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Supplemental Items 

 
Figure S1: Related to Figure 1. Assessment of algorithm performance for multi-class classification of six TCGA human 
cancer types: breast, colorectal, lung, kidney, brain, and liver. Classification performance metrics were averaged for the 100 
unique test sets for each model (see methods). Performance metrics: Accuracy (red), AUC (green), Balanced Accuracy (blue), 
F1 score (purple). Data are presented as mean ± SEM. 
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Figure S2: Related to Figure 3. (a) Train and test balanced accuracies for the LumA vs. LumB binomial classification dataset. 
Order of the panels (left to right, top to bottom) is based on the average difference between performance on the train and the test 
across the range of data fractions shown for all nine classifiers assessed. (b) Train and test balanced accuracies for the ERpos vs. 
ERneg binomial classification dataset. Ordering of panels is the same as is used for (a).  
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Figure S3: (a) Test set balanced accuracy for ERpos vs. ERneg binomial classification with incremental 
decreases from 95% to 10% of original training set. (b) Test set balanced accuracy for the six-cancer 
classification with incremental decreases from 95% to 5% of original training set. The six TCGA human 
cancer types assessed: breast, colorectal, lung, kidney, brain, and liver. Averaged balanced accuracies were 
calculated for 50 independent training sets at each designated fraction of original training data.  Data are 
presented as mean ± SEM. 
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Figure S4: Related to Figure 4. Assessment of algorithm performance for Luminal A versus Luminal B breast cancers based 
on most differentially expressed genes. Classification performance metrics were averaged for the 100 unique test sets for each 
model (see methods). Performance metrics: Accuracy (red), AUC (green), Balanced Accuracy (blue), F1 score (purple). Data 
are presented as mean ± SEM. 

 
 
 

lumAB_diffexp_gene

Field RF Random NB Ridge DWave SA SVM LASSO RBM

0.75

0.80

0.85

0.90

0.95

Algorithm

Va
lu

e

Metric Accuracy AUC Bal.Accuracy F1 score



 
Figure S5: Related to Figure 4. Rank-ordered heatmap of the averaged state for each of the top 44 genes for the LumA vs. 
LumB comparison.  

 
 
 
 



 

 
Figure S6: Evaluation of the performance of D-Wave, SA at various final inverse temperatures (b1 in the Legend), and Random, when 
using a sliding window of energies. Average balanced accuracy (top) and the average log loss (bottom) across the 100 cuts on the test dataset 
versus the average Ising energy of the post-processed weights. The shaded region represents 2 standard deviations. 

 
Note S1: Related to Figure S6. 
As a way to gain some insight into the machine learning performance with respect to Ising energy, we 
considered the effect of using higher-energy excited-state solutions; i.e., the solutions that have a higher 
energy according to the Ising Hamiltonian defined in Eq. (19). To do so, we first generated 1000 sets of 
weights for each method (D-Wave, SA, and Random). The weights were then sorted according to their 
Ising energy. Next, we used a sliding window of energies; i.e., we applied our post-processing averaging 
procedure to 20 solutions at a time starting from the 20 set of weights with the lowest Ising energy, then 
applying the averaging procedure to the 20 set of weights with the next lowest Ising energy and so on. 
This procedure was repeated for all 100 cuts of the data for each dataset, and the results for the balanced 
accuracy and negative log-likelihood are presented in Supplemental Figure S6. 
 
The top row of the Supplemental Figure S6 shows a maximum in the balanced accuracy versus the Ising 
energy for most of the datasets. This maximum indicates the presence of a mismatch between the 
optimized objective function (the Ising energy) and the performance metric (the balanced accuracy); i.e., 
some solutions that perform worse in terms of the Ising energy perform better in terms of the balanced 
accuracy. This is in part due to the nature of the logistic loss, which is somewhat sensitive to outliers. To 
calculate the balanced accuracy, we must first threshold the predicted probabilities, assigning classes 
based on whether the probability for that class is greater than 0.5. Further, we note that by tuning the final 
temperature of SA, we are able to control the weights found to lie within a particular energy range; higher 
final temperature (smaller b1) shift the energies to the right. Note that while it is possible to bring SA to 
find higher energy solutions by increasing the final temperature, there is no single parameter we can use 
to decrease the temperature of the weights found by the random method, other than increasing the 
number of weights we randomly generate (for D-Wave we can essentially control the temperature by 
scaling the ℎ’s and 𝐽’s). It seems reasonable to expect that with a growing number of features, Random 
will become less and less likely to find solutions low enough in energy to be useful; i.e., we may expect 
the solutions to lie to the right of the maximum. D-Wave and SA are generally to the left of the maximum 
and we can effectively “raise the temperature” such that they find solutions that are near the maximum.   
 



The bottom row of Supplemental Figure S6 shows the averaged negative log-likelihood across the 100 
cuts of the data versus the average Ising energy. Though not always linear, there is a clear correlation 
between the Ising energy and the log-loss. This indicates that the approximations we used to generate 
the Ising problem from the log-loss, though perhaps not perfect, are good enough that we see excellent 
correlations between the two. Had the approximation not been valid, we would expect to see very poor 
correlation, or no correlation at all between the two.    

 

 
Figure S7: (a) Test set balanced accuracy for LumA vs. LumB binomial classification on top 44 genes 
from PC1 with incremental decreases from 95% to 5% of original training set. (b) Test set balanced 
accuracy for ERpos vs. ERneg binomial classification on top 44 genes from PC1 with incremental decreases 
from 95% to 2% of original training set. Averaged balanced accuracies were calculated for 50 independent 
training sets at each designated fraction of original training data.  Data are presented as mean ± SEM. 
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Figure S8: (a) Train and test balanced accuracies for the LumA vs. LumB binomial classification dataset with genes from PC1. 
Order of the panels (left to right, top to bottom) is based on the average difference between performance on the train and the test 
across the range of data fractions shown for all nine classifiers assessed. (b) Train and test balanced accuracies for the ERpos vs. 
ERneg binomial classification dataset with genes from PC1. Ordering of panels is the same as is used for (a).  
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Figure S9: Schematic representation of the “Chimera” hardware graph of the DW2X housed at the Information Sciences Institute at USC, 
used in this work. Green circles represent active qubits, inactive qubits are omitted, lines represent couplings between qubits. Each qubit can 
be coupled to a maximum of six other qubits.  

 
Note S2: Related to Figures S10-S12 
Because D-Wave, SA, and Random are all probabilistic, returning a distribution of solutions, finding 
weights with low Ising energy is somewhat dependent on the total number of solutions that are found. We 
note that the ability of the respective methods in finding low energy solutions differs; as seen in 
Supplemental Figure S6, with a 1000 solutions, Random does not find solutions that are as low in energy 
as D-Wave and SA; we might expect the need to randomly generate on the order of 244  (recall that we 
used 44 PCs for the binomial datasets) solutions in order for Random to find the solutions that match the 
Ising energy of the solutions returned by D-Wave and SA.  
 
