
Article
XRCC1 prevents toxic PAR
P1 trapping during DNA
base excision repair
Graphical abstract
Highlights
d XRCC1 prevents endogenous PARP1 trapping during DNA

base excision repair

d PARP1 trapping impedes base excision repair and increases

sensitivity to base damage

d In the absence of PARP1, XRCC1 is dispensable for DNA

base excision repair
Demin et al., 2021, Molecular Cell 81, 3018–3030
July 15, 2021 ª 2021 The Authors. Published by Elsevier Inc.
https://doi.org/10.1016/j.molcel.2021.05.009
Authors

Annie A. Demin, Kouji Hirota,

Masataka Tsuda, ..., Hana Hanzlikova,

Shunichi Takeda, Keith W. Caldecott

Correspondence
stakeda@rg.med.kyoto-u.ac.jp (S.T.),
k.w.caldecott@sussex.ac.uk (K.W.C.)

In brief

Demin et al. show that the essential role of

the scaffold protein XRCC1 during DNA

base excision repair is to prevent toxic

‘‘trapping’’ of PARP1 on SSB

intermediates, which otherwise block this

essential repair process and lead to

increased cellular sensitivity to DNA base

damage.
ll

mailto:stakeda@rg.med.kyoto-u.ac.�jp
mailto:k.w.caldecott@sussex.ac.�uk
https://doi.org/10.1016/j.molcel.2021.05.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molcel.2021.05.009&domain=pdf


OPEN ACCESS

ll
Article

XRCC1 prevents toxic PARP1 trapping
during DNA base excision repair
Annie A. Demin,1,8 Kouji Hirota,2,3,8 Masataka Tsuda,2,4,8 Marek Adamowicz,1 Richard Hailstone,1 Jan Brazina,1

William Gittens,1 Ilona Kalasova,5 Zhengping Shao,6 Shan Zha,6,7 Hiroyuki Sasanuma,2 Hana Hanzlikova,1,5

Shunichi Takeda,2,* and Keith W. Caldecott1,5,9,*
1Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
2Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
3Department of Chemistry, Tokyo Metropolitan University, Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
4Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima

739-8526, Japan
5Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
6Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New

York City, NY 10032, USA
7Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians and Surgeons,
Columbia University, New York, NY 10032, USA
8These authors contributed equally
9Lead contact

*Correspondence: stakeda@rg.med.kyoto-u.ac.jp (S.T.), k.w.caldecott@sussex.ac.uk (K.W.C.)
https://doi.org/10.1016/j.molcel.2021.05.009
SUMMARY
Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and
the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the crit-
ical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymer-
ase b and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of
PARP1 during BER. As a result, PARP1 becomes ‘‘trapped’’ on BER intermediates in XRCC1-deficient cells
in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated
disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to en-
zymes such as DNA polymerase b and impedes their repair. Consequently, PARP1 deletion rescues BER
and resistance to base damage in XRCC1�/� cells. These data reveal excessive PARP1 engagement during
BER as a threat to genome integrity and identify XRCC1 as an ‘‘anti-trapper’’ that prevents toxic PARP1
activity.
INTRODUCTION

DNAbaseexcision repair (BER) is ahighlyconservedpathway that

is present in all organisms and required for repair of a broad range

of endogenous and exogenous DNA base damage (Beard et al.,

2019; Caldecott, 2020). In mammals, the canonical BER pathway

involves removal of thedamagedbasebyaDNAglycosylase, inci-

sion of the resulting abasic site by AP endonuclease (apurinic/

apyrimidinic endonuclease; APE), replacement of the missing

nucleotide and removal of the terminal sugar phosphate by DNA

polymerase b (POLb), and ligation of the resulting nick by DNA

ligase I (LIG1) orDNA ligase III (LIG3) (Beardet al., 2019;Caldecott,

2020). The importanceofBER inmammals is illustratedby theem-

bryonic lethality observed in mice in which key components such

as APE1 or POLb are deleted (Gu et al., 1994; Xanthoudakis et al.,

1996). Intriguingly, in addition to these core components,

mammalian cells employ a number of additional proteins to accel-
3018 Molecular Cell 81, 3018–3030, July 15, 2021 ª 2021 The Autho
This is an open access article under the CC BY license (http://creative
erate BER, such as poly(ADP-ribose) polymerase-1 (PARP1),

PARP2, and the molecular scaffold protein XRCC1 (Caldecott

et al., 1994; Dantzer et al., 1999; Ding et al., 1992; Page et al.,

2003; Ronson et al., 2018; Schreiber et al., 2002; Thompson

et al., 1990). PARP1 and PARP2 are sensor proteins that detect

and are activated by DNA strand breaks, resulting in the post-

translational modification of themselves and other proteins with

ADP-ribose (Amé et al., 1999; Benjamin andGill, 1980;Hanzlikova

etal., 2018;deMurciaandMénissierdeMurcia, 1994).PARP1and

PARP2 fulfil multiple roles at DNA strand breaks (Caldecott, 2014;

Ray Chaudhuri and Nussenzweig, 2017). For example, PARP en-

zymes can modify chromatin structure directly by histone ribosy-

lation and/or indirectly by recruitment and/or regulationof specific

chromatin remodelers (Ahel et al., 2009; Chou et al., 2010; Grundy

et al., 2016; de Murcia et al., 1986; Poirier et al., 1982; Polo et al.,

2010). In addition, PARP activity can promote recruitment of other

DNA repair proteins to accelerate repair of DNA strand breaks, of
rs. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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which XRCC1 and its protein partners are among themost impor-

tant (El-Khamisy et al., 2003; Hanzlikova et al., 2017; Okano

et al., 2003).

