling
------------------	----------	------	------	-------------------------------------	---	-------------	---	----------

OS-00036	-1.39		iron; phosphorus (no Fe and P for 10d; shoot) vs untreated shoot samples (sufficient Fe and P)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) lacking iron (FeCI3) and phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
----------	-------	--	---	--	------------	---	-------

OS-00239	-1.9	-3.88	phosphorus (Dular; 320µM Pi; root) vs phosphorus (Pusa Basmati 1; 320µM Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate sufficient nutrient solution (320µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot
	-2.45	-5.51	phosphorus (Dular; 1µM Pi; root) vs phosphorus (Pusa Basmati 1; 1µM Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot

		-1.05	-2.09	· ·	Root samples of IR64-null line grown till the heading stage on phosphorus- deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	IR64-null	Non-transgenic, phosphorus-starvation-intolerant line from the segregating progeny of a transformant heterozygous for the 35S::PSTOL1 transgene; sibling of the transgenic 35S::PSTOL1 (20) line.	roots								
LOC_Os01g57390.1	OS-00096	-1.47	-3.23	phosphorus (35S::PSTOL 1 (20); no P fertilizer) vs phosphorus (35S::PSTOL 1 (20); 60kg/ha P2O5)	Root samples of 35S::PSTOL1 (20) line grown till the heading stage on phosphorus deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.		Phosphorus-starvation-tolerant transgenic line 20 (cv. IR64 background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV35S promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OsPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 35S::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 35S::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots								
LOC_Os01g57400.1										-1.12	-2.74	phosphorus (35S::PSTOL 1 (20); no P fertilizer) vs phosphorus (35S::PSTOL 1 (20); 60kg/ha P2O5)	Root samples of 35S::PSTOL1 (20) line grown till the heading stage on phosphorus deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.		Phosphorus-starvation-tolerant transgenic line 20 (cv. IR64 background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV35S promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OsPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 35S::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 35S::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots

	OS-00036	1.4	2.64	iron; phosphorus (no Fe and P for 10d; shoot) vs untreated shoot samples (sufficient Fe and P)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) lacking iron (FeCI3) and phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
--	----------	-----	------	---	--	------------	---	-------

LOC_Os01g57410.3	OS-00239	-1.04	-2.05	phosphorus (Dular; 1µM Pi; root) vs phosphorus (Dular; 320µM Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots
------------------	----------	-------	-------	--	---	-------	---	-------

OS-00036	-1.51	-2.88	iron (no Fe for 10d; shoot) vs iron; phosphorus (no Fe and P for 10d; shoot)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCl3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolates FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
OS-00096	2.76	6.8	phosphorus (35S::PSTOL 1 (20); no P fertilizer) vs phosphorus (35S::PSTOL 1 (20); 60kg/ha P2O5)	Root samples of 35S::PSTOL1 (20) line grown till the heading stage on phosphorus deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	35S::PSTOL1 (20)	Phosphorus-starvation-tolerant transgenic line 20 (cv. IR64 background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV35S promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OsPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 35S::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 35S::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots

2.385.17iron (no Fe for 10d; root) vs untreated root samples (sufficient Fe and P)Root samples of cultivar Nipponbare germinated for 1 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optima phosphorus (0.323mM NaH2PO4) concentration bui lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolates FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots

1.53	2.89	iron (no Fe for 10d; shoot) vs iron; phosphorus (no Fe and P for 10d; shoot)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant	roots
			12h light (450µmol photons m−2s−1) at 30°C / 12h		al., 2008, New Phytol. 180: 899-910). This variety is sensitive to	

OS-00239	1.53	2.9	phosphorus (Pusa Basmati 1; 1µM Pi; root) vs phosphorus (Pusa Basmati 1; 320µM Pi; root)	Root samples of 15-day-old Pusa Basmati 1 seedlings grown in a phosphate deficient nutrient solution (1μM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250-300μmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Pusa Basmati 1	Semi-dwarf aromatic (Evolved Basmati) cultivar developed by The Indian Agricultural Research Institute (IARI), released in 1989. Low number of seeds (approx. 181) per panicle (Deshmukh et al., 2010, Funct Integr Genomics 10: 339-47). Pusa Basmati 1 is susceptible to Magnaporthe oryzae strain Mo-nwi- 53 (Jain et al., 2017, Front Plant Sci. 8: 93). Pusa Basmati 1 is sensitive to low phosphate (Pi) content in the soil (Mehra et al., 2016, Front Plant Sci. 6: 1184).	roots
----------	------	-----	---	--	-------------------	---	-------

LOC_Os01g57420.1	OS-00036	1.42	2.65	phosphorus (no P for 10d; root) vs untreated root samples (sufficient Fe and P)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal iron (0.036mM FeCl3) concentration but lacking phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450µmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots
------------------	----------	------	------	--	--	------------	---	-------

qRRSR1.4		1.37	iron; phosphoru: (no Fe and for 10d; root) vs untreated root samples (sufficient Fe and P)		Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	
----------	--	------	---	--	------------	---	--

OS-00091	-1.13	-2.19	phosphorus (low Pi for 6h) untreated seedling samples (sufficient Pi)	Seedling samples of cultivar Zhonghua 10 grown for 7 days in a nutrient solution with sufficient phosphate (0.323mM NaH2PO4), then transferred to low phosphate (0.016mM NaH2PO4) for 6h. Other components of the nutrient solution (pH 5.5): 1.425mM NH4NO3, 0.513mM K2SO4, 0.998mM CaCl2, 1.643mM MgSO4, 0.168mM Na2SiO3, 0.125mM Fe-EDTA, 0.019mM H3BO3, 0.009mM MnCl2, 0.155mM CuSO4, 0.152mM ZnSO4, 0.075mM Na2MoO4. Other conditions: 16h light at 30°C / 8h dark at 22°C.	Zhonghua 10	Japonica (Oryza sativa ssp. japonica) cultivar.	seedling
OS-00239	-1.79	-3.4	(Dular; 1μM Pi; root) vs	Root samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots

LOC_Os01g57440.1	OS-00096	1.04	2.06	phosphorus (35S::PSTOL 1 (20); no P fertilizer) vs phosphorus (35S::PSTOL 1 (20); 60kg/ha P2O5)	Root samples of 35S::PSTOL1 (20) line grown till the heading stage on phosphorus deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	Phosphorus-starvation-tolerant transgenic line 20 (cv. IR64 background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV35S promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OsPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 35S::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 35S::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots
LOC_Os01g57450.1							
LOC_Os01g57460.1	OS-00096	1.26	2.4	phosphorus (35S::PSTOL 1 (20); no P fertilizer) vs phosphorus (35S::PSTOL 1 (20); 60kg/ha P2O5)	Root samples of 35S::PSTOL1 (20) line grown till the heading stage on phosphorus deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	Phosphorus-starvation-tolerant transgenic line 20 (cv. IR64 background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV35S promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OsPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 35S::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 35S::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots

LOC_Os01g57470.1	OS-00096	2.6	4.11	(35S::PSTOL 1 (20); no P fertilizer) vs phosphorus (35S::PSTOL 1 (20); 60kg/ba	,	355::PSTOL1 (20)	Phosphorus-starvation-tolerant transgenic line 20 (cv. IR64 background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV35S promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OsPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 35S::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 35S::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots
	OS-00003	1.44	2.57	arsenate (Azucena) vs untreated root samples (Azucena)	Root samples of rice variety Azucena grown for 7 days in hydroponics on phosphate- free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3µM) arsenate (Na2HAsO4).	Azucena	Traditional japonica (Oryza sativa ssp. japonica) upland cultivar; origin: the Philippines. Azucena is resistant to aluminum stress (Al3+) (Arbelaez et al., 2017, Plant Direct 1).	roots

		-1.92	-3.77		Shoot samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot
LOC_Os01g57480.1	05-00-20	-2.55	-4.68	phosphorus (Dular; 320µM Pi; root) vs phosphorus (Pusa Basmati 1; 320µM Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate sufficient nutrient solution (320µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots

1	03-00233	(1		1
		-2.35	-5.01	phosphorus (Dular; 1µM Pi; root) vs phosphorus (Pusa Basmati 1; 1µM Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots
		-2.4	-5.34	(Dular; 320μM Pi; shoot) vs	Shoot samples of 15-day-old Dular seedlings grown in a phosphate sufficient nutrient solution (320µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot
LOC_Os01g57490.1 LOC Os01g66070.1								
100_0301900070.1		I						

	OS-00091	1.42	2.69	phosphorus (low Pi for 24h) vs untreated seedling samples (sufficient Pi)	Seedling samples of cultivar Zhonghua 10 grown for 7 days in a nutrient solution with sufficient phosphate (0.323mM NaH2PO4), then transferred to low phosphate (0.016 mM NaH2PO4) for 24h. Other components of the nutrient solution (pH 5.5): 1.425mM NH4NO3, 0.513mM K2SO4, 0.998mM CaCl2, 1.643mM MgSO4, 0.168mM Na2SiO3, 0.125mM Fe-EDTA, 0.019mM H3BO3, 0.009mM MnCl2, 0.155mM CuSO4, 0.152mM ZnSO4, 0.075mM Na2MoO4. Other conditions: 16h light at 30°C / 8h dark at 22°C.	Zhonghua 10	Japonica (Oryza sativa ssp. japonica) cultivar.	seedling
--	----------	------	------	--	---	-------------	---	----------

OS-00036	1.41			Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
----------	------	--	--	---	------------	---	-------

OS-00239	1.37	3.14	phosphorus (Pusa Basmati 1; 1µM Pi; shoot) vs phosphorus (Pusa Basmati 1; 320µM Pi; shoot)	Shoot samples of 15-day-old Pusa Basmati 1 seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250-300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).		Semi-dwarf aromatic (Evolved Basmati) cultivar developed by The Indian Agricultural Research Institute (IARI), released in 1989. Low number of seeds (approx. 181) per panicle (Deshmukh et al., 2010, Funct Integr Genomics 10: 339-47). Pusa Basmati 1 is susceptible to Magnaporthe oryzae strain Mo-nwi- 53 (Jain et al., 2017, Front Plant Sci. 8: 93). Pusa Basmati 1 is sensitive to low phosphate (Pi) content in the soil (Mehra et al., 2016, Front Plant Sci. 6: 1184).	shoot
----------	------	------	---	---	--	---	-------

1.252.41Shoot samples of cultivar Nipponbare germinated fo days in distilled water and then floated for 10 days on the Yoshida nutrient soluti (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Ric Ed 3. International Rice Research Institute, Manila The Philippines) with optin phosphorus (0.323mM NaH2PO4) concentration to lacking iron (FeCI3) and cit acid. Other growth conditions: growth chamb 12h light (450µmol photor m-2s-1) at 30°C / 12h darkness at 22°C.	for 2 d hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolate fCL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol : Faivre-Bampant et	shoot
---	--	-------