In addition to the total number of solutions, performance is also dependent on the number of solutions we 
include in our post-processing procedure. Our post-processing procedure is designed to monotonically 
improve performance on the training datasets, and thus we might expect including more solutions to 
improve performance. We did not consider using all solutions for several reasons: first, doing so 
increases the amount of time needed to generate final candidate solutions; second, by including many of 



the solutions, we begin to somewhat lose the discrete nature of the weights and therefore some of the 
robustness associated with them; finally, monotonically improving performance on the training dataset 
may lead to overfitting, and therefore using a smaller number of solutions is somewhat analogous to an 
early-stopping regularization scheme.  
 
In the main text and in Supplemental Figure S6, we selected 20 best performing solutions to include in 
our post-processing procedure. The choice of 1000 and 20 are somewhat arbitrary, so to systematically 
determine the effect of this number of solutions, we vary the total number of solutions from 1 to 1000 and 
the number of best performing solutions from 1 to 1000 for each of the five binomial datasets. As before, 
we used the same 100 cuts of the data described in the main text for each of the datasets. The average 
test balanced accuracy, average test logistic loss, and the average training negative Ising energy are 
shown in Supplemental Figures S10, S11, and S12, respectively. For each performance metric (i.e., 
balanced accuracy, logistic loss, and Ising energy), we chose the final inverse temperature for SA and the 
𝐽! for D-Wave (see Section on additional technical details of D-Wave) that gave the best performance of 
that measure.  
 
Supplemental Figures S10-S12 all show that when using a very small number of total solutions, Random 
does worse than D-Wave and SA on all metrics. However, with as few as 50 total solutions and 5 best 
performing solutions, Random performs nearly the same as D-Wave and SA in terms of the balanced 
accuracy. Further increasing the total number of solutions and the number of solutions used in the post-
processing procedure improves the balanced accuracy for D-Wave, SA, and Random. For estrogen 
receptor positive (ERpos) vs. estrogen receptor negative (ERneg) and lung adenocarcinoma (LUAD) vs. 
lung squamous cell carcinoma (LUSC), using all 1000 out of 1000 solutions gives the best performance, 
however for the other datasets, using a smaller number (around 20 or 50) of the total solutions gives 
nearly equal performance as using all 1000. For Random, using all 1000 solutions for the luminal A 
(LumA) vs. luminal B (LumB) breast cancers dataset is worse than using 50 solutions, indicating that for 
this dataset early stopping may help improve performance in terms of the balanced accuracy. 
Supplemental Figures S11 and S12 show that Random does not find solutions that are as low in Ising 
energy or with as low of a logistic loss as D-Wave and SA, confirming what was shown in Supplemental 
Figure S6.  
 
These additional results show that even by exploring only a small subset of the total search space (1000 
out of 244 possible solutions), Random is able to give very good machine learning performance. Because 
the logistic loss is somewhat sensitive to outliers, finding “good” solutions with low (but not the lowest) 
Ising energy seem to give the best machine learning performance in terms of the balanced accuracy.   



 
Figure S10: Heatmaps showing the effect of changing the total number of solutions (y-axis) and the number of solutions used in the post-
processing procedure (x-axis) on the average balanced accuracy on the test datasets for the five binomial datasets. SA was run with a final 
inverse temperature of b1 = 0.03 and D-Wave was run with a 𝐽! of 8.0. A higher balanced accuracy indicates better performance.  
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Figure S11: Heatmaps showing the effect of changing the total number of solutions (y-axis) and the number of solutions used in the post-
processing procedure (x-axis) on the average logistic loss on the test datasets for the five binomial datasets. SA was run with a final inverse 
temperature of b1 = 3 and D-Wave was run with a 𝐽! of 1.0. A lower logistic loss indicates better performance. 
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Figure S12: Heatmaps showing the effect of changing the total number of solutions (y-axis) and the number of solutions used in the post-
processing procedure (x-axis) on the average negative Ising energy on the training datasets for the five binomial datasets. SA was run with a 
final inverse temperature of b1 = 3 and D-Wave was run with a 𝐽! of 1.0. A lower Ising energy (higher negative Ising energy) indicates better 
performance.  

 
 
 

Dataset Training Set Test Set Ratio of classes 
KIRC vs. KIRP 490 121 53:47 
LUAD vs. LUSC 770 192 52:48 
BRCA vs. Normal 118 28 50:50 
ERpos vs. ERneg 768 191 77:23 
LumA vs. LumB 250 61 64:36 
Six Cancer Types (brca, 
coad, kidn, lgg, lihc, 
lung) 3192 795 25:14:15:13:9:24 

Table S1: Datasets with the number of human tumor samples in the training and test sets. Kidney Renal Clear Cell Carcinoma (KIRC) vs. 
Kidney Renal Papillary Cell Carcinoma (KIRP); Lung Adenocarcinoma (LUAD) vs. Lung Squamous Cell Carcinoma (LUSC); Breast Invasive 
Carcinoma (BRCA) vs. matched normal tissue (normal); estrogen receptor positive (ERpos) vs. estrogen receptor negative (ERneg) breast 
cancers; and luminal A (LumA) vs. luminal B (LumB) breast cancers.  Six human cancer types: breast, colorectal, lung, kidney, brain, and liver. 

  