The importance of XRCC1 is illustrated by the observations

that deletion of this gene in mouse is embryonic lethal (Tebbs

et al., 1999) and that hereditary mutations in human XRCC1

result in progressive neurodegenerative disease (Hoch et al.,

2017; O’Connor et al., 2018). At ‘‘direct’’ SSBs, such as those re-

sulting from oxidative attack and disintegration of deoxyribose,

XRCC1 binds, recruits, and stimulates DNA polynucleotide ki-

nase phosphatase (PNKP) (Breslin et al., 2017; Hanzlikova

et al., 2017; Loizou et al., 2004; Mani et al., 2007; Whitehouse

et al., 2001). PNKP is ideally suited to repair of DNA strand

breaks induced by oxidative damage to deoxyribose and also

those induced by abortive topoisomerase I activity because it

possesses the DNA kinase and DNA phosphatase activities

that can restore normal 30 and 50 termini at such DNA breaks (Ji-

lani et al., 1999; Karimi-Busheri et al., 1999). In contrast to direct

SSBs, the role of XRCC1 during BER is less clear because PNKP

is required for only a subset of the BER events that are acceler-

ated by XRCC1 (Wiederhold et al., 2004). Moreover, although

XRCC1 also interacts with and stabilizes the BER proteins

POLb (Caldecott et al., 1996; Kubota et al., 1996; Parsons

et al., 2008) and LIG3 (Caldecott et al., 1994, 1995; Nash et al.,

1997; Taylor et al., 1998), loss of these interactions individually

only partially reduces XRCC1 functionality during BER (Breslin

and Caldecott, 2009). This is in contrast to the interaction of

XRCC1 with poly(ADP-ribose), which is essential for XRCC1

functionality during BER (Breslin et al., 2015). Consequently,

the critical role of XRCC1 protein complexes during BER has re-

mained elusive. Here, we have identified this role. We show that

assembly of POLb and LIG3 by XRCC1 into protein complexes is

required to limit PARP1 engagement and activity during BER,

which otherwise results in PARP1 ‘‘trapping’’ on BER intermedi-

ates in a manner reminiscent of that induced by clinical PARP in-

hibitors. XRCC1 is thus an endogenous ‘‘anti-trapper’’ that pre-

vents toxic binding of PARP1 to SSB intermediates during BER,

enabling their rapid repair and maintaining genome integrity.
Figure 1. XRCC1 suppresses PARP1-dependent SSB accumulation an

(A) Clonogenic survival of wild-type (WT) and gene-edited RPE-1 cells after treatm

in drug-free medium for 10–14 days. Data are themean (±SEM) of 3 independent e

lines is shown (right). Statistical significance was assessed by two-way ANOVA w

from theWT (p% 0.01), and other relevant comparisons are shown on the graph (n

Figures S1A and S1B.

(B), Survival of WT and the indicated gene-targeted TK6 cells after treatment with

medium for 72 h. Cell viability was assessed by ATP assays. Data are the mean

(C) Clonogenic survival of WT and gene-edited RPE-1 cells following continu

10–14 days. Data are the mean (±SEM) of 3 independent experiments, and statis

(D) DNA strand breaks quantified by alkaline comet assays in the WT and the in

0.1 mg/mL MMS for 15 min. Data plotted are the individual comet tail moments

experiment for 3 independent experiments, with individual cell tail moments for

Statistical significance was ascertained by one-way ANOVA of the mean tail mom

***p % 0.001, ****p % 0.0001).

(E) DNA strand breaks quantified as above in the indicated RPE-1 cell lines transf

with 0.05mg/mLMMS for 15min. Awestern blot illustrating the efficiency of PARP

(F) DNA strand breaks quantified as above in the indicated RPE-1 cell lines followin

absence of 20 mM Ara-A, as indicated. A western blot shows the efficiency of PA

(G) DNA strand breaks quantified as above in the indicated RPE-1 cell lines followi

DMSO vehicle (�PARP inhibitor) or PARP inhibitor (10 mM) as indicated. Data an
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RESULTS