LOC_Os01g66100.1	OS-00036	1.24 2.35	phosphorus (no P for 10d; shoot) vs iron; phosphorus (no Fe and P for 10d; shoot)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal iron (0.036mM FeCl3) concentration but lacking phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450 mmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
------------------	----------	-----------	--	--	------------	---	-------

	1.08 2	phosphorus (no P for 10d; shoot) vs untreated shoot samples (sufficient Fe and P)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal iron (0.036mM FeCI3) concentration but lacking phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450 mmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
--	--------	--	--	------------	---	-------

qRPUpE1.5		OS-00239	1.04	2.12	(Dular; 320µM Pi; shoot) vs	Shoot samples of 15-day-old Dular seedlings grown in a phosphate sufficient nutrient solution (320µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot
-----------	--	----------	------	------	-----------------------------------	---	-------	---	-------

1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73	Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal iron (0.036mM FeCI3)	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	
--	---	---	--

	OS-00036 1.5	5 2.93	iron (no Fe for 10d; root) vs untreated root samples (sufficient Fe and P)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots
--	--------------	--------	---	--	------------	---	-------

	1.22	2.33	iron; phosphorus (no Fe and P for 10d; root) vs untreated root samples (sufficient Fe and P)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) lacking iron (FeCl3) and phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots
--	------	------	---	---	------------	---	-------

LOC_Os01g66110.1	OS-00282	-1.47	-2.76	phosphorus (phr1/2/3; - Pi for 7d) vs phosphorus (phr3; -Pi for 7d)	Shoot samples of phr1/2/3 plants grown hydroponically for 14 days in a nutrient solution (pH 5.5; Zhou et al., 2008, Plant Physiol. 146: 1673-1686) containing 200µM NaH2PO4 (sufficient phosphate) and then transferred for 7 days into a solution lacking phosphate. Other conditions: greenhouse, 12h light (200µmol photons m-2 s-1) at 30°C / 12h dark at 22°C cycles, 60% relative humidity.	phr1/2/3	Triple mutant (Nipponbare genetic background) with following mutations in OsPHR1, OsPHR2, OsPHR3 (PHOSPHATE STARVATION RESPONSE1, 2, 3): phr1, a 2bp deletion in the first translated exon of OsPHR1 (LOC_OsO3g21240) resulting in a frameshift and a premature translation stop codon; phr2, a T-DNA insertion in OsPHR2 (LOC_OsO7g25710); phr3, a Tos-17 retrotransposon insertion in the seventh translated exon of OsPHR3 (LOC_OsO2g04640). The triple mutant was obtained by crossing single homozygous phr1, phr2 and phr3 mutants. OsPHR1, OsPHR2 and OsPHR3 are functionally redundant transcription factors involved in phosphate (Pi) signaling. Irrespective of Pi supply (low or sufficient), Pi concentration in phr1/2/3 shoots was lower than in shoots of Nipponbare wild type. Pi concentration in phr1/2/3 roots was only slightly lower than Pi concentration in wild type roots. Root and shoot biomass of phr1/2/3 was reduced compared to the wild type under both low Pi and sufficient Pi. Under Pi deficient conditions, root hairs of phr1/2/3 were much shorter than root hairs of the wild type (root hair length: phr1/2/3, approx. 40µm; wild type, approx. 175µm) (Guo et al., 2015, Plant Physiol. 168: 1762-76).	shoot
	OS-00096	-1.48	-2.81	(35S::PSTOL 1 (20); no P fertilizer) vs phosphorus	Root samples of 35S::PSTOL1 (20) line grown till the heading stage on phosphorus deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.		Phosphorus-starvation-tolerant transgenic line 20 (cv. IR64 background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV35S promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OsPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 35S::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 35S::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots

OS-00282	-1.69	-3 24	phosphorus (phr1/2/3; - Pi for 7d) phosphorus (Nipponbare ; -Pi for 7d)	Shoot samples of phr1/2/3 plants grown hydroponically for 14 days in a nutrient solution (pH 5.5; Zhou et al., 2008, Plant Physiol. 146: 1673-1686) containing 200µM NaH2PO4 (sufficient phosphate) and then transferred for 7 days into a solution lacking phosphate. Other conditions: greenhouse, 12h light (200µmol photons m-2 s-1) at 30°C / 12h dark at 22°C cycles, 60% relative humidity.		Triple mutant (Nipponbare genetic background) with following mutations in OsPHR1, OsPHR2, OsPHR3 (PHOSPHATE STARVATION RESPONSE1, 2, 3): phr1, a 2bp deletion in the first translated exon of OsPHR1 (LOC_Os03g21240) resulting in a frameshift and a premature translation stop codon; phr2, a T-DNA insertion in OsPHR2 (LOC_Os07g25710); phr3, a Tos-17 retrotransposon insertion in the seventh translated exon of OsPHR3 (LOC_Os02g04640). The triple mutant was obtained by crossing single homozygous phr1, phr2 and phr3 mutants. OsPHR1, OsPHR2 and OsPHR3 are functionally redundant transcription factors involved in phosphate (Pi) signaling. Irrespective of Pi supply (low or sufficient), Pi concentration in phr1/2/3 shoots was lower than in shoots of Nipponbare wild type. Pi concentration in wild type roots. Root and shoot biomass of phr1/2/3 was reduced compared to the wild type under both low Pi and sufficient Pi. Under Pi deficient conditions, root hairs of phr1/2/3 were much shorter than root hairs of the wild type (root hair length: phr1/2/3, approx. 40µm; wild type, approx. 175µm) (Guo et al., 2015, Plant Physiol. 168: 1762-76).	shoot
OS-00282	-1.77	-3.41	phosphorus (phr1/2/3; - Pi for 7d) vs phosphorus (phr1; -Pi for 7d)	Shoot samples of phr1/2/3 plants grown hydroponically for 14 days in a nutrient solution (pH 5.5; Zhou et al., 2008, Plant Physiol. 146: 1673-1686) containing 200µM NaH2PO4 (sufficient phosphate) and then transferred for 7 days into a solution lacking phosphate. Other conditions: greenhouse, 12h light (200µmol photons m-2 s-1) at 30°C / 12h dark at 22°C cycles, 60% relative humidity.	phr1/2/3	Triple mutant (Nipponbare genetic background) with following mutations in OsPHR1, OsPHR2, OsPHR3 (PHOSPHATE STARVATION RESPONSE1, 2, 3): phr1, a 2bp deletion in the first translated exon of OsPHR1 (LOC_Os03g21240) resulting in a frameshift and a premature translation stop codon; phr2, a T-DNA insertion in OsPHR2 (LOC_Os07g25710); phr3, a Tos-17 retrotransposon insertion in the seventh translated exon of OsPHR3 (LOC_Os02g04640). The triple mutant was obtained by crossing single homozygous phr1, phr2 and phr3 mutants. OsPHR1, OsPHR2 and OsPHR3 are functionally redundant transcription factors involved in phosphate (Pi) signaling. Irrespective of Pi supply (low or sufficient), Pi concentration in phr1/2/3 shoots was lower than in shoots of Nipponbare wild type. Pi concentration in phr1/2/3 roots was only slightly lower than Pi concentration in wild type roots. Root and shoot biomass of phr1/2/3 were much shorter than root hairs of the wild type (root hair length: phr1/2/3, approx. 40μm; wild type, approx. 175μm) (Guo et al., 2015, Plant Physiol. 168: 1762-76).	shoot

LOC_Os01g73880.1								
LOC_Os01g73890.1	OS-00003	1.35	2.56	arsenate (Bala) vs untreated root samples (Bala)	Root samples of rice variety Bala grown for 7 days in hydroponics on phosphate- free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3µM) arsenate (Na2HAsO4).	Bala	Improved indica upland cultivar; origin: Eastern India.	roots
	OS-00239	-1.06	-2.08	Pi; root) vs		Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots

LOC_Os01g73900.1	OS-00036	-1.74	-3.34	iron (no Fe for 10d; root) vs iron; phosphorus (no Fe and P for 10d; root)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCl3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots
------------------	----------	-------	-------	---	--	------------	---	-------

qRPUpE1.6	100 001073010 1	05-00036	-1	-2.01	10d; root) vs untreated root samples (sufficient Fe and P)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal iron (0.036mM FeCl3) concentration but lacking phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450µmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots
-----------	-----------------	----------	----	-------	---	--	------------	---	-------

1	100_0301973310.1	03-00030							
			-1.1	-2.12	phosphorus (no P for 10d; root) vs untreated root samples (sufficient Fe and P)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal iron (0.036mM FeCl3) concentration but lacking phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450µmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	
	LOC_Os01g73950.1	OS-00003	1.06	2.1	arsenate (Azucena) vs untreated root samples	Root samples of rice variety Azucena grown for 7 days in hydroponics on phosphate- free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3µM) arsenate (Na2HAsO4).	Azucena	Traditional japonica (Oryza sativa ssp. japonica) upland cultivar; origin: the Philippines. Azucena is resistant to aluminum stress (Al3+) (Arbelaez et al., 2017, Plant Direct 1).	roots
	LOC Os03q59660.1								

(no P for 10d; shoot	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice d Research Institute, Manila, The Philippines) with optimal iron (0.036mM FeCl3) concentration but lacking phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450 mmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).
-------------------------	--	--

	OS-00036	1.5	2.76	phosphorus (no Fe and P for 10d;	Laboratory Manual for Physiological Studies of Rice,	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
--	----------	-----	------	--	---	------------	---	-------

qRPUpE3.7	LOC_Os03g59670.1		1.14	2.2	(no P for	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal iron (0.036mM FeCl3) concentration but lacking phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots
		OS-00096	1.04	2.06	(IR64-null; no P fertilizer) vs phosphorus	Root samples of IR64-null line grown till the heading stage on phosphorus- deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	IR64-null	Non-transgenic, phosphorus-starvation-intolerant line from the segregating progeny of a transformant heterozygous for the 355::PSTOL1 transgene; sibling of the transgenic 35S::PSTOL1 (20) line.	roots

	OS-00036	-1.05	-2.03	iron (no Fe for 10d; shoot) vs iron; phosphorus (no Fe and P for 10d; shoot)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
LOC_Os03g59680.1								
LOC_Os03g59690.1								
LOC_Os03g59700.1								
LOC_Os03g59710.1								
LOC_Os03g59720.1								
LOC_Os03g59730.1								
LOC_Os03g59740.1								
100 0003060190 1	05-00003	1.74		arsenate (Bala) vs untreated root samples (Bala)	Root samples of rice variety Bala grown for 7 days in hydroponics on phosphate- free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3µM) arsenate (Na2HAsO4).	Bala	Improved indica upland cultivar; origin: Eastern India.	roots