Datase
t 

LASS
O 

Ridge SVM RF NB DW SA  Rand Field RBM 

BRCA 
vs 
Norma
l 

0.981 
± 
0.002 

0.982 
± 
0.002 

0.980 
± 
0.003 

0.989 
± 
0.002 

0.895 
± 
0.006 

0.974 
± 
0.003 

0.981 
± 
0.003 

0.982 
± 
0.002 

0.952 
± 
0.004 

0.981 
± 
0.002 

ER pos 
vs ER 
neg 

0.921 
± 
0.002 

0.919 
± 
0.002 

0.928 
± 
0.002 

0.920 
± 
0.002 

0.875 
± 
0.002 

0.769 
± 
0.003 

0.785 
± 
0.003 

0.803 
± 
0.003 

0.714 
± 
0.004 

0.851 
±  
0.007 

KIRC 
vs 
KIRP 

0.978 
± 
0.001 

0.976 
± 
0.001 

0.979 
± 
0.001 

0.945 
± 
0.002 

0.938 
± 
0.002 

0.946 
± 
0.002 

0.948 
± 
0.002  

0.955 
± 
0.002 

0.894 
± 
0.003 

0.930 
± 
0.002 

LUAD 
vs 
LUSC 

0.9989 
± 
0.0002  

0.9999 
± 
0.0001 

1.0000 
± 
0.0000 

0.9956 
± 
0.0003 

0.9952 
± 
0.0004 

0.9482 
± 
0.0017 

0.9539 
± 
0.0017 

0.9752 
± 
0.0013 

0.8619 
± 
0.0031 

0.9969 
± 
0.0003 

Lum A 
vs 
Lum B 

0.788 
± 
0.005 

0.781 
± 
0.005 

0.788 
± 
0.005 

0.722 
± 
0.006 

0.655 
± 
0.006 

0.747 
± 
0.006 

0.750 
± 
0.006 

0.747 
± 
0.006 

0.740 
± 
0.006 

0.721 
±  
0.007 

6 
cancer 

0.9807 
± 
0.0004 

0.9766 
± 
0.0004 

0.9807 
± 
0.0004 

0.9771 
± 
0.0005 

0.9550 
± 
0.0007 

0.8092 
± 
0.0029 

0.8217 
± 
0.0024 

0.8002 
± 
0.0035 

0.7543 
± 
0.0011 

0.9200 
± 
0.0023 

Table S2: Accuracies for five binary classification datasets and the one six-class cancer dataset used in this study. Data reported as mean ± SEM 

	

	 	



Datase
t 

LASS
O 

Ridge SVM RF NB DW SA  Rand Field RBM 

BRCA 
vs 
Norma
l 

0.9998 
± 
0.0001 

0.9998 
± 
0.0001 

0.9991 
± 
0.0003 

0.9977 
± 
0.0007  

0.9869 
± 
0.0016 

0.9951 
± 
0.0014 

0.9982 
± 
0.0005 

0.9991 
± 
0.0003 

0.9848 
± 
0.0021 

0.9956 
± 
0.0015 

ER pos 
vs ER 
neg 

0.949 
± 
0.002 

0.954 
± 
0.002 

0.953 
± 
0.002 

0.940 
± 
0.002 

0.908 
± 
0.003 

0.894 
± 
0.003 

0.914 
± 
0.003 

0.925 
± 
0.003 

0.835 
± 
0.004 

0.875 
±  
0.003 

KIRC 
vs 
KIRP 

0.9967 
± 
0.0004 

0.9983 
± 
0.0002 

0.9974 
± 
0.0004 

0.9851 
± 
0.0011 

0.9682 
± 
0.0022 

0.9787 
± 
0.0015 

0.9819 
± 
0.0013 

0.9837 
± 
0.0012 

0.9558 
± 
0.0024 

0.9554 
± 
0.0026 

LUAD 
vs 
LUSC 

1.0000 
± 
0.0000 

1.0000 
± 
0.0000 

1.0000 
± 
0.0000 

0.9999 
± 
0.0000 

0.9999 
± 
0.0000 

0.9883 
± 
0.0006 

0.9902 
± 
0.0006 

0.9972 
± 
0.0003 

0.9371 
± 
0.0023 

0.9965 
± 
0.0004 

Lum A 
vs 
Lum B 

0.856 
± 
0.005 

0.860 
± 
0.005 

0.855 
± 
0.005 

0.816 
± 
0.006 

0.775 
± 
0.007 

0.829 
± 
0.006 

0.838 
± 
0.005 

0.836 
± 
0.006 

0.820 
± 
0.007 

0.783 
± 
0.007 

6 
cancer 

0.9994 
± 
0.0000 

0.9989 
± 
0.0001 

0.9993 
± 
0.0000 

0.9994 
± 
0.0000 

0.9979 
± 
0.0000 

0.9901 
± 
0.0005 

0.9920 
± 
0.0002 

0.9892 
± 
0.0006 

0.9883 
± 
0.0002 

0.9875  
± 
0.0006 

Table S3: AUC for five binary classification datasets and the one six-class cancer dataset used in this study. Data reported as mean ± SEM. 

	

  



Datase
t 

LASS
O 

Ridge SVM RF NB DW SA  Rand Field RBM 

BRCA 
vs 
Norma
l 

0.981 
± 
0.002 

0.982 
± 
0.003 

0.980 
± 
0.002 

0.989 
± 
0.002 

0.885 
± 
0.007 

0.973 
± 
0.003 

0.979 
± 
0.003 

0.981 
± 
0.002 

0.947 
± 
0.005 

0.980 
± 
0.002 

ER pos 
vs ER 
neg 

0.950 
± 
0.001 

0.948 
± 
0.001 

0.954 
±  
0.001  

0.949 
± 
0.001 

0.922 
± 
0.002 

0.830 
± 
0.002 

0.843 
± 
0.003 

0.857 
± 
0.002 

0.786 
± 
0.003 

0.892 
± 
0.009 

KIRC 
vs 
KIRP 

0.979 
± 
0.001 

0.977 
± 
0.001 

0.980 
± 
0.001 

0.948 
± 
0.002 

0.942 
± 
0.002 

0.948 
± 
0.002 

0.950 
± 
0.002 

0.957 
± 
0.002 

0.899 
± 
0.003 

0.935 
± 
0.002 

LUAD 
vs 
LUSC 

0.9988 
± 
0.0002 

0.9999 
± 
0.0001 

1.0000 
± 
0.0000 

0.9958 
± 
0.0004 

0.9954 
± 
0.0004 

0.9498 
± 
0.0017 

0.9554 
± 
0.0017 

0.9760 
± 
0.0013 

0.8648 
± 
0.0032 

0.9970 
± 
0.0003 

Lum A 
vs 
Lum B 

0.834 
± 
0.004 

0.836 
± 
0.004 

0.835 
± 
0.005 

0.807 
± 
0.004 

0.776 
± 
0.004 

0.783 
± 
0.006 

0.786 
± 
0.005 

0.783 
± 
0.006 

0.777 
± 
0.006 

0.767 
± 
0.007 

6 
cancer 

0.9841 
± 
0.0003 

0.9780 
± 
0.0004 

0.9837 
± 
0.0004 

0.9798
± 
0.0004 

0.9610
± 
0.0006 

0.7998 
± 
0.0041 

0.8146 
± 
0.0032 

0.7882 
± 
0.0047 

0.7287
± 
0.0013 

0.9249 
± 
0.0021 

Table S4: F1 score for five binary classification datasets and the one six-class cancer dataset used in this study. Data reported as mean ± SEM. 