XRCC1 suppresses PARP1-induced SSB accumulation
and toxicity during BER
To address the role of XRCC1 during BER, we first examined its

functional relationship with PARP1 because the ability of XRCC1

to interact directly with poly(ADP-ribose) is critical for this role

(Breslin et al., 2015). To do this, we employed human RPE-1 cells

in which PARP1, PARP2, and/or XRCC1 were deleted by gene

editing (Hanzlikova et al., 2017; Hoch et al., 2017). As expected,

RPE-1 cells lacking PARP1 alone exhibited relatively little sensi-

tivity to the simple alkylating agent methyl methanesulfonate

(MMS) compared with cells lacking XRCC1, unless PARP2 was

also deleted (Figure 1A). This is consistent with the established

enzymatic redundancy of PARP1 and PARP2 during BER (Ron-

son et al., 2018). Unexpectedly, however, deletion of PARP1

restored almost normal levels of MMS sensitivity in XRCC1�/�

cells (Figure 1A). Similar results were observed in human TK6

cells in which PARP1 and/or XRCC1 were deleted by homolo-

gous recombination-mediated gene targeting, indicating that

this result was not specific to RPE-1 cells or an artifact of

Cas9-mediated gene editing (Figure 1B). In contrast, PARP1

deletion did not reduce the sensitivity of XRCC1�/� RPE-1 cells

to camptothecin, a genotoxin that induces SSBs independently

of BER by promoting the abortive activity of topoisomerase 1

(Figure 1C). These data indicate that the essential role of

XRCC1 during BER is to suppress PARP1-induced cytotoxicity.

To identify the mechanism by which XRCC1 suppresses

PARP1-induced cytotoxicity, we examined the effect of deleting

these proteins on BER directly, using alkaline comet assays.

Strikingly, PARP1 deletion prevented the appearance of

elevated MMS-induced SSBs in XRCC1�/� cells, suggesting

that the accumulation of these BER intermediates was the result

of PARP1 (Figure 1D). Again, this was not an artifact of gene edit-

ing because depletion of PARP1 using small interfering RNA

(siRNA) gave similar results (Figures 1A, right panel, and 1E).

Restoration by PARP1 deletion of normal steady-state levels of

MMS-induced SSBs in XRCC1�/� cells could reflect either
d toxicity during BER

ent with the indicated concentrations of MMS for 30min, followed by incubation

xperiments. The level of the indicated proteins in the indicated gene-edited cell

ith Tukey’s multiple comparisons test. All cell lines were significantly different

s, not significant; *p% 0.05, **p% 0.01, ***p% 0.001, ****p% 0.0001). See also

the indicated concentration of MMS for 1 h, followed by incubation in complete

(±SEM) of 3 independent experiments, and statistics are as in (A).

ous treatment with the indicated concentrations of camptothecin (CPT) for

tics are as in (A).

dicated gene-edited RPE-1 cell lines following treatment or no treatment with

(an arbitrary measure of DNA strand breakage) of 100 cells per sample per

each experiment plotted vertically and each experiment plotted side by side.

ents from 3 experiments with Sidak’s multiple comparisons test (**p % 0.01,

ected with non-targeting or PARP1 siRNA following treatment or no treatment

1 depletion is shown in (A). Data and statistics are as in (D). See also Figure S1A.

g treatment or no treatment with 0.1 mg/mLMMS for 15min in the presence or

RP1 depletion (inset). Data and statistics are as in (D).

ng treatment or no treatment with 0.1mg/mLMMS for 15min in the presence of

d statistics are as in (D).



Figure 2. XRCC1 suppresses endogenous PARP1 trapping during BER

(A) PARP1 levels in cell-equivalent aliquots of soluble and chromatin-containing fractions of WT and XRCC1�/� RPE-1 cells, measured by western blotting. Cells

were incubated or not with 10 mM PARP inhibitor (KU0058948) and/or MMS (0.1 mg/mL) for 1 h, as indicated, prior to subcellular fractionation. Representative

immunoblots are shown on the left and quantification on the right. See also Figures S1C and S1D.

(B) Levels of PARP1 auto-ribosylation in WT and XRCC1�/� RPE-1 cells during treatment with 0.1 mg/mL MMS, detected by the poly(ADP-ribose)-specific

detection reagent MABE1031.

(C) Top: PARP1 levels in cell-equivalent aliquots of soluble and chromatin-containing fractions fromWT and XRCC1�/�RPE-1 cells treated for the indicated times

with 0.1 mg/mL MMS. Bottom: as above, but the cell extracts were treated with recombinant PARG to remove all poly(ADP-ribose) immediately prior to

SDS-PAGE.

(legend continued on next page)
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reduced SSB induction during BER or increased SSB repair. To

address this question, we co-incubated cells with the nucleoside

analog arabinosyl adenine (Ara-A), a DNA polymerase inhibitor

that can block DNA repair synthesis by promoting chain termina-

tion (Cozzarelli, 1977). As expected, co-incubation with Ara-A

increased the steady-state level of MMS-induced SSBs in

wild-type RPE-1 cells, consistent with inhibition of BER (Fig-

ure 1F). More importantly, Ara-A increased the level of MMS-

induced SSBs in XRCC1�/�/PARP1�/� cells to the same extent

and to a level similar as that induced in XRCC1�/� cells (Fig-

ure 1F). These data demonstrate that PARP1 deletion prevents

accumulation of MMS-induced SSBs in XRCC1�/� cells not by

preventing SSB induction but by restoring normal rates of SSB

repair.

In contrast to PARP1, depletion of PARP2 failed to suppress

the elevated level of MMS-induced SSBs in XRCC1�/� cells or

their increased sensitivity to MMS (Figures S1A and S1B). This

result did not reflect inefficient PARP2 depletion because

PARP2 siRNA reduced PARP2 protein to levels that were unde-

tectable in western blots and increased MMS-induced SSBs in

PARP1�/� cells as efficiently as PARP2 deletion (Figure S1A).