LOC_0s03g60200.1	03-00003	1.04	2.02	untreated root samples (Azucena)	Root samples of rice variety Azucena grown for 7 days in hydroponics on phosphate- free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3µM) arsenate (Na2HAsO4).	Azucena	Traditional japonica (Oryza sativa ssp. japonica) upland cultivar; origin: the Philippines. Azucena is resistant to aluminum stress (Al3+) (Arbelaez et al., 2017, Plant Direct 1).	roots
0003900200.1								
		1.53	2.88	iron (no Fe for 10d; root) vs iron; phosphorus (no Fe and P for 10d; root)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots
1								

	1.4	9 2.81	iron (no Fe for 10d; root) vs untreated root samples (sufficient Fe and P)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCl3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots
--	-----	--------	---	--	------------	---	-------

OS-00239	-0.38	-0.56	phosphorus (Dular; 1µM Pi; shoot) vs phosphorus (Dular; 320µM Pi; shoot)	Shoot samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot
----------	-------	-------	--	--	-------	---	-------

LOC_Os03g60210.1	OS-00036	-1.17	-2.25	phosphorus (no P for 10d; shoot) vs iron; phosphorus (no Fe and P for 10d; shoot)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal iron (0.036mM FeCl3) concentration but lacking phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450 mmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
------------------	----------	-------	-------	--	--	------------	---	-------

	-1.3	-2.41	(Dular; 1μM Pi; shoot) vs	Shoot samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot
OS-00239	-2.04	-4.3	phosphorus (Dular; 320µM Pi; root) vs phosphorus (Pusa Basmati 1; 320µM Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate sufficient nutrient solution (320µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots

	-2.41	-5.26	Dular; 1μM Pi; root) vs	Root samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot
OS-00239	-1.73	-3.26	(Dular; 1µM Pi; root) vs	Root samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot

OS-000	2.06	4.14	phosphorus (35S::PSTOL 1 (20); no P fertilizer) vs phosphorus (35S::PSTOL 1 (20); 60kg/ha P2O5)	,	35S::PSTOL1 (20)	Phosphorus-starvation-tolerant transgenic line 20 (cv. IR64 background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV35S promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OsPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 35S::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 35S::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots
	1.6	3.02	phosphorus (IR64-null; no P fertilizer) vs phosphorus (IR64-null; 60kg/ha P2O5)	Root samples of IR64-null line grown till the heading stage on phosphorus- deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	IR64-null	Non-transgenic, phosphorus-starvation-intolerant line from the segregating progeny of a transformant heterozygous for the 35S::PSTOL1 transgene; sibling of the transgenic 35S::PSTOL1 (20) line.	roots

|--|

1		03-00030						
qRPUpE3.8	LOC_Os03g60220.1		1.36	iron (no Fe for 10d; root) vs iron; phosphorus (no Fe and P for 10d; root)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency bas been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	ots

	-1.14	-2.18	(Dular; 1µM Pi; shoot) vs	Shoot samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1μM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot
OS-00239	-1.36	-2.63	phosphorus (Dular; 320µM Pi; root) phosphorus (Pusa Basmati 1; 320µM Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate sufficient nutrient solution (320µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1μM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots

	-1.7	3 -3.26	(Dular Pi: roc		Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots
--	------	---------	-------------------	--	-------	---	-------

LOC_Os03g60240.1	OS-00036	1.24	2.35	phosphorus (no P for 10d; shoot) vs untreated shoot samples (sufficient Fe and P)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal iron (0.036mM FeCl3) concentration but lacking phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450 mmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
	OS-00096	-1.05	-2.07	phosphorus (35S::PSTOL 1 (20); no P fertilizer) vs phosphorus (35S::PSTOL 1 (20); 60kg/ha P2O5)	Root samples of 35S::PSTOL1 (20) line grown till the heading stage on phosphorus deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	35S::PSTOL1 (20)	Phosphorus-starvation-tolerant transgenic line 20 (cv. IR64 background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV355 promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OsPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 355::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 355::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots

LOC_Os03g60250.1	OS-00036	-1.01	-2.01	iron (no Fe for 10d; shoot) vs iron; phosphorus (no Fe and P for 10d; shoot)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCl3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.		Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
	OS-00003	-1.05	-2.03	arsenate (Azucena) vs untreated root samples (Azucena)	Root samples of rice variety Azucena grown for 7 days in hydroponics on phosphate- free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3µM) arsenate (Na2HAsO4).	Azucena	Traditional japonica (Oryza sativa ssp. japonica) upland cultivar; origin: the Philippines. Azucena is resistant to aluminum stress (Al3+) (Arbelaez et al., 2017, Plant Direct 1).	roots

	OS-00282	1.4	2.63	phosphorus (phr1/2/3; - Pi for 7d) vs phosphorus (Nipponbare ; -Pi for 7d)	Shoot samples of phr1/2/3 plants grown hydroponically for 14 days in a nutrient solution (pH 5.5; Zhou et al., 2008, Plant Physiol. 146: 1673-1686) containing 200µM NaH2PO4 (sufficient phosphate) and then transferred for 7 days into a solution lacking phosphate. Other conditions: greenhouse, 12h light (200µmol photons m-2 s-1) at 30°C / 12h dark at 22°C cycles, 60% relative humidity.	phr1/2/3	Triple mutant (Nipponbare genetic background) with following mutations in OsPHR1, OsPHR2, OsPHR3 (PHOSPHATE STARVATION RESPONSE1, 2, 3): phr1, a 2bp deletion in the first translated exon of OsPHR1 (LOC_Os03g21240) resulting in a frameshift and a premature translation stop codon; phr2, a T-DNA insertion in OsPHR2 (LOC_Os07g25710); phr3, a Tos-17 retrotransposon insertion in the seventh translated exon of OsPHR3 (LOC_Os02g04640). The triple mutant was obtained by crossing single homozygous phr1, phr2 and phr3 mutants. OsPHR1, OsPHR2 and OsPHR3 are functionally redundant transcription factors involved in phosphate (Pi) signaling. Irrespective of Pi supply (low or sufficient), Pi concentration in phr1/2/3 shoots was lower than in shoots of Nipponbare wild type. Pi concentration in phr1/2/3 roots. Root and shoot biomass of phr1/2/3 was reduced compared to the wild type under both low Pi and sufficient Pi. Under Pi deficient conditions, root hairs of phr1/2/3 were much shorter than root hairs of the wild type (root hair length: phr1/2/3, approx. 40µm; wild type, approx. 175µm) (Guo et al., 2015, Plant Physiol. 168: 1762-76).	shoot
--	----------	-----	------	---	--	----------	--	-------

100 0003060260 1	OS-00036	1.3	2.47	iron (no Fe for 10d; root) vs iron; phosphorus (no Fe and P for 10d; root)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots
------------------	----------	-----	------	---	--	------------	---	-------

LOC_0303600200.1								
	OS-00036	1.2	2.28	iron (no Fe for 10d; root) vs untreated root samples (sufficient Fe and P)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots

	OS-00282	1.2	 phosphorus (phr1/2/3; - Pi for 7d) vs phosphorus (phr3; -Pi for 7d)	Shoot samples of phr1/2/3 plants grown hydroponically for 14 days in a nutrient solution (pH 5.5; Zhou et al., 2008, Plant Physiol. 146: 1673-1686) containing 200µM NaH2PO4 (sufficient phosphate) and then transferred for 7 days into a solution lacking phosphate. Other conditions: greenhouse, 12h light (200µmol photons m-2 s-1) at 30°C / 12h dark at 22°C cycles, 60% relative humidity.	phr1/2/3	Triple mutant (Nipponbare genetic background) with following mutations in OsPHR1, OsPHR2, OsPHR3 (PHOSPHATE STARVATION RESPONSE1, 2, 3): phr1, a 2bp deletion in the first translated exon of OsPHR1 (LOC_Os03g21240) resulting in a frameshift and a premature translation stop codon; phr2, a T-DNA insertion in OsPHR2 (LOC_Os07g25710); phr3, a Tos-17 retrotransposon insertion in the seventh translated exon of OsPHR3 (LOC_Os02g04640). The triple mutant was obtained by crossing single homozygous phr1, phr2 and phr3 mutants. OsPHR1, OsPHR2 and OsPHR3 are functionally redundant transcription factors involved in phosphate (Pi) signaling. Irrespective of Pi supply (low or sufficient), Pi concentration in phr1/2/3 roots was only slightly lower than Pi concentration in wild type roots. Root and shoot biomass of phr1/2/3 was reduced compared to the wild type under both low Pi and sufficient Pi. Under Pi deficient conditions, root hairs of phr1/2/3 were much shorter than root hairs of the wild type (root hair length: phr1/2/3, approx. 40µm; wild type, approx. 175µm) (Guo et al., 2015, Plant Physiol. 168: 1762-76).	shoot
 LOC_Os03g60279.1							
		2.08	(IR64-null; no P fertilizer) vs phosphorus (IR64-null;	Root samples of IR64-null line grown till the heading stage on phosphorus- deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	IR64-null	Non-transgenic, phosphorus-starvation-intolerant line from the segregating progeny of a transformant heterozygous for the 355::PSTOL1 transgene; sibling of the transgenic 35S::PSTOL1 (20) line.	roots

OS-00096	1.7	3.24	phosphorus (35S::PSTOL 1 (20); no P fertilizer) vs phosphorus (35S::PSTOL 1 (20); 60kg/ha P2O5)	Root samples of 35S::PSTOL1 (20) line grown till the heading stage on phosphorus- deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	355::PSTOL1 (20)	Phosphorus-starvation-tolerant transgenic line 20 (cv. IR64 background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV35S promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OsPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 35S::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 35S::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots
OS-00239	1.52	2.76	phosphorus (Pusa Basmati 1; 1µM Pi; root) vs phosphorus (Pusa Basmati 1; 320µM Pi; root)	Root samples of 15-day-old Pusa Basmati 1 seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250-300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Pusa Basmati 1	Semi-dwarf aromatic (Evolved Basmati) cultivar developed by The Indian Agricultural Research Institute (IARI), released in 1989. Low number of seeds (approx. 181) per panicle (Deshmukh et al., 2010, Funct Integr Genomics 10: 339-47). Pusa Basmati 1 is susceptible to Magnaporthe oryzae strain Mo-nwi- 53 (Jain et al., 2017, Front Plant Sci. 8: 93). Pusa Basmati 1 is sensitive to low phosphate (Pi) content in the soil (Mehra et al., 2016, Front Plant Sci. 6: 1184).	roots

LOC_Os04g50216.1	OS-00036	1.29	2.54	iron (no Fe for 10d; root) vs iron; phosphorus (no Fe and P for 10d; root)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCl3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots
	OS-00003	-1.05		arsenate (Azucena) vs untreated root samples	Root samples of rice variety Azucena grown for 7 days in hydroponics on phosphate- free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3µM) arsenate (Na2HAsO4).	Azucena	Traditional japonica (Oryza sativa ssp. japonica) upland cultivar; origin: the Philippines. Azucena is resistant to aluminum stress (Al3+) (Arbelaez et al., 2017, Plant Direct 1).	roots