  

      PMC 

Gene Name 
Functionally 
Annotated  

Cancer 
Hits 

Breast Cancer 
Hits  

HGF 1 15967 6356 
E2F1 1 13733 5925 
GATC 1 1808 212 
TIMELESS 1 969 263 
HSP90AB1 1 864 299 
ESRP1 1 520 322 
FAT4 1 437 153 
RACGAP1 1 412 221 
CDC14B 1 376 118 
PGAM5 1 348 89 
FKBP4 1 305 127 



RFC5 1 303 111 
ESPL1 1 260 112 
UTRN 1 257 76 
ZFP36L2 1 257 65 
H2AFZ 1 225 84 
VPS25 1 214 36 
TUBG1 1 189 81 
PTGES3 1 187 50 
SRSF9 1 161 59 
G6PC3 1 154 37 
H6PD 1 149 59 
NFS1 1 148 40 
RBMS3 1 136 55 
RGL1 1 134 47 
ABCA6 1 105 47 
DENR 1 87 30 
VPS33A 1 84 10 
PSMC3IP 1 66 28 
COQ5 1 61 13 
DYNLRB1 1 57 19 
PIGU 1 56 24 
RCBTB2 1 54 19 
TIMM17B 1 51 12 
SLC25A39 1 42 11 
FTSJ2 1 34 14 
MAGI2-
AS3 0 25 17 
ORMDL2 1 25 10 
ENOPH1 1 23 11 
NECAB3 1 23 7 
TMEM106C 1 23 6 
PRR15L 0 21 10 
IFFO1 1 17 5 
C12orf73 0 0 0 

Table S7: Output of semantic search of PubMed Central to assess biological relevance of top 44 genes from PC1 for Luminal A versus Luminal  
comparison.  

 
Supplemental Experimental Procedures 
In this section we provide more details for the methods used in the main text.  
 
Data Sources and Preprocessing  



We first describe the sources of the data, then how each data type was preprocessed and scaled, before 
presenting our dimensionality reduction approaches.  
 
The Cancer Genome Atlas (TCGA) Data 
Whole Exome Sequencing, RNA-Seq, miRNA-Seq, DNA Methylation Array, and Genotyping Array data 
were retrieved from the Genome Data Commons (GDC) data portal (https://portal.gdc.cancer.gov/ - Data 
Release 4.0) or cBioportal (http://www.cbioportal.org/)1.  
Cancer types with samples having all five data types (messenger-RNA, micro-RNA, copy number 
variation, single nucleotide polymorphism, and DNA methylation) were chosen for further analysis (Figure 
5 and Table S1). The cancer types for the five binomial comparisons were kidney renal clear cell 
carcinoma (KIRC) vs. kidney renal papillary cell carcinoma (KIRP); lung adenocarcinoma (LUAD) vs. lung 
squamous cell carcinoma (LUSC); breast invasive carcinoma (BRCA) vs. matched normal breast tissue 
(normal); estrogen receptor positive (ERpos) vs. estrogen receptor negative (ERneg) breast cancers; and 
luminal A (LumA) vs. luminal B (LumB) breast cancers. We used human brain, breast, kidney, lung, liver, 
and colorectal cancer types for the six-cancer multiclass classification. The cancer types which were 
merged into a single cancer type due to their similarity are colon adenocarcinoma (COAD) and rectum 
adenocarcinoma (READ); kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell 
carcinoma (KIRP); lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC).  
 
Whole Exome Sequencing (STV) 
We retrieved GDC harmonized level 2 Variant Call Format (VCF) files annotated by VarScan22 and 
MuTect3 GDC somatic annotation workflows (with the Variant Effect Predictor (VEP) v844. VCF files were 
converted to Genomically Ordered Relational (GOR) database file format5.  DeepCODE scores 
(described below) were calculated for all variants. Variants were initially filtered by VCF ‘Filter’ equal to 
‘Pass’, VarScan2 p-value less than or equal to 0.05, and ‘Somatic’ status and subsequently filtered by 
VEP annotation ‘impact’ and deepCODE score and kept if the following conditions were met: (1) 'HIGH’ 
VEP impact, (2) a deepCODE score greater than 0.51 and a 'MODERATE' VEP impact, or (3) 
'MODERATE' VEP impact in the absence of a deepCODE score. Call copies for each variant was 
mapped to its given gene and the counts of all variants ascribed to a given gene were added together into 
a single count value (referred to as a somatic tumor variant, STV, herein). Variants for the matched breast 
cancer tumor and normal samples were detected from aligned reads of GDC harmonized level 1 BAM 
files using the Genome Analysis Toolkit (GATK) Haplotypecaller6-8. Joint genotyping was performed on 
gVCF files using GATK GenotypeGVCFs and hg38 as reference. VEP v85 annotations were obtained by 
mapping to chromosome position. Variant filtering and call-copy collapsing methods were carried out in 
the same manner as described above.  
 
RNA-Seq (mRNA) 
We retrieved GDC harmonized level 3 mRNA quantification data as un-normalized raw read counts from 
HT-Seq9. Raw mapping counts were combined into a count matrix with genes as rows and samples as 
columns and normalized using the trimmed mean of M-values (TMM)10 method from the edgeR11 R 
package. Lowly expressed genes were filtered out by requiring read counts to be greater than 1 per 
million reads for more than 10% of samples. We assessed possible batch effects in the normalized count 
data using batch information extracted from TCGA barcodes (i.e. the sample plate number) with the 
ComBat12 function from the sva13 R package. There were no detectible batch effects as assessed by 
Multi-Dimensional Scaling (MDS) either before or after batch correction. 
 
miRNA-Seq (miRNA) 
We retrieved GDC harmonized level 3 miRNA quantification data as raw read counts from the BCGSC 
miRNA profiling pipeline. We filtered miRNAs by retaining only experimentally validated gene targets from 
the miRBase reference (http://www.mirbase.org/). Raw mapping counts were combined into a count 
matrix with genes as rows and samples as columns and normalized using the trimmed mean of M-values 
TMM)10 method from the edgeR11 R package. Lowly expressed genes were filtered out by requiring read 
counts to be greater than 1 per million reads for more than 1% of samples. 
 
Genotyping Arrays (CNV) 



We retrieved GISTIC2 processed copy number variation (CNV) data from cBioportal1,14,15. GISTIC2 
assigns an integer value for each gene ranging from -2 to +2, representing a deep loss, shallow loss, 
diploid, low-level gain, and high-level amplification accordingly. CNV data was compiled into a matrix with 
samples as rows and genes as columns and all NA values were removed. For the matched breast cancer 
tumor and normal samples, we retrieved GDC harmonized level-3 copy number data from Affymetrix SNP 
6.0 arrays. The segment means were converted to linear copy numbers using Eq. 1 and mapped to gene 
symbols using ENSEMBL GRCh38 as reference16. 
 

 (1) 

 
CNV segments with less than 5 probes and probe sets with frequent germline copy-number variation 
(using SNP6 array probe set file as reference) were discarded. 
 