In addition, as expected, PARP2 depletion greatly increased

the sensitivity of PARP1�/� cells to MMS (Figure S1B). Collec-

tively, these data demonstrate that the elevated accumulation

of SSBs and sensitivity of XRCC1�/� cells to MMS is due to

the presence of PARP1.

XRCC1 suppresses endogenous PARP1 trapping
during BER
It is well established that pharmacological PARP inhibitors pro-

long the engagement of PARP proteins at DNA breaks and

thereby slow and/or block their repair (Horton et al., 2014; Murai

et al., 2012; Pommier et al., 2016). This phenomenon is called

PARP trapping and underpins the clinical utility of PARP inhibi-

tors as anti-cancer therapeutic agents (Murai et al., 2012). We

therefore wanted to find out whether the PARP1-dependent

accumulation of SSBs in XRCC1�/� cells reflected a similar phe-

nomenon. Indeed, consistent with this idea, although XRCC1

deletion and PARP inhibitor increased the steady-state level of

SSBs in MMS-treated RPE-1 cells, the combination of both did

not increase this level above that induced by the PARP inhibitor

alone (Figure 1G). We therefore examined whether MMS treat-

ment resulted in accumulation of PARP1 in chromatin in

XRCC1�/� cells because this is a measure of PARP1 trapping

(Murai et al., 2012). Indeed, although PARP inhibitor was

required to trigger accumulation of high levels of PARP1 in chro-

matin in wild-type RPE-1 cells during 1-h incubation with MMS

(Figure 2A, lanes 10 and 12), most if not all cellular PARP1 accu-

mulated in chromatin in XRCC1�/� cells during treatment with

MMS, even in the absence of PARP inhibitor (Figure 2A, lanes

6 and 14). Similar results were observed when we employed pri-

mary patient fibroblasts from XRCC1-mutated disease (Hoch
(D) DNA strand breaks quantified by alkaline comet assays in WT and XRCC1�/�

dividual comet tail moments (an arbitrary measure of DNA strand breakage) of 50

vertically and three independent experiments plotted side by side. Statistical sig

3 experiments with Sidak’s multiple comparisons test (****p % 0.0001).
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et al., 2017), suggesting that increased PARP1 trapping during

BER is also a feature of this human genetic disease (Figure S1C).

Notably, PARP2 also accumulated in the chromatin ofXRCC1�/�

cells during MMS treatment but, as indicated above, PARP2 did

not measurably increased SSB accumulation, nor was it cyto-

toxic (Figure S1D). These data implicate endogenous PARP1

trapping as the source of SSB repair defects and cytotoxicity

in XRCC1�/� cells during BER.

PARP1 trapping induced by pharmacological inhibitors re-

flects the effect of altered allosteric regulation and reduced

PARP1 auto-ribosylation, which results in excessive engage-

ment of the weakly auto-modified enzyme at SSBs and blockage

of their access and repair by other enzymes (Murai et al., 2012;

Satoh and Lindahl, 1992). To examine whether PARP1 might

become trapped in XRCC1�/� cells by a similar mechanism,

we measured the extent of PARP1 auto-ribosylation at various

times during MMS treatment, using a poly(ADP-ribose)-specific

detection reagent (Figure 2B). Although PARP1 auto-ribosylation

wasmuch higher in XRCC1�/� cells than in wild-type RPE-1 cells

at early times (up to 15 min) after MMS addition, it declined pro-

gressively thereafter, resulting, after 60 min, in levels less than

those in wild-type cells (Figure 2B). Importantly, the decline in

PARP1 auto-ribosylation in XRCC1�/� RPE-1 cells was again

accompanied by accumulation in chromatin of almost all cellular

PARP1 (Figure 2C, top panel, lane 20). This accumulation was

not simply a reflection of the high steady-state level of SSBs in

XRCC1�/� cells because, by the end of the time course, high

levels of SSBs were also present in wild-type RPE-1 cells (Fig-

ure 2D). Interestingly, there was a progressive reduction in

PARP1 signal in the soluble fraction of XRCC1�/� cells even at

early times (0–30min) after addition of MMS despite the absence

of a corresponding accumulation in chromatin at these times

(Figure 2C, top panel, lanes 6–9 and 16–19). This decline re-

flected the effect of auto-ribosylation on detection of PARP1

by anti-PARP1 antibodies because the PARP1 signal in the sol-

uble fraction was restored by pre-treatment of the protein sam-

ples with recombinant poly(ADP-ribose) glycohydrolase (PARG)

(James et al., 2016) immediately prior to SDS-PAGE (Figure 2C,

bottom panel, lanes 7–9).

The reduced PARP1 auto-ribosylation in XRCC1�/� cells

60 min after MMS treatment, compared to wild-type cells, ap-

peared to involve reduced poly(ADP-ribose) chain length

and/or branching complexity, as suggested by the faster electro-

phoretic mobility of the auto-ribosylated protein when fraction-

ated extensively by SDS-PAGE and detected by a poly(ADP-

ribose)-specific detection reagent (Figure 3A, compare lanes 3

and 4). That this signal reflected short chains of poly(ADP-ribose)

rather than mono(ADP-ribose) was confirmed by its sensitivity to

treatment with recombinant PARG immediately prior to electro-

phoresis (Figure 3B, compare lanes 5 and 6 with lanes 7 and 8).