	OS-00239	-1.24	-2.3	phosphorus (Dular; 1µM Pi; root) vs phosphorus (Pusa Basmati 1; 1µM Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots
LOC_Os04g50660.1							
LOC_Os04g50680.1							
LOC_Os04g50700.1							
LOC_Os04g50710.1							
LOC_Os04g50720.1	OS-00239	-1.2	-2.29	phosphorus (Dular; 1µM Pi; root) vs phosphorus (Pusa Basmati 1; 1µM Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots

LOC OS04450740.1 LOC OS04450740.1 LOC OS04450740.1 Root samples of rice variety arsenate (Azucena) vs. hydroponics on phosphate-free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3 µM) arsenate (Na2HASO4). Root samples of rice variety Azucena grown for 7 days in hydroponics on phosphate-free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3 µM) arsenate (Na2HASO4). Traditional japonica (Oryza sativa ssp. japonica) upland cultivar; origin: the Philippines. Azucena is resistant to aluminum stress origin: the Philippines. Azucena is resistant to aluminum stress origin: the Philippines. Azucena is resistant to aluminum stress origin: the Philippines. Azucena is resistant to aluminum stress origin: the Philippines. Azucena is resistant to aluminum stress origin: the Philippines. Azucena is resistant to aluminum stress origin: the Philippines. Azucena is resistent to aluminum stress origin: the Philippines. Azucena is resistent to aluminum stress origin: the Philippines. Azucena is resistent to aluminum stress origin: the Philippines. Azucena is resistent to aluminum stress origin: the Philippines. Azucena is resistent to aluminum stress origin: the Philippines. Azucena is resistent to aluminum stress origin: the Philippines. Azucena is resistent to aluminum stress origin: the Philippines. Azucena is resistent to aluminum stress origin: the Philippines. Azucena is resistent to aluminum stress origin: the Philippines. Azucena is resistent to aluminum stress origin: the Philippines. Azucena is resistent to aluminum stress origin: the Philippines. Azucena is resistent to aluminum stress origin: the Philippines. Azucena is resistent to aluminum stress origin: the Philippines. Azucena is resistent to aluminum stress origin: the Philippines. Azucena is resistent to aluminum stress origin: the Philippines. Azucena is resisten	qRPUpE4.9	LOC_0s04g50730.1	OS-00096	1.3	2.05	phosphorus (35S::PSTOL 1 (20); no P fertilizer) vs phosphorus (35S::PSTOL 1 (20); 60kg/ha P2O5)	,	355::PSTOL1 (20)	Phosphorus-starvation-tolerant transgenic line 20 (cv. IR64 background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV35S promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OsPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 35S::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 35S::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots
			OS-00003	1.46	2.76	(Azucena) vs untreated root samples	Azucena grown for 7 days in hydroponics on phosphate- free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3µM) arsenate	Azucena	origin: the Philippines. Azucena is resistant to aluminum stress	roots

OS-00096	1.71	3.28	(35S::PSTOL 1 (20); no P fertilizer) vs phosphorus (35S::PSTOL 1 (20); 60kg/ha P2O5) phosphorus	Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	35S::PSTOL1 (20)	background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV355 promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OsPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 35S::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 35S::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots
	1.21	2.32	no P fertilizer) vs phosphorus (IR64-null;	line grown till the heading stage on phosphorus- deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	IR64-null	Non-transgenic, phosphorus-starvation-intolerant line from the segregating progeny of a transformant heterozygous for the 355::PSTOL1 transgene; sibling of the transgenic 355::PSTOL1 (20) line.	roots

1	-1.01	-2.07		Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) lacking iron (FeCl3) and phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.		Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots
---	-------	-------	--	---	--	---	-------

LOC_Os04g50760.1

OS-00036	-1.07	-2.17	phosphorus (no P for 10d; root) vs untreated root samples (sufficient Fe and P)	Ed 3. International Rice Research Institute Manila	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots
----------	-------	-------	--	---	------------	---	-------

LOC 0s05q29740.1	-1.5	5 -3.06	iron (no Fe for 10d; root) vs untreated root samples (sufficient Fe and P)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCl3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots
LOC_0s05g29740.1							

	OS-00036	1.59		ron; phosphorus (no Fe and P for 10d; root) vs untreated root samples (sufficient Fe and P)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) lacking iron (FeCI3) and phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots
--	----------	------	--	--	---	------------	---	-------

	1.46 2.	(no P for	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal iron (0.036mM FeCl3) concentration but lacking phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450µmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots
--	---------	-----------	--	------------	--	-------

	1.28	2.42 s	iron; phosphorus (no Fe and P for 10d; shoot) vs untreated shoot samples (sufficient Fe and P)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal iron (0.036mM FeCl3) concentration but lacking phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450µmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
--	------	--------	---	---	------------	---	-------

qRPPUE5.10	LOC_0s05g29760.1		1.05	2.07	phosphorus (no P for 10d: shoot)	IResearch Institute Manila	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	oot
------------	------------------	--	------	------	--	----------------------------	------------	---	-----

OS-00239	1.01	2.01	phosphorus (Dular; 320µM Pi; root) vs phosphorus (Pusa Basmati 1; 320µM Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate sufficient nutrient solution (320µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots
03-00239	-1.11		phosphorus (Dular; 1µM Pi; root) vs phosphorus (Dular; 320µM Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots

|--|

		-2.09	-4.27	iron (no Fe for 10d; root) vs iron; phosphorus (no Fe and P for 10d; root)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCl3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910. This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant	roots
LOC 0505q31610.1					, .		Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	
	OS-00003	3.91	15.27	arsenate (Bala) vs untreated root samples	Root samples of rice variety Bala grown for 7 days in hydroponics on phosphate- free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3µM) arsenate (Na2HAsO4).	Bala	Improved indica upland cultivar; origin: Eastern India	roots

|--|

03-00030	3.83	14.2	for 10d; root) vs ron; phosphorus	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots
----------	------	------	---	--	------------	--	-------

OS-00239	2.33		phosphorus (Dular; 1µM Pi; root) vs phosphorus (Dular; 320µM Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots
OS-00003	2.17	4.89	arsenate (Azucena) vs untreated root samples (Azucena)	Root samples of rice variety Azucena grown for 7 days in hydroponics on phosphate- free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3µM) arsenate (Na2HAsO4).	Azucena	Traditional japonica (Oryza sativa ssp. japonica) upland cultivar; origin: the Philippines. Azucena is resistant to aluminum stress (Al3+) (Arbelaez et al., 2017, Plant Direct 1).	roots

OS-00239	1.01	2.15	phosphorus (Pusa Basmati 1; 1µM Pi; shoot) vs phosphorus (Pusa Basmati 1; 320µM Pi; shoot)	Shoot samples of 15-day-old Pusa Basmati 1 seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250-300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Pusa Basmati 1	Semi-dwarf aromatic (Evolved Basmati) cultivar developed by The Indian Agricultural Research Institute (IARI), released in 1989. Low number of seeds (approx. 181) per panicle (Deshmukh et al., 2010, Funct Integr Genomics 10: 339-47). Pusa Basmati 1 is susceptible to Magnaporthe oryzae strain Mo-nwi- 53 (Jain et al., 2017, Front Plant Sci. 8: 93). Pusa Basmati 1 is sensitive to low phosphate (Pi) content in the soil (Mehra et al., 2016, Front Plant Sci. 6: 1184).	shoot
----------	------	------	---	---	-------------------	---	-------

 iron; phosphorus (no Fe and for 10d; shoot) vs untreated shoot -1.03 -2.04 -2.04 iron; phosphorus (no Fe and for 10d; shoot) vs untreated shoot -2.04 -2.04 iron; phosphorus (no fe and for 10d; shoot) vs untreated shoot -2.04 iron; phosphorus (no fe and phosphorus (sufficient Fe and P) -2.04 iron; phosphorus (no fe and phosphorus (sufficient Fe and P) iron; phosphorus (sufficient Fe and P) iron; phosphorus (sufficient Fe and P) iron; phosphorus (sufficient Fe and P) iron; phosphorus (sufficient Fe and P) iron; physiological Studies of Rice, Ed 3. International Rice, Research Institute, Manila, The Philippines) lacking iron (FeCI3) and phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C. iron; physiological Studies of Rice, Susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates C13.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 130: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).

LOC_0505g31620.1 -2.51 -2.51 -5.67 LOC_0505g31620.1 -2.51 -5.67 LOC_0505g31620.1 -2.51 -5.67 LOC_0505g31620.1 Shoot samples of cu Nippobare germin days in distilled wat then floated for 10 the Yoshida et al., 197 iron (no Fe Laboratory Manual for 10d; Physiological Studie shoot) vs Ed 3. International Research Institute, shoot The Philippines) wit samples phosphorus (0.323) (sufficient NaH2PO4) concent Fe and P) Lacking iron (FeCl3) acid. Other growth 12h light (450µmol m~2s-1) at 30°C / 1 darkness at 22°C.	hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al. 2008. New Phytol. 180: 899-910). This variety is sensitive to	
--	--	--

-1.41	1 -2.66	-2.66 phosphore (low Pi for 24h) vs untreated seedling samples (sufficient Pi)	the nutrient solution (pH 5.5): 1.425mM NH4NO3, 0.513mM K2SO4, 0.998mM CaCl2, 1.643mM MgSO4,	Zhonghua 10	Japonica (Oryza sativa ssp. japonica) cultivar.	seedling
-------	---------	---	---	-------------	---	----------

	OS-00091 -1.6	(ld 6h -3.03 ur se sa	hosphorus low Pi for h) vs Intreated eedling amples sufficient i)	Seedling samples of cultivar Zhonghua 10 grown for 7 days in a nutrient solution with sufficient phosphate (0.323mM NaH2PO4), then transferred to low phosphate (0.016mM NaH2PO4) for 6h. Other components of the nutrient solution (pH 5.5): 1.425mM NH4NO3, 0.513mM K2SO4, 0.998mM CaCl2, 1.643mM MgSO4, 0.168mM Na2SiO3, 0.125mM Fe-EDTA, 0.019mM H3BO3, 0.009mM MnCl2, 0.155mM CuSO4, 0.152mM ZnSO4, 0.075mM Na2MoO4. Other conditions: 16h light at 30°C / 8h dark at 22°C.	Zhonghua 10	Japonica (Oryza sativa ssp. japonica) cultivar.	seedling
--	---------------	-----------------------------------	--	---	-------------	---	----------