DNA Methylation Arrays (Methylation) 
We retrieved GDC harmonized level 3 beta values derived from Illumina Infinium Human Methylation27 
(HM27) and HumanMethylation450 (HM450) arrays. Probes were filtered based on the following criteria: 
(1) was present on both platforms, (2) was mapped to genes or their promoters, (3) was not present on 
chromosome X, Y, or MT, and (4) did not contain all NA values. We replaced remaining NA and zero beta 
values with the minimum beta value across all probes and all samples in each batch (defined by the 
samples TCGA plate barcode) as described in the REMP R package17. Beta values of 1 were replaced 
with the maximum beta value less than 1 across all probes and all samples in each batch. We converted 
beta values into M values using Eq. 2. 

 

(2) 

 
We corrected for batch effects within each cancer type using batch information extracted from TCGA 
barcodes (i.e. the sample plate number) with the ComBat12 function from the sva13 R package. We 
collapsed multiple probes mapped to the same gene by selecting the probe with the maximum standard 
deviation across all samples. 
 
 
Genomic Data Integration 
We concatenated the processed data from each of five genomic data types (mRNA, miRNA, STV, CNV, 
and Methylation) into a single data matrix, with samples represented in rows and genes (tagged by data 
type) as columns. For each comparison, samples were randomly split into 100 cuts of training (80%) and 
testing (20%) datasets stratified by cancer type and/or molecular subtype.  
 
Normalization 
For every cut of training dataset, each feature was scaled to zero mean and unit variance (z-score) and 
the mean and variance from the training datasets were used to standardize the test datasets. 
 
Dimensionality Reduction  
Principal Component Analysis (PCA) 
Dimensionality reduction was performed using principal component analysis on each cut of the training 
data retaining the top 44 principal components as features for the binomial comparisons, and 13 principal 
components as features for the six-cancer multiclass classification. Each cut of the PC-level data was 
normalized as mentioned above. In order to avoid data leakage, PCA was performed on the training data, 
and the test data was then projected onto the PCs defined by the training data. These 100 data matrices 
with 80% training and 20% testing at the PC level were used for downstream modeling (see Figure 1 for 
an overview of the classification strategy, and Figure 2 for performance on the binomial comparisons and 
Figure S1 for performance on the six-cancer multiclass comparison). 
 
EdgeR Analysis 

LinearCopyNumber = 2⇥ (2SegmentMean)
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To confirm gene-level classification performance, a simple  dual dimensionality reduction and differential 
analysis approach was performed on a cut of TMM10 normalized training data of the LumA vs. LumB 
comparison with edgeR11, a robust negative binomial model, to determine differentially expressed 
mRNAs. To account for false discovery, the Benjamini-Hochberg procedure was used to adjust ordinal p-
values. The top 44 differentially expressed mRNAs were then used for gene-level classification on the 
same 100 cuts of the data, though of course with mRNA features, instead of PCA features (see Figure 
S4). 
 
Decreasing the Amount of Training Data 
Based on previous results that showed a benefit for annealing approaches over classical machine 
learning approaches with smaller amounts of data18-20, we incrementally decreased the amount of training 
data for the luminal A (LumA) vs. luminal B (LumB), and ER positive (ERpos) vs. ER negative (ERneg) 
binomial comparisons, as well as the six-cancer multiclass dataset. To do this, we selected one of the 
original training cuts that consisted of 80% of the entire dataset. From this one cut, we selected fractions 
of the data in increments of 5%, making sure that we had at least as many samples as PCs. For example, 
since the luminal A (LumA) vs. luminal B (LumB) breast cancers dataset had 250 samples and 44 PCs, 
we selected fractions of data in increments of 5% starting with 20% of the data (20% of 250 samples is 50 
samples, which is greater than the number of PCs) up to 95% of the original training cut. In order to 
collect statistics, for percentage 𝑝 of the training data we sampled 𝑝% of the original training data with all 
the gene-level features 50 times. For each of these cuts, we reperformed PCA to identify the top 44 PCs 
of the reduced sub-training set. We trained all classical and Ising models on the same sub-training sets 
and evaluated performance on the original test set consisting of 20% of the data. The results are 
presented in Figure 3. Formally, let the original training data set on the gene-level data before PCA be 
denoted by 𝐷"#$%&' which is 80% of the entire dataset (in the main text we repeated this step 100 times, 
i.e., we had a set of training instances {𝐷&#$%&'}&(""))), and let the corresponding test data set be noted by 
𝐷"#*+#. Here, we selected one of the training cuts and generated 50 “sub”-training data sets for each 𝑝, 
which we denote by 𝐷',,.#$%&', where (for LumA vs. LumB) 𝑝	 ∈ {	20,25,… ,95} and 𝑗 ∈ {1,… ,50}. Each 𝐷',,.#$%&' 
is obtained by performing PCA on a randomly selected 𝑝% of the 250 samples in 𝐷"#$%&'	with PCA 
performed on the original 79,000+ gene-level features. For ERpos vs. ERneg, we set the smallest 𝑝 =
10% (Figure S3a), and for the six-cancer class the smallest 𝑝 = 5% (Figure S3b).  
 
We also performed the same analysis on the top 44 genes based on their loading for PC1 for the LumA 
vs. LumB and ERpos vs. ERneg comparisons. Since we are no longer restricted to have as many as 
features as we were with PCA, we decreased the amount of training data to 𝑝 = 5% for LumA vs. LumB 
and 𝑝 = 2% for ERpos vs. ERneg.  
 
Finally, to assess the degree of overfitting, we plotted the performance on the train data and the test data 
across all training fractions for all 9 classifiers (Figure S2 for the PCA-level features and Figure S8 for the 
gene-level features), with the difference between train and test being a measure of overfitting. We 
decided to plot both train and test, rather than just the difference, so that the absolute level of 
performance between algorithms would be readily apparent; for some fractions of training data, the 
difference between train and test on a conventional machine learning algorithm was very small, but final 
training balanced accuracy was around 50% (e.g., Ridge at 20% of the training data in Figure S2a). 
 
Machine Learning 
We used five machine learning approaches as conventional classification models. The relevant hyper-
parameters for each method are mentioned in their respective sections. Hyper-parameters were chosen 
by using 10-fold cross-validation on the training data, with performance evaluated on the held-out test 
data.  
 
Least Absolute Shrinkage and Selection Operator (LASSO), and Ridge Regression 
LASSO21 is an L1-penalized linear regression model defined as: 
 

 
   
(3) 

�̂ (�) = min
�

[� log [L(y;�)] + �||�||1]
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Ridge22,23 is an L2-penalized linear regression model defined as: 
 

 
(4)  

 
where 

 
In both cases  λ > 	0	is the regularization parameter that controls model complexity, β are the regression 
coefficients, β) is the intercept term, 𝑦	are the class labels, 𝑥& is the 𝑖th training sample, and the goal of 
the training procedure is to determine β:, the optimal regression coefficients that minimize the quantities 
defined in Eqs. (3) and (4). The predicted label is given by  𝑦; = β) + 𝑥& ⋅ β, with some threshold introduced 
to binarize the label for classification problems. In LASSO, the constraint placed on the norm of β (the 
strength of which is given by λ) causes coefficients of uninformative features to shrink to zero. This leads 
to a simpler model that contains only a few non-zero β coefficients. We used the ‘glmnet’ function from 
the caret24 R package to train all LASSO and Ridge models. For Ridge, λ plays a similar role in 
determining model complexity, except that coefficients for uninformative features do not necessarily 
shrink to zero. 
 