The reduced chain length/complexity of the poly(ADP-ribose) in

XRCC1�/� cells was a result of reduced PARP1 activity rather
RPE-1 cells during treatment with 0.1 mg/mL MMS. Data plotted are the in-

cells per sample per experiment, with tail moments for each experiment plotted

nificance was ascertained by one-way ANOVA of the mean tail moments from



Figure 3. XRCC1 regulates PARP1 activity during BER

(A) Levels of PARP1 auto-ribosylation detected by poly(ADP-ribose)-specific detection reagent in WT and XRCC1�/� RPE-1 cells following treatment or not

(untreated [Un]) with 0.1 mg/mL MMS for 1 h. Where indicated, the PARG inhibitor (PARGi) was present during the final 5 min of MMS treatment.

(B) Levels of PARP1 auto-ribosylation detected as above in total extracts prepared from Un or MMS-treated (as in A) WT and XRCC1�/� cells and following

incubation of the cell extracts in the absence or presence of recombinant PARG enzyme and/or PARGi, as indicated. The PARP inhibitor was present in all cell

extracts to prevent further ADP-ribosylation.

(C) Levels of PARP1 auto-ribosylation detected as above in WT and XRCC1�/� RPE-1 cells that were Un or treated with 0.1 mg/mLMMS for 1 h, with 2 mMH2O2

for 10 min, or sequentially with MMS and then H2O2.

(D) XRCC1 protein complexes regulate PARP1 activity during BER. Left: aliquots of the purified recombinant human PARP1, XRCC1-His, His-LIG3, and POLb

proteins employed here were fractionated by SDS-PAGE and stained with Coomassie brilliant blue. Center: PARP1 (0.3 mM) was incubated with or without

0.15 mMof duplex hairpin substrate harboring a site-specific uracil residue followingmock treatment or pre-treatment with uracil-DNA glycosylase (UDG)/APE1 to

create the SSB in the presence or absence of 10 mM NAD+. Reaction products were fractionated by SDS-PAGE and immunoblotted with anti-poly(ADP-ribose)

antibodies to detect auto-ribosylated PARP1. Note that generation of the SSB intermediate of BER (a cleaved abasic site) was required for efficient PARP1

activation. Right: PARP1 (0.3 mM) was incubated with UDG/APE1-treated substrate as above in the presence of 10 mMNAD+ and 0.3 mMof each of the indicated

recombinant proteins for 5 min at room temperature, and reaction products were processed as above.
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than increased PARG activity because co-incubation with a

PARG inhibitor during the final 5 min of MMS treatment failed

to restore PARP1 auto-ribosylation in XRCC1�/� cells to the level

observed in wild-type cells (Figure 3A, compare lanes 5–8).

Our data suggest that although PARP1 is initially engaged

excessively with BER intermediates and hyperactive in XRCC1�/�

cells during MMS treatment, it becomes progressively less active

and unable to dissociate from BER intermediates thereafter. In

support of this idea, we confirmed that the PARP1 present in

XRCC1�/� cells following MMS treatment for 60 min was inca-

pable of reactivation by a second burst of SSBs (Figure 3C).

Although H2O2 triggered extensive PARP1 auto-ribosylation in

wild-type and XRCC1�/� cells prior to MMS treatment (Figure 3C,

lanes 2 and 6), it failed to do so in XRCC1�/� cells pre-treatedwith

MMS (Figure 3C, lanes 4 and 8). This conclusion was also sup-

ported by live-cell imaging experiments showing that GFP-tagged
PARP1 was unable to efficiently relocate to sites of 405-nm laser

damage in Xrcc1�/� mouse embryonic fibroblasts (MEFs) if these

cells were first treatedwithMMS (Figure S2A). In addition, fluores-

cence recovery after photobleaching experiments confirmed that

the mobility of GFP-tagged PARP1 following MMS treatment was

greatly reduced inXrcc1�/�MEFs comparedwith similarly treated

wild-type MEFs (Figure S2B).

XRCC1 protein complexes prevent excessive PARP1
engagement and activity during BER
Next we addressed the cause of the excessive PARP1 engage-

ment and hyperactivity in XRCC1�/� cells during BER. This was

not simply a result of the elevated SSBs in XRCC1�/� cells

because, as indicated above (Figure 1D), the elevated SSBs

were a consequence of excessive PARP1 engagement during

BER rather than a cause. We reasoned that assembly of POLb
Molecular Cell 81, 3018–3030, July 15, 2021 3023
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and LIG3 into protein complexes by XRCC1 might be important

to compete with and/or limit PARP1 engagement and activation

during BER. Such a scenario would be consistent with the idea

that BER intermediates are handed from one enzyme in the

pathway to the next in a coordinated relay that protects the inter-

mediates from unnecessary engagement or attack by other en-

zymes (Mol et al., 2000; Prasad et al., 2010; Wilson and Kunkel,

2000). Consistent with this idea, biochemical experiments em-

ploying purified human proteins confirmed that POLb and LIG3

suppressed PARP1 activation at SSBs created by APE1 during

BER and that the presence of XRCC1 greatly promoted this sup-

pression (Figure 3D).