-2.9	2 -7.58	phosphorus (low Pi for 48h) vs untreated seedling samples (sufficient Pi)	Seedling samples of cultivar Zhonghua 10 grown for 7 days in a nutrient solution with sufficient phosphate (0.323mM NaH2PO4), then transferred to low phosphate (0.016 mM NaH2PO4) for 48h. Other components of the nutrient solution (pH 5.5): 1.425mM NH4NO3, 0.513mM K2SO4, 0.998mM CaCl2, 1.643mM MgSO4, 0.168mM Na2SiO3, 0.125mM Fe-EDTA, 0.019mM H3BO3, 0.009mM MnCl2, 0.155mM CuSO4, 0.152mM ZnSO4, 0.075mM Na2MoO4. Other conditions: 16h light at 30°C / 8h dark at 22°C.	Zhonghua 10	Japonica (Oryza sativa ssp. japonica) cultivar.	seedling
-3.4	7 -11.34	phosphorus (Dular; 320µM Pi; shoot) vs phosphorus (Pusa Basmati 1; 320µM Pi; shoot)	Shoot samples of 15-day-old Dular seedlings grown in a phosphate sufficient nutrient solution (320µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot

	-3.85	-9.32	(Dular; 1μM Pi; root) vs	Root samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots
OS-00239	-3.98	-15.73	(Dular; 1μM Pi; shoot) vs	Shoot samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot

qRRSR5.11		-5	.84 -57.23	phosphorus (Dular; 320µM Pi; root) vs phosphorus (Pusa Basmati 1; 320µM Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate sufficient nutrient solution (320µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots
-----------	--	----	------------	---	--	-------	---	-------

	7.74	214.4	iron (no Fe for 10d; root) vs iron; phosphorus (no Fe and P for 10d; root)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots
--	------	-------	---	--	------------	---	-------

7.47175.8Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, (Yoshida et al., 1976, iron (no Fe Laboratory Manual for for 10d; Physiological Studies of Rice, root) vsRoot samples of cultivar Nipponbare germinated for 2 days in distilled water and the Yoshida nutrient solution (Yoshida et al., 1976, E Laboratory Manual for for 10d; Physiological Studies of Rice, root) vsResearch Institute, Manila, root The Philippines) with optimal samples phosphorus (0.323mM (Sufficient NaH2PO4) concentration but Fe and P)Nipponbare lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).
--	---

6.73106.4Shoot samples of cultivar Niponbare germinated for 2 days in distilled water and the floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.Niponbare no rac Niponbare strate Niponbare strate Niponbare strate	aponica (Oryza sativa ssp. japonica) variety resistant to nfection by the plant Striga hermonthica, an obligate root lemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). lipponbare is susceptible to Xanthomonas oryzae pv. oryzae trains BAI3 (from Burkina Faso), PXO99A (from the Philippines; ace 6), PXO86 (from the Philippines; race 2), T7174 (from apan; race 1), and MAI1 (from Mali). Nipponbare is well ransformable with Agrobacterium tumefaciens: using A. umefaciens strain EHA 105, transient transformation frequency 3.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is usceptible to Meloidogyne graminicola, a root knot nematode hat induces re-differentiation of root cells into multinucleate iant cells and formation of hook-like galls. Nipponbare is usceptible to Magnaporthe oryzae isolate FR13 (virulent isolate rom France) and resistant to M. oryzae isolates CL3.6.7 avirulent isolate) and BR32 (nonadapted isolate from Brazil) Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et 1, 2008, New Phytol. 180: 899-910). This variety is sensitive to lrought stress; drought index 0.54 (Wei et al., 2017, Front Plant ci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
---	---	-------

		5.98	63.06	iron (no Fe for 10d; shoot) vs untreated shoot samples (sufficient Fe and P)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCl3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
OS-	5-00096	5.57		phosphorus (35S::PSTOL 1 (20); no P fertilizer) vs phosphorus (35S::PSTOL 1 (20); 60kg/ha P2O5)	Root samples of 35S::PSTOL1 (20) line grown till the heading stage on phosphorus deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	35S::PSTOL1 (20)	Phosphorus-starvation-tolerant transgenic line 20 (cv. IR64 background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV35S promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OsPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 35S::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 35S::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots

	4.78	19.27	(IR64-null; no P fertilizer) vs	Root samples of IR64-null line grown till the heading stage on phosphorus- deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	IR64-null	Non-transgenic, phosphorus-starvation-intolerant line from the segregating progeny of a transformant heterozygous for the 35S::PSTOL1 transgene; sibling of the transgenic 35S::PSTOL1 (20) line.	roots
	4.39		arsenate (Azucena) vs untreated root samples (Azucena)	Root samples of rice variety Azucena grown for 7 days in hydroponics on phosphate- free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3µM) arsenate (Na2HAsO4).	Azucena	Traditional japonica (Oryza sativa ssp. japonica) upland cultivar; origin: the Philippines. Azucena is resistant to aluminum stress (Al3+) (Arbelaez et al., 2017, Plant Direct 1).	roots
OS-00003	4.26	19.28	arsenate (Bala) vs untreated root samples (Bala)	Root samples of rice variety Bala grown for 7 days in hydroponics on phosphate- free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3µM) arsenate (Na2HAsO4).	Bala	Improved indica upland cultivar; origin: Eastern India.	roots

LOC_Os05g31670.1		1.59	3.03		Root samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila,	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots
	OS-00239				Philippines).		Appi Genet. 57. 407).	
		1.32	2.43	(Pusa Basmati 1; 1μM Pi; root) vs	Root samples of 15-day-old Pusa Basmati 1 seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250-300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Pusa Basmati 1	Semi-dwarf aromatic (Evolved Basmati) cultivar developed by The Indian Agricultural Research Institute (IARI), released in 1989. Low number of seeds (approx. 181) per panicle (Deshmukh et al., 2010, Funct Integr Genomics 10: 339-47). Pusa Basmati 1 is susceptible to Magnaporthe oryzae strain Mo-nwi- 53 (Jain et al., 2017, Front Plant Sci. 8: 93). Pusa Basmati 1 is sensitive to low phosphate (Pi) content in the soil (Mehra et al., 2016, Front Plant Sci. 6: 1184).	roots

OS-00096	-0.73	-2.03	(35S::PSTOL 1 (20); 60kg/ha P2O5) vs	Root samples of 35S::PSTOL1 (20) line grown till the mid- tillering stage on soil from Siniloan, Luzon, the Philippines (phosphorus- deficient; P-Bray, 1.23 ± 0.30mgkg-1; P-Olsen, 0.77 ± 0.46 mgkg-1) fertilized with phosphorus (equivalent of 60kg P2O5 ha-1), well watered, aerobic.	35S::PSTOL1 (20)	Phosphorus-starvation-tolerant transgenic line 20 (cv. IR64 background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV355 promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OsPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 35S::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 35S::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots
	-1.06	-2.26	(Dular; 320µM Pi; shoot)	Shoot samples of 15-day-old Dular seedlings grown in a phosphate sufficient nutrient solution (320µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot

	OS-00239	-1.12		(Dular; 1μM Pi; root) vs	Root samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al.,		Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184).	shoot
					1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).		Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	
		-1.4	-2.73	phosphorus (Dular; 320µM Pi; root) vs phosphorus (Pusa Basmati 1; 320µM Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate sufficient nutrient solution (320µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 \pm 0.17cm while Pusa Basmati 1 root length was 7.41 \pm 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot

	-2.13	3 -4.37	(low Pi for 48h) vs	Seedling samples of cultivar Zhonghua 10 grown for 7 days in a nutrient solution with sufficient phosphate (0.323mM NaH2PO4), then transferred to low phosphate (0.016 mM NaH2PO4) for 48h. Other components of the nutrient solution (pH 5.5): 1.425mM NH4NO3, 0.513mM K2SO4, 0.998mM CaCl2, 1.643mM MgSO4, 0.168mM Na2SiO3, 0.125mM Fe-EDTA, 0.019mM H3BO3, 0.009mM MnCl2, 0.155mM CuSO4, 0.152mM ZnSO4, 0.075mM Na2MoO4. Other conditions: 16h light at 30°C / 8h dark at 22°C.	Zhonghua 10	Japonica (Oryza sativa ssp. japonica) cultivar.	seedling
--	-------	---------	------------------------	---	-------------	---	----------

	03-00031							
		-2.16	-4.49	phosphorus (low Pi for 72h) vs untreated seedling samples (sufficient Pi)	Seedling samples of cultivar Zhonghua 10 grown for 7 days in a nutrient solution with sufficient phosphate (0.323mM NaH2PO4), then transferred to low phosphate (0.016 mM NaH2PO4) for 72h. Other components of the nutrient solution (pH 5.5): 1.425mM NH4NO3, 0.513mM K2SO4, 0.998mM CaCl2, 1.643mM MgSO4, 0.168mM Na2SiO3, 0.125mM Fe-EDTA, 0.019mM H3BO3, 0.009mM MnCl2, 0.155mM CuSO4, 0.152mM ZnSO4, 0.075mM Na2MoO4. Other conditions: 16h light at 30°C / 8h dark at 22°C.	Zhonghua 10	Japonica (Oryza sativa ssp. japonica) cultivar.	seedling
	OS-00096	1.62	3.07	(35S::PSTOL 1 (20); no P fertilizer) vs phosphorus (35S::PSTOL 1 (20);	Root samples of 35S::PSTOL1 (20) line grown till the heading stage on phosphorus deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	35S::PSTOL1 (20)	Phosphorus-starvation-tolerant transgenic line 20 (cv. IR64 background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV35S promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OSPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 35S::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 35S::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots

							•	
LOC_Os05g35110.1		1.62	3.06	(IR64-null; no P fertilizer) vs phosphorus (IR64-null;	Root samples of IR64-null line grown till the heading stage on phosphorus- deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	IR64-null	Non-transgenic, phosphorus-starvation-intolerant line from the segregating progeny of a transformant heterozygous for the 35S::PSTOL1 transgene; sibling of the transgenic 35S::PSTOL1 (20) line.	roots
		-1.3	-2.47	arsenate (Azucena) vs untreated root samples (Azucena)	Root samples of rice variety Azucena grown for 7 days in hydroponics on phosphate- free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3µM) arsenate (Na2HAsO4).	Azucena	Traditional japonica (Oryza sativa ssp. japonica) upland cultivar; origin: the Philippines. Azucena is resistant to aluminum stress (AI3+) (Arbelaez et al., 2017, Plant Direct 1).	roots
	OS-00003	4.05	16.57	arsenate (Bala) vs untreated root samples (Bala)	Root samples of rice variety Bala grown for 7 days in hydroponics on phosphate- free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3µM) arsenate (Na2HAsO4).	Bala	Improved indica upland cultivar; origin: Eastern India.	roots

OS-00096	1.9		phosphorus (35S::PSTOL 1 (20); no P fertilizer) vs phosphorus (35S::PSTOL 1 (20); 60kg/ha P2O5)	Root samples of 35S::PSTOL1 (20) line grown till the heading stage on phosphorus- deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	35S::PSTOL1 (20)	Phosphorus-starvation-tolerant transgenic line 20 (cv. IR64 background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV35S promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OsPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 35S::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 35S::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots
	1.65	3.19	(IR64-null; no P fertilizer) vs phosphorus (IR64-null;	Root samples of IR64-null line grown till the heading stage on phosphorus- deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	IR64-null	Non-transgenic, phosphorus-starvation-intolerant line from the segregating progeny of a transformant heterozygous for the 35S::PSTOL1 transgene; sibling of the transgenic 35S::PSTOL1 (20) line.	roots

qRPPUE5.12	LOC_Os05g35140.1	1.	05 2.07	phosphorus (no P for 10d; shoot) vs iron; phosphorus (no Fe and P for 10d; shoot)	The Philippines) with optimal	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	hoot
------------	------------------	----	---------	--	-------------------------------	------------	---	------