For both LASSO and Ridge, we chose to implement the function over a custom tuning grid of 1000 values 
ranging from λ	 = 0 to λ = 100.  λ was chosen via 10-fold cross-validation as the value that gave the 
minimum mean cross-validated error.  
 
Support Vector Machines (SVMs) 
Support vector machines (SVMs)25,26 are a set of supervised learning models used for classification and 
regression analysis. The primal form of the optimization problem is: 

              

 

(5)  
 

where 𝐿, is the loss function in its primal form (p for primal), 𝑤 are the weights to be determined in the 
optimization, 𝒙𝒊 is the 𝑖th training sample, 𝑦& is the label of the 𝑖th training sample, 𝑎& ³ 0 are Lagrange 
multipliers, 𝑁 is the number of training points, and 𝑏 is the intercept term. Labels are predicted by 
thresholding 𝑥& ⋅ 𝑤 + 𝑏. 
 
The optimization problem in its dual form is defined as: 

 

(6)  
 

  
where 𝐿0 is the Lagrangian dual of the primal problem, 𝑎& are the Lagrange multipliers, 𝑦& and 𝑥& are the 
𝑖th label and training sample, respectively, 𝐾(⋅,⋅) is the kernel function. Maximization takes place subject 
to the constraints ∑ 𝑎&𝑦&& = 0 and 𝑎& ≥ 𝐶 ≥ 0, ∀𝑖. Here 𝐶 is a hyper-parameter that controls the degree of 
misclassification of the model for nonlinear classifiers. The optimal value of 𝑤 and 𝑏 can found in terms of 
the 𝑎&’s, and the label of a new data point 𝑥 can be found by thresholding the output ∑ 𝑎&𝑦&𝐾(𝑥& , 𝑥)& + 𝑏. 
 
In most cases, many of the 𝑎&’s are zero and evaluating predictions can be faster using the dual form. We 
used the support vector machines with linear kernel (‘svmLinear2’) (i.e., 𝐾K𝑥& , 𝑥.L = 𝑥& ⋅ 𝑥. the inner 
product of 𝑥& and 𝑥.) function from the caret24 R package to train all SVM models. A 10-fold cross-
validation was used to tune parameters resulting in best cross-validation accuracy for training the model, 
using the default tuning grid in caret. 
 
Random Forest 
Random Forest27,28 is an ensemble learning method for classification and regression which builds a set 
(or forest) of decision trees. In random forest, 𝑛	samples are chosen (typically two-thirds of all the training 
data) with replacement from the training data 𝑚	times, giving 𝑚 different decision trees. Each tree is 
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�
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grown by considering ‘mtry’ of the total features, and the tree is split depending on which features gives 
the smallest Gini impurity. In the event of multiple training samples in a terminal node of a particular tree, 
the predicted label is given by the mode of all the training samples in a terminal node. The final prediction 
for a new sample 𝑥 is determined by taking the majority vote over all the trees in the forest. We used the 
‘rf’ function from the caret24 R package to train all Random Forest models. A 10-fold cross-validation was 
used to tune parameters for training the model. A tune grid with 44 values from 1 to 44 for ‘mtry’, the 
number of random variables considered for a split each iteration during the construction of each tree, was 
used for the tuning model. 
 
Naïve Bayes 
Naïve Bayes29,30 is a conditional probabilistic classifier based on applying Bayes' theorem which relies on 
strong independence assumptions, as defined by Eqs. 7 and 8: 
 
  

 
(7)  

 
 
 

 

(8)  
 

 
 
where 𝑥&,1 is the 𝑘th feature of the 𝑖th training sample 𝑥&, 𝑦& is the given class label, and 𝑚 is the number 
of features. We used the ‘nb’ function from the caret24 R package to train all Naïve Bayes models.  
 
Computational Frameworks and Resources 
Data pre-processing and machine learning models were carried out using R (>= 3.4.4) or Python (3.6.8). 
Plots were generated using ggplot2 in R.  
 
Methods for Gene-Level Analysis of LumA vs. LumB  
Differential Gene Expression Analysis 
To generate Figure 4, we performed differential expression analysis for 41 mRNA genes from top 44 most 
informative PC1 genes in LumA vs. LumB breast cancer comparison. The edgeR11 package was used to 
determine differentially expressed mRNAs. The Benjamini-Hochberg was used to control for false 
discovery of 5%. Of the 41 mRNA genes, we found 40 genes were significantly differentially expressed 
with an FDR ≤ 0.05. We found 30 genes had higher expression in Luminal B and 11 genes had higher 
expression in Luminal A samples based on edgeR analysis. Moreover, there were a total 7,871/18,059 
(44%) differently expressed mRNA genes for the Luminal A vs. Luminal B breast cancer comparison. Of 
these 7,871 genes, 4,345 (55%) were up regulated in Luminal B compared to 3,526 (45%) in Luminal A. 
To confirm similar performance on PCA derived gene-level classification results, a second edgeR 
analysis, independent of PCA dimensionality reduction, was also performed on the LumA vs. LumB 
comparison as described above.  
 
Functional Enrichment Analysis (GOseq) 
Functional enrichment analysis of the top 44 most informative genes by PC loading of PC1 from the 
training set of luminal A (LumA) vs. luminal B (LumB) breast cancers comparison was carried out with 
GOseq31 analysis in an unrestricted manner. Briefly, GOseq analysis was performed on the top 44 gene 
list to identify enriched gene ontology (GO) terms allowing unannotated genes in the analysis. Select 
GOseq terms ordered by p-value are shown in Figure 4d. A complete list of functionally enriched GO 
terms is presented in Table S6.   
 