To further address this idea, we expressed truncated Myc-

His-XRCC1161–406 protein lacking the N-terminal and C-terminal

domains that bind POLb and LIG3 in XRCC1�/�U2OS cells (Mar-

intchev et al., 2000; Nash et al., 1997; Polo et al., 2019; Taylor

et al., 1998). We employed U2OS cells rather than RPE-1 cells

for these experiments because of their greater transfection effi-

ciency. Notably, Myc-His-XRCC1161–406 was unable to suppress

the initial PARP1 hyperactivity in XRCC1�/� U2OS cells (Fig-

ure 4A, compare lanes 2, 7, and 12), or its subsequent inactiva-

tion (Figure 4A, compare lanes 5, 10, and 15) and accumulation in

chromatin (Figure 4B, compare lanes 12, 15, and 18). Consistent

with this, Myc-His-XRCC1161–406 was also unable to fully sup-

press accumulation of SSBs in XRCC1�/� U2OS cells during

BER (Figure 4C). The inability of Myc-His-XRCC1161–406 to regu-

late PARP1 engagement during BER was not due to protein

instability because the truncated protein was recruited into chro-

matin, although, as expected, it was unable to promote recruit-

ment of POLb or LIG3 (Figure 4B). These data indicate that

XRCC1 regulates PARP1 engagement and activity during BER

in part by assembling POLb and LIG3 into protein complexes

that can limit PARP1 access to BER intermediates.

Progressive PARP1 inactivation during BER in XRCC1-
defective cells is a result of b-nicotinamide adenine
dinucleotide (NAD+) depletion
Because excessive PARP1 engagement and activity can result in

NAD+ depletion, we wanted to find out whether the subsequent

decline in PARP1 activity during BER in the absence of XRCC1

protein complexes reflected NAD+ exhaustion. Consistent with

this idea, NAD+ has been reported to be depleted more rapidly

by PARP activity in XRCC1 mutant Chinese hamster ovary

(CHO) cells than in wild-type cells during MMS treatment (Naka-

mura et al., 2003), and we confirmed that this was the case in the

XRCC1�/� RPE-1 cells employed here (Figure S3). To test

directly whether NAD+ depletion was responsible for the decline

in PARP1 activity in XRCC1�/� RPE-1 cells, we treated the latter

with MMS for 60 min to accumulate trapped PARP1 and then

incubated total cell lysates from these cells and wild-type con-

trols with or without NAD+ supplement in vitro. As expected, ly-

sates prepared from MMS-treated XRCC1�/� cells exhibited

very little auto-ribosylated PARP1 when incubated in the

absence of NAD+ supplement compared with wild-type lysates

incubated in parallel (Figure 4D, compare lanes 2 and 4). Howev-

er, supplementation with NAD+ not only stimulated ADP-ribosy-

lation in XRCC1�/� cell lysates, but it increased it above that

observed in wild-type cell lysates (Figure 4D, compare lanes 2
3024 Molecular Cell 81, 3018–3030, July 15, 2021
and 4 with lanes 6 and 8). This increased ADP-ribosylation re-

flected the activation of PARP molecules by BER intermediates

because NAD+ only weakly stimulated ADP-ribosylation in cell

lysates prepared from cells not pre-treated withMMS (Figure 4D,

lanes 5 and 7). We conclude from these experiments that the

progressive decline in PARP1 auto-ribosylation in XRCC1�/�

cells during BER is a result of NAD+ exhaustion.

Endogenous PARP1 trapping during BER impedes POLb
recruitment into chromatin
Finally, we examined how the excessive engagement and pro-

gressive inactivation of PARP1 that occurs in XRCC1�/� cells

might impede BER. Treatment of wild-type RPE-1 cells with

PARP inhibitor reduced XRCC1 and POLb accumulation in chro-

matin, consistent with the idea that PARP1 trapping impedes

BER by preventing BER enzymes from accessing SSB interme-

diates (Figure 5A, compare lanes 12 and 14). We therefore

reasoned that the excessive engagement of PARP1 observed

in XRCC1�/� cells may block BER by a similar mechanism.

Consistent with this, POLbwas almost undetectable in the chro-

matin of XRCC1�/� RPE-1 cells before and after treatment with

MMS (Figure 5A, lanes 15 and 16). Given the extent of this defect,

we considered it unlikely that it simply reflected the effect of

XRCC1 interaction on POLb stability and/or recruitment. Indeed,

PARP1 deletion fully rescued the accumulation of POLb in chro-

matin in XRCC1�/� cells, during BER (Figure 5A, compare lanes

11 and 12 with lanes 15 and 16 and lanes 19 and 20). Notably,

PARP1 deletion also increased the accumulation of POLb and

XRCC1, even in wild-type RPE-1 cells, suggesting that PARP1

and XRCC1 protein complexes compete continuously for SSB

intermediates during BER (Figure 5A, compare lanes 12 and 18).

In summary, we show here that the importance of XRCC1 dur-

ing BER is to assemble protein complexes that can limit the

engagement and activity of PARP1 at SSB intermediates (Fig-

ure 5B). XRCC1 is thus an endogenous PARP1 anti-trapper

that safeguards genome integrity during BER by preventing

PARP1 from impeding this essential DNA repair process in a

manner reminiscent of anti-cancer PARP inhibitors.