OS-0	S-00036 -1.3	4 -2.54	iron; phosphorus (no Fe and P for 10d; shoot) vs untreated shoot samples (sufficient Fe and P)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) lacking iron (FeCI3) and phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
------	--------------	---------	---	--	------------	---	-------

	-1.92	-3.79	iron (no Fe for 10d; shoot) vs untreated shoot samples (sufficient Fe and P)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
LOC_Os05g35160.1					L		

OS-00239	3.21	9.25	(Dular; 1μM Pi; root) vs	Root samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots
	2.57	5.89	phosphorus (low Pi for 24h) vs untreated seedling samples (sufficient Pi)	Seedling samples of cultivar Zhonghua 10 grown for 7 days in a nutrient solution with sufficient phosphate (0.323mM NaH2PO4), then transferred to low phosphate (0.016 mM NaH2PO4) for 24h. Other components of the nutrient solution (pH 5.5): 1.425mM NH4NO3, 0.513mM K2SO4, 0.998mM CaCl2, 1.643mM MgSO4, 0.168mM Na2SiO3, 0.125mM Fe-EDTA, 0.019mM H3BO3, 0.009mM MnCl2, 0.155mM CuSO4, 0.152mM ZnSO4, 0.075mM Na2MoO4. Other conditions: 16h light at 30°C / 8h dark at 22°C.	Zhonghua 10	Japonica (Oryza sativa ssp. japonica) cultivar.	seedling

		OS-00091							
qRPPUE7.13	LOC_Os07g34110.1		1.53	2.88	phosphorus (low Pi for 72h) vs untreated seedling samples (sufficient Pi)	Seedling samples of cultivar Zhonghua 10 grown for 7 days in a nutrient solution with sufficient phosphate (0.323mM NaH2PO4), then transferred to low phosphate (0.016 mM NaH2PO4) for 72h. Other components of the nutrient solution (pH 5.5): 1.425mM NH4NO3, 0.513mM K2SO4, 0.998mM CaCl2, 1.643mM MgSO4, 0.168mM Na2SiO3, 0.125mM Fe-EDTA, 0.019mM H3BO3, 0.009mM MnCl2, 0.155mM CuSO4, 0.152mM ZnSO4, 0.075mM Na2MoO4. Other conditions: 16h light at 30°C / 8h dark at 22°C.	Zhonghua 10	Japonica (Oryza sativa ssp. japonica) cultivar.	seedling
		OS-00239	1.78	3.43	phosphorus (Pusa Basmati 1; 1µM Pi; root) phosphorus (Pusa Basmati 1; 320µM Pi; root)	Root samples of 15-day-old Pusa Basmati 1 seedlings grown in a phosphate deficient nutrient solution (1μM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250-300μmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	1	Semi-dwarf aromatic (Evolved Basmati) cultivar developed by The Indian Agricultural Research Institute (IARI), released in 1989. Low number of seeds (approx. 181) per panicle (Deshmukh et al., 2010, Funct Integr Genomics 10: 339-47). Pusa Basmati 1 is susceptible to Magnaporthe oryzae strain Mo-nwi- 53 (Jain et al., 2017, Front Plant Sci. 8: 93). Pusa Basmati 1 is sensitive to low phosphate (Pi) content in the soil (Mehra et al., 2016, Front Plant Sci. 6: 1184).	roots

		-1.34	-2.53	phosphorus (IR64-null; no P fertilizer) vs phosphorus (IR64-null; 60kg/ha P2O5)	Root samples of IR64-null line grown till the heading stage on phosphorus- deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	R64-null	Non-transgenic, phosphorus-starvation-intolerant line from the segregating progeny of a transformant heterozygous for the 35S::PSTOL1 transgene; sibling of the transgenic 35S::PSTOL1 (20) line.	roots
	OS-00096	-1.46	-2.72	phosphorus (35S::PSTOL 1 (20); no P fertilizer) vs phosphorus (35S::PSTOL 1 (20); 60kg/ha P2O5)	Root samples of 35S::PSTOL1 (20) line grown till the heading stage on phosphorus deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	355::PSTOL1 (20)	Phosphorus-starvation-tolerant transgenic line 20 (cv. IR64 background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV35S promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OsPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 35S::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 35S::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots
LOC_Os07g34130.1								
LOC_Os07g34140.1								

	OS-00096	3.3	9.96	(35S::PSTOL 1 (20); no P fertilizer) vs phosphorus	Root samples of 35S::PSTOL1 (20) line grown till the heading stage on phosphorus deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	35S::PSTOL1 (20)	Phosphorus-starvation-tolerant transgenic line 20 (cv. IR64 background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV35S promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OsPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 35S::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 35S::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots
		2.77	7.04	phosphorus (IR64-null; no P fertilizer) vs phosphorus (IR64-null; 60kg/ha P2O5)	Root samples of IR64-null line grown till the heading stage on phosphorus- deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	IR64-null	Non-transgenic, phosphorus-starvation-intolerant line from the segregating progeny of a transformant heterozygous for the 355::PSTOL1 transgene; sibling of the transgenic 355::PSTOL1 (20) line.	roots

	1.71	3.31	phosphorus (phr1/2/3; - Pi for 7d) vs phosphorus (phr3; -Pi for 7d)	Shoot samples of phr1/2/3 plants grown hydroponically for 14 days in a nutrient solution (pH 5.5; Zhou et al., 2008, Plant Physiol. 146: 1673-1686) containing 200µM NaH2PO4 (sufficient phosphate) and then transferred for 7 days into a solution lacking phosphate. Other conditions: greenhouse, 12h light (200µmol photons m-2 s-1) at 30°C / 12h dark at 22°C cycles, 60% relative humidity.	phr1/2/3	Triple mutant (Nipponbare genetic background) with following mutations in OsPHR1, OsPHR2, OsPHR3 (PHOSPHATE STARVATION RESPONSE1, 2, 3): phr1, a 2bp deletion in the first translated exon of OsPHR1 (LOC_OsO3g21240) resulting in a frameshift and a premature translation stop codon; phr2, a T-DNA insertion in OsPHR2 (LOC_OsO7g25710); phr3, a Tos-17 retrotransposon insertion in the seventh translated exon of OsPHR3 (LOC_OsO2g04640). The triple mutant was obtained by crossing single homozygous phr1, phr2 and phr3 mutants. OsPHR1, OsPHR2 and OsPHR3 are functionally redundant transcription factors involved in phosphate (Pi) signaling. Irrespective of Pi supply (low or sufficient), Pi concentration in phr1/2/3 roots was only slightly lower than Pi concentration in wild type roots. Root and shoot biomass of phr1/2/3 was reduced compared to the wild type under both low Pi and sufficient Pi. Under Pi deficient conditions, root hairs of phr1/2/3 were much shorter than root hairs of the wild type (root hair length: phr1/2/3, approx. 40µm; wild type, approx. 175µm) (Guo et al., 2015, Plant Physiol. 168: 1762-76).	shoot
OS-00282	1.61	3.07	phosphorus (phr1/2/3; - Pi for 7d) vs phosphorus (phr1; -Pi for 7d)	Shoot samples of phr1/2/3 plants grown hydroponically for 14 days in a nutrient solution (pH 5.5; Zhou et al., 2008, Plant Physiol. 146: 1673-1686) containing 200µM NaH2PO4 (sufficient phosphate) and then transferred for 7 days into a solution lacking phosphate. Other conditions: greenhouse, 12h light (200µmol photons m-2 s-1) at 30°C / 12h dark at 22°C cycles, 60% relative humidity.	phr1/2/3	Triple mutant (Nipponbare genetic background) with following mutations in OsPHR1, OsPHR2, OsPHR3 (PHOSPHATE STARVATION RESPONSE1, 2, 3): phr1, a 2bp deletion in the first translated exon of OsPHR1 (LOC_OsO3g21240) resulting in a frameshift and a premature translation stop codon; phr2, a T-DNA insertion in OsPHR2 (LOC_OsO7g25710); phr3, a Tos-17 retrotransposon insertion in the seventh translated exon of OsPHR3 (LOC_OsO2g04640). The triple mutant was obtained by crossing single homozygous phr1, phr2 and phr3 mutants. OsPHR1, OsPHR2 and OsPHR3 are functionally redundant transcription factors involved in phosphate (Pi) signaling. Irrespective of Pi supply (low or sufficient), Pi concentration in phr1/2/3 shoots was lower than in shoots of Nipponbare wild type. Pi concentration in phr1/2/3 roots was only slightly lower than Pi concentration in wild type roots. Root and shoot biomass of phr1/2/3 was reduced compared to the wild type under both low Pi and sufficient Pi. Under Pi deficient conditions, root hairs of phr1/2/3 were much shorter than root hairs of the wild type (root hair length: phr1/2/3, approx. 40µm; wild type, approx. 175µm) (Guo et al., 2015, Plant Physiol. 168: 1762-76).	shoot

LOC_Os07g42910.1	1.56	2.98 2.98 phosphoru: (phr1/2/3; Pi for 7d) v: phosphoru: (Nipponbar ; -Pi for 7d)	1673-1686) containing 200μM NaH2PO4 (sufficient phosphate) and then transferred for 7 days into a solution lacking phosphate	phr1/2/3	Triple mutant (Nipponbare genetic background) with following mutations in OsPHR1, OsPHR2, OsPHR3 (PHOSPHATE STARVATION RESPONSE1, 2, 3): phr1, a 2bp deletion in the first translated exon of OsPHR1 (LOC_OsO3g21240) resulting in a frameshift and a premature translation stop codon; phr2, a T-DNA insertion in OsPHR2 (LOC_OsO7g25710); phr3, a Tos-17 retrotransposon insertion in the seventh translated exon of OsPHR3 (LOC_OsO2g04640). The triple mutant was obtained by crossing single homozygous phr1, phr2 and phr3 mutants. OsPHR1, OsPHR2 and OsPHR3 are functionally redundant transcription factors involved in phosphate (Pi) signaling. Irrespective of Pi supply (low or sufficient), Pi concentration in phr1/2/3 shoots was lower than in shoots of Nipponbare wild type. Pi concentration in phr1/2/3 roots was only slightly lower than Pi concentration in wild type roots. Root and shoot biomass of phr1/2/3 was reduced compared to the wild type under both low Pi and sufficient Pi. Under Pi deficient conditions, root hairs of phr1/2/3 were much shorter than root hairs of the wild type (root hair length: phr1/2/3, approx. 40µm; wild type, approx. 175µm) (Guo et al., 2015, Plant Physiol. 168: 1762-76).	shoot
------------------	------	--	--	----------	---	-------