Semantic Search Engine 
The ‘entrez search’ function from the R package ‘rentrez’32 was used to query the number of full-text 
publications for each of the top 44 most informative genes in Luminal A vs. Luminal B breast cancer 
comparison from the PubMed Central (PMC) database. Briefly, the R package ‘rentrez’ provides an 

P (yi|xi) =
P (yi)P (xi|yi)
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<latexit sha1_base64="LLl1u2D3h6Hnh0mtQIegQz3hNiI=">AAACMHicbZDLSsNAFIYnXmu9RV26GSxCuylJFXQjFF3osoK9QFvCZDpph04mYWYiljSP5MZH0Y2CIm59CidpF714YODn+89hzvndkFGpLOvDWFldW9/YzG3lt3d29/bNg8OGDCKBSR0HLBAtF0nCKCd1RRUjrVAQ5LuMNN3hTeo3H4mQNOAPahSSro/6nHoUI6WRY97WiiOHjjs+UgPXi58Sh5bgFex4AuE480q14qw7TlESz8NS4pgFq2xlBZeFPRUFMK2aY752egGOfMIVZkjKtm2FqhsjoShmJMl3IklChIeoT9pacuQT2Y2zgxN4qkkPeoHQjyuY0dmJGPlSjnxXd6ZbykUvhf957Uh5l92Y8jBShOPJR17EoApgmh7sUUGwYiMtEBZU7wrxAOmslM44r0OwF09eFo1K2T4rV+7PC9XraRw5cAxOQBHY4AJUwR2ogTrA4Bm8gU/wZbwY78a38TNpXTGmM0dgrozfP+5Xqis=</latexit>

P (yi|xi,1, . . . , xi,m) = P (yi)
mY

k=1

P (xi,k|yi)
<latexit sha1_base64="rzwkbmwF5T5SDyoheqTK5GBAhCM="></latexit>



interface to the NCBI’s ‘EUtils’ API to search databases like GenBank 
[https://www.ncbi.nlm.nih.gov/genbank/] and PubMed [https://www.ncbi.nlm.nih.gov/pubmed/] for 
relationships between genes of interest and query terms, and to process the results from the retrieved 
hits. The search term was defined by combining the gene symbol and “cancer” or “breast cancer” fields, 
along with the Medical Subject Headings (MeSH) vocabulary terms as synonyms to expand each NLP 
search using Boolean operators AND/OR (see Table S7). Network diagrams were constructed using 
Circos scripts (http://circos.ca/). The red and blue outer bands represent ‘mRNA’ and ‘methylation’ 
datatypes, respectively. The inner blue band are genes with known functional annotation at the time of 
analysis. The purple colored ring indicates the total number of publications where each gene and cancer 
are both mentioned. This band is colored with five bins where white is the lowest and dark purple the 
highest. For example, there are many publications that mentions both “E2F1” and “cancer”, and very few 
with “C12orf73” and “cancer”. The thickness and color of the Circos plot ribbons indicate number of 
published full-text articles linking each gene to the cancer or breast cancer.  
 
Hierarchical Clustering 
We applied a “custom ward” linkage criteria in the hierarchical cluster33 analysis of top 44 most 
informative genes, by PC loading, of PC1 from the training set of the luminal A (LumA) vs. luminal B 
(LumB) breast cancers comparison (Figure 4b). The genes are represented as rows, and samples as 
columns. The algorithm used an exact minimization procedure. 
 
Quantum Annealing 
Quantum annealing may be considered a special case of adiabatic quantum computation34. The adiabatic 
theorem of quantum mechanics, which underlies quantum annealing, implies that a physical system will 
remain in the ground state if a given perturbation acts slowly enough and if there is a gap between the 
ground state and the rest of the system’s energy spectrum35. To use the adiabatic theorem to solve 
optimization problems, we specify an initial Hamiltonian, 𝐻2, whose ground state is easy to find (typically 
a transverse field), and a problem Hamiltonian, 𝐻3, that does not commute with 𝐻2  and whose ground 
state encodes the solution to the problem we are seeking to optimize36. We then interpolate from 𝐻2  to 𝐻3  

by defining the total Hamiltonian 𝐻(𝑠) = 𝐴(𝑠)𝐻2 + 𝐵(𝑠)𝐻3, where s is the parameterized time (0	 ≤ 	𝑠	 =
	𝑡/𝑡4 	≤ 	1, 𝑡 is time, and 𝑡4  is the total annealing time), 𝐴(𝑠) and 𝐵(𝑠) are, respectively, decreasing and 
increasing smoothly and monotonically. The adiabatic theorem ensures that the ground state of the 
system at 𝑠 = 1 will give the desired solution to the problem, provided the interpolation is sufficiently slow, 
i.e., 𝑡4  is large compared to the timescale set by the inverse of the smallest ground state gap of 𝐻(𝑠) and 
by 56(+)

5+
 37. In quantum annealing, rather than run the computation a single time slowly enough such that 

the adiabatic theorem is obeyed, we allow the possibility of running the computation multiple times at a 
shorter annealing time, such that the overall computational time is minimized38. In addition, when 
quantum annealing is implemented in a physical device, temperature and other noise effects play an 
important role; thermal excitation and relaxation cannot be neglected and affect performance39-41. 
 
Additional technical details regarding the D-Wave quantum annealers 
D-Wave processors currently employ a “Chimera” architecture with a limited graph connectivity (for a 
typical representation of a hardware graph, see Supplemental Figure S8). For nearly all problems of 
practical interest, the connectivity of the “logical problem” will differ from the Chimera architecture of D-
Wave. This introduces the need to find a minor embedding of the hardware graph42,43. A minor embedding 
maps a logical problem qubit to a set of physical qubits such that for every coupling between pairs of 
logical qubits in the logical problem there exists at least one physical coupling between the corresponding 
sets of physical qubits. A minor embedding is found by performing a series of edge contractions, which 
effectively join vertices together, thereby allowing for a graph with fewer vertices but a higher degree of 
connectivity to be obtained44. For the results in this study, we used the “minorminer” package available on 
D-Wave’s github [https://github.com/dwavesystems/minorminer].  
 
In order to ensure that physical qubits are aligned and act as a single logical qubit (or “chain”), a strong 
coupling bias is introduced between physical qubits that comprise a logical qubit. Then, for a fixed 
embedding, the way the values of the couplings and local fields for a logical qubit are distributed among 
the physical qubits is known as “parameter setting”. A built-in function provided by D-Wave43 has been 



used for parameter setting. By the embedding procedure and parameter setting, logical problems may be 
transformed into physical problems. Note that for one logical problem there may be many physical 
problems, depending both on the embedding and the parameter setting. 
 
Ideally, once the strength of the coupling between logical qubits is determined, all solutions returned by D-
Wave would correspond to valid logical solutions, i.e., all the physical qubits within a logical qubit would 
have the same spin (there would be no “broken chains”). However, due to the probabilistic nature of 
quantum annealing, as well as noise from different sources, there is often some percentage of solutions 
that have broken chains. To deal with broken chains D-Wave offers three options for “decoding” the 
solutions. The first is to discard all solutions with broken chains and collect an additional set of solutions 
(“discard”). Another option is to do a majority vote on the physical qubits that comprise a logical qubit, 
breaking ties with a random assignment (“majority vote decoding”). The last option is to go through the 
broken chains one by one and select the value for the spin that greedily minimizes the energy of the 
Hamiltonian of the logical problem (“energy minimization decoding”); i.e., it selects the spin that result in 
the greatest decrease in the energy of the Hamiltonian based on the current spin configuration. The 
likelihood of a solution having broken chains can be roughly adjusted by controlling a parameter Jc, the 
value of the strong coupling bias between physical qubits within a logical qubit; the larger the magnitude 
of Jc, the more likely will it be for the physical qubits within a logical qubit to have the same spin. The 
disadvantage of increasing the coupling bias too much is that it can wash out the details of the problem 
instances; thus, there is a tradeoff between getting solutions with many broken chains (which occurs 
when |Jc| is too small) and getting solutions which may have lost the details of the original problem we are 
trying to solve (which occurs when |Jc| is too large). 
 