DISCUSSION

DNA base excision repair (BER) is a highly conserved pathway

where damaged DNA bases are excised and replaced with un-

damaged nucleotides using a core set of enzymes comprised

of DNA glycosylase, AP endonuclease , DNA polymerase, and

DNA ligase activities (Beard et al., 2019; Caldecott, 2020). In

addition, human cells employ several additional proteins to

accelerate BER including the SSB sensors PARP1 and/or

PARP2 and the molecular scaffold protein XRCC1 (Caldecott

et al., 1994; Dantzer et al., 1999; Ding et al., 1992; Page et al.,

2003; Ronson et al., 2018; Schreiber et al., 2002). The impor-

tance of XRCC1 during BER is illustrated by the elevated accu-

mulation of SSBs and cellular hypersensitivity to simple DNA

base damage in cells in which XRCC1 is mutated or absent (Bre-

slin and Caldecott, 2009; Thompson et al., 1982; Zdzienicka

et al., 1992). Although it is well established that XRCC1 interacts

with multiple proteins involved in BER, including the core en-

zymes POLb and LIG3 (Caldecott et al., 1994, 1996; Kubota



Figure 4. XRCC1 assembles protein complexes that regulate PARP1 activity, NAD+ consumption, and trapping during BER

(A) Levels of PARP1 auto-ribosylation detected as above in XRCC1�/�U2OS cell lines stably transfected with empty vector or with an expression vector encoding

full-length recombinant Myc-His-XRCC1 or truncated Myc-His-XRCC1161–406 during incubation or not (Un) for the indicated times with 0.1 mg/mL MMS. The

expression level of the recombinant XRCC1 proteins is shown (right).

(B) Levels of PARP1, XRCC1, LIG3, and POL b in cell-equivalent aliquots of soluble and chromatin-containing fractions from the indicated U2OS cell lines

following treatment for the indicated times with 0.1 mg/mL MMS. The fractionated cell extracts were treated with recombinant PARG immediately prior to SDS-

PAGE to ensure that auto-ribosylation did not obscure detection of PARP1.

(C) DNA strand breaks quantified by alkaline comet assays in the indicated U2OS cell lines following treatment with the indicated concentrations of MMS for

15 min. Data plotted are the individual comet tail moments of 50 cells per sample per experiment, with tail moments plotted vertically and each of three inde-

pendent experiments plotted side by side. Statistical significancewas ascertained by one-way ANOVA of themean tail moments from 3 independent experiments

with Sidak’s post hoc multiple comparisons test (*p % 0.05, **p % 0.01, ****p % 0.0001).

(D) Cell extracts prepared from Un or MMS-treated (0.1 mg/mL, 60 min) WT and XRCC1�/� RPE-1 cells were incubated for 45 min in the absence or presence of

1 mM NAD+, as indicated.

See also Figure S3.
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et al., 1996; Nash et al., 1997), the essential role fulfilled by these

interactions during BER has been unclear.

In this study, unexpectedly, our data reveal that the accumu-

lation of SSBs and the cellular hypersensitivity to DNA base

damage that are characteristic features of XRCC1�/� cells are

ablated by deletion of PARP1. It is known that increased
PARP1 activity resulting from elevated levels of unrepaired

DNA breaks can result in cell death via NAD+ depletion, defective

glycolysis, and necrosis or parthanatos (Andrabi et al., 2006; Yu

et al., 2006). Thus, a simple interpretation of the PARP1-induced

toxicity detected here is that it is a consequence of the increased

level of unrepaired SSBs in XRCC1�/� cells. However, this is not
Molecular Cell 81, 3018–3030, July 15, 2021 3025



Figure 5. Endogenous PARP1 trapping impedes POLb recruitment into chromatin during BER

(A) PARP1, XRCC1, and POLb levels in the soluble and chromatin-containing fractions (1:4 cell equivalents, respectively) ofWT and the indicated RPE-1 cell lines,

measured bywestern blotting. Cells were pre-treated or not with the PARP inhibitor (10 mM) and/or MMS (0.1 mg/mL) for 1 h, as indicated. Awestern blot showing

total PARP1, XRCC1, and POLb levels in the cell lines is shown (right).

(B) A model for endogenous PARP1 trapping during BER. Blue box: in WT cells, XRCC1 protein complexes limit PARP1 engagement and activity during BER by

promoting efficient hand-off of SSB intermediates to POLb and LIG3, preventing PARP1 from impeding repair. Orange box: in XRCC1�/� cells, the absence of

XRCC1 protein complexes results in excessive cycles of PARP1 association/activation at SSB intermediates, which impedes access by other BER enzymes and

blocks their repair, resulting in SSB accumulation. If this scenario is sufficiently prolonged, such as at high levels of base damage, then this increased PARP1

engagement leads progressively to NAD+ depletion, declining PARP1 auto-ribosylation and dissociation, and accumulation of PARP1 in chromatin. PARP1

trapping in this scenario thus reflects both increased PARP1 association at SSB intermediates and subsequently decreased PARP1 dissociation, both of which

impede BER in a manner reminiscent of chemical PARP inhibitors (pink box shown for comparison). Green box: additional deletion of PARP1 in XRCC1�/� cells

allows access of BER intermediates by POLb, LIG3, and/or alternative DNA repair enzymes, restoring normal rates of BER.
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the case because it is increased PARP1 engagement that

causes the accumulation of SSBs in XRCC1�/� cells during

BER, rather than the other way around. This work reveals that

the essential role of XRCC1 during BER is to prevent excessive

PARP1 engagement and activity at SSB intermediates, which

otherwise blocks their access and repair by other BER enzymes.