	05-00036	-1.28	F (-2.39 r u r s (ron; ohosphorus no Fe and P for 10d; root) vs untreated root samples sufficient fe and P)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) lacking iron (FeCI3) and phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
--	----------	-------	--	--	---	------------	---	-------

OS-00239	-1.46	-2.73	phosphorus (Dular; 1µM Pi; shoot) vs phosphorus (Pusa Basmati 1; 1µM Pi; shoot)	Shoot samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot
03-00233			phosphorus (Dular; 320µM Pi; shoot) vs phosphorus (Pusa Basmati 1; 320µM Pi; shoot)	Shoot samples of 15-day-old Dular seedlings grown in a phosphate sufficient nutrient solution (320µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot

OS-00239	0239 -1.15	-2.26	CDular; 320μM Pi; root) vs phosphorus (Pusa Basmati 1; 320μM Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate sufficient nutrient solution (320µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot
	-1.95	-3.92	(phr1/2/3; - Pi for 7d) vs	Shoot samples of phr1/2/3 plants grown hydroponically for 14 days in a nutrient solution (pH 5.5; Zhou et al., 2008, Plant Physiol. 146: 1673-1686) containing 200µM NaH2PO4 (sufficient phosphate) and then transferred for 7 days into a solution lacking phosphate. Other conditions: greenhouse, 12h light (200µmol photons m-2 s-1) at 30°C / 12h dark at 22°C cycles, 60% relative humidity.	phr1/2/3	Triple mutant (Nipponbare genetic background) with following mutations in OsPHR1, OsPHR2, OsPHR3 (PHOSPHATE STARVATION RESPONSE1, 2, 3): phr1, a 2bp deletion in the first translated exon of OsPHR1 (LOC_OsO3g21240) resulting in a frameshift and a premature translation stop codon; phr2, a T-DNA insertion in OsPHR2 (LOC_OsO7g25710); phr3, a Tos-17 retrotransposon insertion in the seventh translated exon of OsPHR3 (LOC_OsO2g04640). The triple mutant was obtained by crossing single homozygous phr1, phr2 and phr3 mutants. OsPHR1, OsPHR2 and OsPHR3 are functionally redundant transcription factors involved in phosphate (Pi) signaling. Irrespective of Pi supply (low or sufficient), Pi concentration in phr1/2/3 shoots was lower than in shoots of Nipponbare wild type. Pi concentration in phr1/2/3 roots was only slightly lower than Pi concentration in wild type roots. Root and shoot biomass of phr1/2/3 was reduced compared to the wild type under both low Pi and sufficient Pi. Under Pi deficient conditions, root hairs of phr1/2/3 were much shorter than root hairs of the wild type (root hair length: phr1/2/3, approx. 40µm; wild type, approx. 175µm) (Guo et al., 2015, Plant Physiol. 168: 1762-76).	sho

qRPPUE7.14	LOC_Os07g42924.1	OS-00282	-2.14	-4.38	phosphorus (phr1/2/3; - Pi for 7d) vs phosphorus (phr3; -Pi for 7d)	Shoot samples of phr1/2/3 plants grown hydroponically for 14 days in a nutrient solution (pH 5.5; Zhou et al., 2008, Plant Physiol. 146: 1673-1686) containing 200µM NaH2PO4 (sufficient phosphate) and then transferred for 7 days into a solution lacking phosphate. Other conditions: greenhouse, 12h light (200µmol photons m-2 s-1) at 30°C / 12h dark at 22°C cycles, 60% relative humidity.	phr1/2/3	Triple mutant (Nipponbare genetic background) with following mutations in OsPHR1, OsPHR2, OsPHR3 (PHOSPHATE STARVATION RESPONSE1, 2, 3): phr1, a 2bp deletion in the first translated exon of OsPHR1 (LOC_OsO3g21240) resulting in a frameshift and a premature translation stop codon; phr2, a T-DNA insertion in OsPHR2 (LOC_OsO7g25710); phr3, a Tos-17 retrotransposon insertion in the seventh translated exon of OsPHR3 (LOC_OsO2g04640). The triple mutant was obtained by crossing single homozygous phr1, phr2 and phr3 mutants. OsPHR1, OsPHR2 and OsPHR3 are functionally redundant transcription factors involved in phosphate (Pi) signaling. Irrespective of Pi supply (low or sufficient), Pi concentration in phr1/2/3 shoots was lower than in shoots of Nipponbare wild type. Pi concentration in phr1/2/3 roots was only slightly lower than Pi concentration in wild type roots. Root and shoot biomass of phr1/2/3 was reduced compared to the wild type under both low Pi and sufficient Pi. Under Pi deficient conditions, root hairs of phr1/2/3 were much shorter than root hairs of the wild type (root hair length: phr1/2/3, approx. 40μm; wild type, approx.	shoot
			-2.32	-4.96	phosphorus (phr1/2/3; - Pi for 7d) vs phosphorus (Nipponbare	Shoot samples of phr1/2/3 plants grown hydroponically for 14 days in a nutrient solution (pH 5.5; Zhou et al., 2008, Plant Physiol. 146: 1673-1686) containing 200µM NaH2PO4 (sufficient phosphate) and then transferred for 7 days into a solution lacking phosphate. Other conditions: greenhouse, 12h light (200µmol photons m-2 s-1) at 30°C / 12h dark at 22°C cycles, 60% relative humidity.	phr1/2/3	175μm) (Guo et al., 2015, Plant Physiol. 168: 1762-76). Triple mutant (Nipponbare genetic background) with following mutations in OsPHR1, OsPHR2, OsPHR3 (PHOSPHATE STARVATION RESPONSE1, 2, 3): phr1, a 2bp deletion in the first translated exon of OsPHR1 (LOC_Os03g21240) resulting in a frameshift and a premature translation stop codon; phr2, a T- DNA insertion in OsPHR2 (LOC_Os07g25710); phr3, a Tos-17 retrotransposon insertion in the seventh translated exon of OsPHR3 (LOC_Os02g04640). The triple mutant was obtained by crossing single homozygous phr1, phr2 and phr3 mutants. OsPHR1, OsPHR2 and OsPHR3 are functionally redundant transcription factors involved in phosphate (Pi) signaling. Irrespective of Pi supply (low or sufficient), Pi concentration in phr1/2/3 shoots was lower than in shoots of Nipponbare wild type. Pi concentration in phr1/2/3 roots was only slightly lower than Pi concentration in wild type roots. Root and shoot biomass of phr1/2/3 was reduced compared to the wild type under both low Pi and sufficient Pi. Under Pi deficient conditions, root hairs of phr1/2/3 were much shorter than root hairs of the wild type (root hair length: phr1/2/3, approx. 40µm; wild type, approx. 175µm) (Guo et al., 2015, Plant Physiol. 168: 1762-76).	shoot

OS-00036	1.1	2.14	iron (no Fe for 10d; root) vs untreated root samples (sufficient Fe and P)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots
OS-00096	1.04	2.08	(IR64-null; no P fertilizer) vs phosphorus (IR64-null; 60kg/ha	Root samples of IR64-null line grown till the heading stage on phosphorus- deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	IR64-null	Non-transgenic, phosphorus-starvation-intolerant line from the segregating progeny of a transformant heterozygous for the 35S::PSTOL1 transgene; sibling of the transgenic 35S::PSTOL1 (20) line.	roots

LOC_Os07g42940.1	OS-00239	-1.18		phosphorus (Dular; 320µM Pi; root) vs phosphorus (Pusa Basmati 1; 320µM Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate sufficient nutrient solution (320µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots
LOC 0507q42950.1		-1.2	-2.29	(Pusa Basmati 1; 1μΜ Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots

OS-00235	1.85	3.58	phosphorus (Dular; 1µM Pi; root) vs phosphorus (Dular; 320µM Pi; root)	Champer, 16h light (250-	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots
----------	------	------	--	--------------------------	-------	---	-------

 1.65 3.14 iron (no Fe for 10d; root) vs 1.65 3.14 iron; root) vs Eaker and phosphorus (no Fe and P for 10d; root) 1.65 3.14 iron; root) vs Eaker and phosphorus (no Fe and P for 10d; root) The philippines) with optimal phosphorus (no FC) 1.65 3.14 iron; root) vs Ed 3. International Rice Research Institute, Manila, phosphorus (no Fe and P for 10d; root) The philippines) with optimal phosphorus (no FC) 1.65 3.14 iron; root) The philippines) with optimal phosphorus (no FC) 1.65 3.14 iron; root) 1.65 3.14 iron; root) iron; root) iron (no Fe and P for 10d; root) iron (He FC) iron; root) iron; root) iron (he FC) iro	roots
--	-------

LOC_Os07g42960.1	OS-00036 1.45	iron (no Fe for 10d; root) vs untreated root samples (sufficient Fe and P)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	pots
------------------	---------------	---	--	------------	---	------

1.12.15Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency S3.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	hoot
--	---	------

	OS-00239				Root samples of 15-day-old Dular seedlings grown in a phosphate sufficient nutrient solution (320µM Pi); the solution (pH 5.5) was		Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and	
		-1.06	-2.08	phosphorus (Dular; 320µM Pi; root) vs phosphorus (Pusa Rasmati 1:	exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300μmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots
LOC 0s07q42970.1	OS-00091	-2.51		phosphorus (low Pi for 72h) vs untreated seedling samples (sufficient Pi)	Seedling samples of cultivar Zhonghua 10 grown for 7 days in a nutrient solution with sufficient phosphate (0.323mM NaH2PO4), then transferred to low phosphate (0.016 mM NaH2PO4) for 72h. Other components of the nutrient solution (pH 5.5): 1.425mM NH4NO3, 0.513mM K2SO4, 0.998mM CaCl2, 1.643mM MgSO4, 0.168mM Na2SiO3, 0.125mM Fe-EDTA, 0.019mM H3BO3, 0.009mM MnCl2, 0.155mM CuSO4, 0.152mM ZnSO4, 0.075mM Na2MoO4. Other conditions: 16h light at 30°C / 8h dark at 22°C.	Zhonghua 10	Japonica (Oryza sativa ssp. japonica) cultivar.	seedling

LOC_Os09g12270.1		1.15	2.2	arsenate (Bala) vs untreated root samples (Bala)	Root samples of rice variety Bala grown for 7 days in hydroponics on phosphate- free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3µM) arsenate (Na2HAsO4).	Bala	Improved indica upland cultivar; origin: Eastern India.	roots
	OS-00003	1.33	2.62	root	Root samples of rice variety Bala grown for 7 days in hydroponics on phosphate- free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3µM) arsenate (Na2HAsO4).	Bala	Improved indica upland cultivar; origin: Eastern India.	roots
		1.24	2.37	arsenate (Azucena) vs untreated root samples (Azucena)	Root samples of rice variety Azucena grown for 7 days in hydroponics on phosphate- free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3µM) arsenate (Na2HAsO4).	Azucena	Traditional japonica (Oryza sativa ssp. japonica) upland cultivar; origin: the Philippines. Azucena is resistant to aluminum stress (Al3+) (Arbelaez et al., 2017, Plant Direct 1).	roots