Based on these considerations, our strategy for collecting solutions was the following. First, we generated 
20 embeddings based on the procedure mentioned above. The embedding with the smallest average 
number of physical qubits per logical qubit was used to obtain weights for all the training instances. For 
2000Q, this embedding had 26.8 physical qubits per logical qubit on average, and 1747 qubits were used 
in total. The final embedding used for DW2X runs had 19.7 physical qubits per logical qubits on average, 
with a total of 887 qubits used. Then, for each training instance we queried the D-Wave chip for 1000 
times with 10 spin-reversal transformations (or, gauges45) to mitigate parameter misspecifications from 
the machine. We then treated 𝐽!   as a hyper-parameter with values in the set {−0.5, −1,−3,−8,−16,−32}. 
All the parameters sent to the machine (both the ferromagnetic coupling 𝐽!   and the physical problem 
parameters ℎ&  and 𝐽&.) are normalized to fall between −1 and 1, per specifications of the machine. Finally, 
classical post-processing optionally may be performed on the broken chains. Energy-minimization and 
majority-vote decoding are quick and speed up collection of solutions; however, in principle, one could 
treat the post-processing approach as a hyper-parameter, but to avoid introducing too much classical 
post-processing and avoid spending too much time generating more solutions, we selected majority 
voting to post-process the solutions. All D-Wave anneals were run with an annealing time of 5µs. Note 
that we did not optimize the annealing time; doing so would introduce another hyperparameter and could 
improve results for D-Wave.  
 
Derivation of the Ising Hamiltonian 
Recall that we have written the probabilities for the first 𝐾 − 1 classes as:  

                                                                                                 (9) 

with the probability of the Kth class as:  

                                    (10) Pr(yi = K) =
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By defining the probabilities of our classes in this way, we can reduce the number of sets of weights we 
have to train from 𝐾 to 𝐾 − 1. The goal of training is to maximize the probability given the classes in the 
dataset, or equivalently to minimize the negative log-likelihood. we can express the negative log-likelihood 
as follows: 

                      (11) 

                   (12) 
 
For simplicity, we define 𝑧&

(1) = 𝑤1⊺𝑥&, i.e., the inner product between the weights corresponding to the 𝑘th 
and the 𝑖th feature-vector. To continue, we consider splitting the above sum into terms over the first 𝐾	 −
	1 classes and the 𝐾th class: 
 

          

               (13)  

       (14)  
 

               (15) 
 

We can now take the second-order Taylor approximation around 0 for the second summation, expanding 
in 𝑧&

(1) gives us the following: 

(16) 

(17) 
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where  
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              (23) 
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In examining the derivation, one may ask whether it is reasonable to take an expansion to second-order 
near 𝑧&

(1) = 0. We offer two brief arguments in support of this. The first is that a second-order 
approximation has been used to great success in other algorithms, such as XGBoost, a gradient-boosted 
algorithm that has seen much success recently in a variety of machine learning tasks. To speed up 
calculations, XGBoost uses a second-order approximation to calculate the objective function in a general 
setting. It is important to note, however, that for XGBoost (and other gradient-based methods) the weights 
are updated iteratively, whereas here we are presumably using a quantum annealer to directly evaluate 
the loss function. A second argument is that we are looking for a set of self-consistent solutions. We take 
the second-order approximation around 0, and if the optimization works properly, we will get results for 
which the approximation is valid.  
 
Perhaps a more serious concern is that this expansion is not formally within the radius of convergence of 
the natural logarithm. Given this concern, care should be given to make sure that the difference in the 
approximation does not differ too greatly. One simple way to check this is to see whether there is a clear 
correlation between the energies (the approximation) and the original function we are trying to optimize 
(the log-likelihood). As long as there is good correlation, the approximation is reasonable. The correlation 
between the negative log-likelihood and the energy for the five binomial datasets is shown in 
Supplemental Figure S6 (more on this in the subsection titled “Performance metrics versus energy”, 
below). For binary classification, the negative log-likelihood is equivalent to the logistic loss, 𝑙 =
𝑙𝑛(1 + 𝑒𝑥𝑝(−𝑦&𝑤 ⋅ 𝑥&)), if we use the label convention 𝑦& ∈ {−1,1}, or the binary cross-entropy loss, 𝑙:; =
−𝑦& 𝑙𝑛 σ (𝑤 ⋅ 𝑥&) − (1 − 𝑦&) 𝑙𝑛K1 − σ(𝑤 ⋅ 𝑥&)L where σ(𝑧) = 1/(1 + 𝑒𝑥𝑝(−𝑧)), if we use the convention 𝑦& ∈
{0,1}. We sometimes refer to the negative log-likelihood as the logistic loss. 
 
Post-processing Spin Configurations 
In this section we describe our classical post-processing procedure to make use of all the spin 
configurations returned by D-Wave, SA and Random. We used all three methods to generate 𝑆 different 
spin configurations (which we refer to as “weights”) and sorted them by their Ising energy. Weights were 
then averaged together and the averaged weights that gave the best performance for some training 
metric was selected. More formally, let {𝑤&}&("< be the set of 𝑆 weights returned by the various methods. 
We define 𝑤#=,1 = "

1
∑ 𝑤&1
&("  as the 𝑘th trial weight, and 𝑓1̅ =

"
>0!"#$%>

∑ 𝑓K𝑦. , 𝑦;.1L.∈0!"#$%  where 𝑓 is the 

performance metric, 𝐷#$%&' is the training data set, and 𝑦;.1 is the predicted output of the 𝑘th trial weights 
𝑤#=,1  on the 𝑗th training sample. The metrics of training performance include AUC, the logistic loss, and 
the accuracy. For the AUC and logistic loss we can directly use the predicted output (for binary 
classification, the predicted probability of the 𝑗th sample to be of class 1 is 𝑦;1 = σK𝑤 ⋅ 𝑥.L. For the 
accuracy, we assign labels based on whether the predicted output is greater than 0.5. Applying this 
averaging procedure for a small set of weights allows us to increase the performance without sacrificing 
some of the robustness associated with discrete weights. Unless otherwise specified, for all Figures in the 
Main text and here, we used 𝑆 = 20 and set 𝑓	= AUC as the performance metric. 
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