OS-00036	1.25	2.38	iron (no Fe for 10d; root) vs untreated root samples (sufficient Fe and P)	Root samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCl3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolates FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	roots
OS-00096	-1.22	-2.33	phosphorus (IR64-null; no P fertilizer) vs phosphorus (IR64-null; 60kg/ha P2O5)	Root samples of IR64-null line grown till the heading stage on phosphorus- deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	IR64-null	Non-transgenic, phosphorus-starvation-intolerant line from the segregating progeny of a transformant heterozygous for the 35S::PSTOL1 transgene; sibling of the transgenic 35S::PSTOL1 (20) line.	roots

qRPUpE9.15

LOC_Os09g12290.1		-1.49	-2.85	(Dular; 1µM Pi; shoot) vs phosphorus (Pusa Basmati 1; 1µM Pi; shoot)	Shoot samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).		Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot
	OS-00239	-1.49		phosphorus (Dular; 1µM Pi; root) vs phosphorus (Pusa Basmati 1; 1µM Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots

			-1.5	phosphorus (Dular; 320µM Pi; root) vs 2.84 phosphorus (Pusa Basmati 1; 320µM Pi; root)	exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300umol photons m-2 s-1) at	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots
	LOC_Os09g12300.1 LOC Os09g12310.1							
	LOC_Os09g16980.1							
qRPUUE9.16	LOC_Os09g17000.1	├						
	LOC_Os09g17010.1							↓
	LOC_Os09g17080.1							

	-1.46	-2.7		Root samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots
05-00230	-1.52	-2.91	phosphorus (Dular; 320µM Pi; shoot) vs phosphorus (Pusa Basmati 1; 320µM Pi; shoot)	Shoot samples of 15-day-old Dular seedlings grown in a phosphate sufficient nutrient solution (320µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot

LOC_0310633320.1 03-0	00233	1	1		1		1
	-1.58	-3.01	phosphorus (Dular; 320µM Pi; root) vs phosphorus (Pusa Basmati 1; 320µM Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate sufficient nutrient solution (320µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots
	-1.61	-3.19	(Dular; 1μM Pi; shoot) vs	Shoot samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot

aREP10	7	OS-00036	1.62	3.06	iron; phosphorus (no Fe and P for 10d; shoot) vs untreated shoot samples (sufficient Fe and P)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) lacking iron (FeCI3) and phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
			1.16	2.52	(IR64-null; no P fertilizer) vs phosphorus	Root samples of IR64-null line grown till the heading stage on phosphorus- deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	IR64-null	Non-transgenic, phosphorus-starvation-intolerant line from the segregating progeny of a transformant heterozygous for the 355::PSTOL1 transgene; sibling of the transgenic 35S::PSTOL1 (20) line.	roots

LOC_0s10g39540.1	OS-00096	0.92		phosphorus (35S::PSTOL 1 (20); no P fertilizer) vs phosphorus (35S::PSTOL 1 (20); 60kg/ha P2O5)	Root samples of 35S::PSTOL1 (20) line grown till the heading stage on phosphorus deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.	355::PSTOL1 (20)	Phosphorus-starvation-tolerant transgenic line 20 (cv. IR64 background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV35S promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OsPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 35S::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 35S::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots
		1.16	2.21	phosphorus (no P for 10d; shoot) vs untreated shoot samples (sufficient Fe and P)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal iron (0.036mM FeCl3) concentration but lacking phosphorus (NaH2PO4). Other growth conditions: growth chamber, 12h light (450 mmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot

	OS-00036	-1.49	-2.78	iron (no Fe for 10d; shoot) vs iron; phosphorus (no Fe and P for 10d; shoot)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m–2s–1) at 30°C / 12h darkness at 22°C.	Ninnonhare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolate FR13 (virulent isolate from France) and resistant to M. oryzae isolates CL3.6.7 (avirulent isolate) and BR32 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	shoot
LOC_Os10g39550.1								
LOC_Os10g39560.1	OS-00096	1.84	3.35	phosphorus (35S::PSTOL 1 (20); no P fertilizer) vs phosphorus (35S::PSTOL 1 (20); 60kg/ha P2O5)	Root samples of 35S::PSTOL1 (20) line grown till the heading stage on phosphorus deficient soil from Siniloan, Luzon, the Philippines (P- Bray, 1.23 ± 0.30mgkg-1; P- Olsen, 0.77 ± 0.46 mgkg-1) under dry-down conditions.		Phosphorus-starvation-tolerant transgenic line 20 (cv. IR64 background) carrying full-length coding region (CDS) of PSTOL1 under control of the constitutive CaMV35S promoter and NOS terminator. The PSTOL1 CDS is derived from O. sativa indica cultivar Kasalath. PSTOL1 (Phosphorus-starvation tolerance 1; OSPupK46-2) encodes a functional serine/threonine protein kinase and is absent in genomes of phosphorus-starvation- intolerant rice varieties such as IR64, Nipponbare. 35S::PSTOL1 (20) plants grown on phosphorus-unfertilized soil have larger root system and produce approx. 60% more seeds than the control IR64-null plants (segregants without the transgene). Compared to the non-transgenic IR64-null control, total root length and surface area of 35S::PSTOL1 (20) plants is increased not only under low-phosphorus but also under phosphorus- sufficient conditions (Gamuyao et al., 2012, Nature 488: 535- 539).	roots

		1.48	2.75	phosphorus (IR64-null; no P fertilizer) vs phosphorus (IR64-null; 60kg/ha P2O5)	line grown till the heading stage on phosphorus- deficient soil from Siniloan,	IR64-null	Non-transgenic, phosphorus-starvation-intolerant line from the segregating progeny of a transformant heterozygous for the 35S::PSTOL1 transgene; sibling of the transgenic 35S::PSTOL1 (20) line.	roots
	OS-00239	-1.06	-2.08	phosphorus (Dular; 320µM Pi; root) phosphorus (Pusa Basmati 1; 320µM Pi; root)	Root samples of 15-day-old Dular seedlings grown in a phosphate sufficient nutrient solution (320µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).		Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1 μ M) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	roots
	OS-00003	-1.09		arsenate (Bala) vs untreated root samples (Bala)	Root samples of rice variety Bala grown for 7 days in hydroponics on phosphate- free nutrient solution containing 0.1mM Mg2+ and SO42-, 0.2mM Ca2+ and K+, 0.6mM NO3-, and 1ppm (13.3µM) arsenate (Na2HAsO4).	Bala	Improved indica upland cultivar; origin: Eastern India.	roots

OS-00239	-1.12		phosphorus (Dular; 320µM Pi; shoot) vs phosphorus (Pusa Basmati 1; 320µM Pi; shoot)	Shoot samples of 15-day-old Dular seedlings grown in a phosphate sufficient nutrient solution (320µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot
----------	-------	--	---	---	-------	---	-------

qRPPUE12.18	LOC_Os12g29330.1	OS-00036	-1.23	-2.27	iron (no Fe for 10d; shoot) vs iron; phosphorus (no Fe and P for 10d; shoot)	Shoot samples of cultivar Nipponbare germinated for 2 days in distilled water and then floated for 10 days on the Yoshida nutrient solution (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3. International Rice Research Institute, Manila, The Philippines) with optimal phosphorus (0.323mM NaH2PO4) concentration but lacking iron (FeCI3) and citric acid. Other growth conditions: growth chamber, 12h light (450µmol photons m-2s-1) at 30°C / 12h darkness at 22°C.	Nipponbare	Japonica (Oryza sativa ssp. japonica) variety resistant to infection by the plant Striga hermonthica, an obligate root hemiparasite (Swarbrick et al., 2008, New Phytol. 179: 515-529). Nipponbare is susceptible to Xanthomonas oryzae pv. oryzae strains BAI3 (from Burkina Faso), PXO99A (from the Philippines; race 6), PXO86 (from the Philippines; race 2), T7174 (from Japan; race 1), and MAI1 (from Mali). Nipponbare is well transformable with Agrobacterium tumefaciens: using A. tumefaciens strain EHA 105, transient transformation frequency has been found to be 85.2%, stable transformation frequency 53.52% (Tie et al., 2012, Plant Mol. Biol. 78: 1-18). Nipponbare is susceptible to Meloidogyne graminicola, a root knot nematode that induces re-differentiation of root cells into multinucleate giant cells and formation of hook-like galls. Nipponbare is susceptible to Magnaporthe oryzae isolates FR13 (virulent isolate from France) and R832 (nonadapted isolate from Brazil) (Abbruscato et al., 2012, Mol Plant Pathol.; Faivre-Rampant et al., 2008, New Phytol. 180: 899-910). This variety is sensitive to drought stress; drought index 0.54 (Wei et al., 2017, Front Plant Sci. 8: 473). Nipponbare is susceptible to Rice Stripe Virus (RSV) (Zhao et al., 2016, New Phytol. 210: 196-207).	
-------------	------------------	----------	-------	-------	---	---	------------	---	--

OS-00239	-1.46	-2.74	phosphorus (Dular; 1µM Pi; shoot) vs phosphorus (Pusa Basmati 1; 1µM Pi; shoot)	Shoot samples of 15-day-old Dular seedlings grown in a phosphate deficient nutrient solution (1µM Pi); the solution (pH 5.5) was exchanged every 24h. Other growth conditions: growth chamber, 16h light (250- 300µmol photons m-2 s-1) at 30°C / 8h darkness at 28°C cycles, 70% relative humidity. The nutrient solution as described in (Yoshida et al., 1976, Laboratory Manual for Physiological Studies of Rice, Ed 3, International Rice Research Institute, Manila, Philippines).	Dular	Traditional Oryza sativa ssp. indica variety with very low yield potential (7-22q/ha) and high tolerance to low phosphate (Pi) content in the soil. Dular is more efficient in Pi utilization and better preserves root growth under Pi-limiting conditions than a low Pi-sensitive variety, Pusa Basmati 1. When plants were grown under low Pi (1µM) for 15 days, Dular root length was 9.38 ± 0.17cm while Pusa Basmati 1 root length was 7.41 ± 0.15cm. Under low Pi, Dular produced more and longer lateral roots than Pusa Basmati 1. Even though under sufficient Pi root and shoot Pi content was lower in Dular than in Pusa Basmati 1, under low Pi root and shoot Pi content was higher in Dular than in Pusa Basmati 1 (Mehra et al., 2016, Front Plant Sci. 6: 1184). Dular belongs to wide-compatibility variety (WCV) rice germplasms, i.e. Dular is able to produce fertile hybrids when crossed to indica or japonica varieties (Wang et al., 1998, Theor Appl Genet. 97: 407).	shoot
----------	-------	-------	--	--	-------	---	-------