This work overturns the paradigm that there is an intrinsic

requirement for XRCC1 for rapid rates of BER because, in the

absence of PARP1, XRCC1 is dispensable.

The excessive engagement of PARP1 during BER in the

absence of XRCC1 is reminiscent of the effect of PARP inhibitors

in wild-type cells. However, although PARP trapping by PARP in-

hibitors reflects reduced PARP1 auto-ribosylation and allosteri-

cally enhanced DNA binding resulting from chemical inhibition

(Murai et al., 2012), PARP1 trapping in the absence of XRCC1 re-

flects the absence of BER complexes that can limit and/or regu-

late cycles of PARP1 association and activation. If this excessive

PARP1 association and activation is prolonged sufficiently,

NAD+ becomes progressively depleted, reducing the ability of

PARP1 to auto-ribosylate and dissociate from BER intermedi-

ates and promoting its accumulation in chromatin. We define

both the excessive PARP1 association and subsequently

reduced dissociation in this scenario as forms of PARP1 trap-

ping, both of which directly impede BER.

The ability of XRCC1 to suppress PARP1 toxicity during BER

reflects its ability to assemble BER enzymes into protein com-

plexes because this suppression required the XRCC1 domains

that interact with POLb and LIG3. Truncated XRCC1 lacking

these domains was also unable to prevent the initial hyperactiva-

tion of PARP1 during BER and its subsequent sequestration into

chromatin. Truncated XRCC1 did support a small but statistically

significant decrease in SSB acumulation, however, suggesting

that the central DNA binding and/or poly(ADP-ribose)-binding

domains that are retained in the truncated protein contribute to

PARP1 regulation. This is consistent with the established

requirement for these domains for proper XRCC1 function during

BER (Breslin et al., 2015; Polo et al., 2019). The efficacy of

XRCC1 protein complexes in regulating PARP1 most likely re-

flects the close proximity of POLb and LIG3 within these com-

plexes and that these enzymes are required consecutively during

BER from the point where the SSB is created by APE1 to the final

step of DNA ligation. The assembly of these enzymes into

XRCC1 protein complexes may thus facilitate coordinated

hand-off of SSB intermediates to POLb and LIG3 during BER

in a manner similar to that proposed for APE1 and POLb (Mol

et al., 2000; Wilson and Kunkel, 2000), reducing the opportunity

for interference by PARP1. Interestingly, LIG3 possesses a

‘‘nick-sensing’’ zinc finger that is similar to those in PARP1 and

is able to compete with and suppress PARP1 binding and activa-

tion by SSBs (Caldecott et al., 1996). It will be of interest to

examine whether this zinc finger contributes to suppression of

PARP1 trapping by XRCC1 complexes.

It is noteworthy that the role of XRCC1 in suppressing PARP1

trapping is not observed at all types of SSBs. For example,

XRCC1 and PARP1 exhibit a simple epistatic relationship during

the repair of ’direct’ SSBs induced by oxidative attack of deoxy-

ribose, in which loss of these proteins alone or together slows

SSB repair to a similar extent (Hanzlikova et al., 2017; Hoch
et al., 2017). This is also true for topoisomerase I-induced

SSBs, as shown here with respect to the camptothecin sensi-

tivity of RPE-1 cells in which PARP1 and/or XRCC1 are deleted.

The BER intermediates that trap PARP1 are currently unknown,

but likely candidates are the incised abasic sites that are created

by APE1 because these are unique to this pathway and are the

primary substrate of POLb (Matsumoto and Kim, 1995). Consis-

tent with this idea, PARP1 binds tightly to these SSBs and can

even become covalently crosslinked to DNA at such sites

(Prasad et al., 2014). Interestingly, PARP2 also accumulated in

chromatin in XRCC1�/� cells during MMS treatment, which is

expected because NAD+ is also required for PARP2 auto-ribosy-

lation and dissociation (Langelier et al., 2014). However, impor-

tantly, PARP2 depletion reduced neither the accumulation of

SSBs in XRCC1�/� cells during BER nor their sensitivity to

MMS. This may reflect a lower level of PARP2 protein/activity

and/or the different mode of binding by PARP2 to BER interme-

diates, which lacks the high-affinity zinc-finger motifs character-

istic of PARP1 (Amé et al., 1999; Langelier et al., 2014).

To explain our data, we propose the following model (Fig-

ure 5B). AlthoughPARP1 and/or PARP2 activity is required to pro-

mote BER, most likely to regulate chromatin compaction (Ray

Chaudhuri and Nussenzweig, 2017), PARP1 has a propensity to

associate excessively with BER intermediates, blocking their ac-

cess and repair by other BER enzymes. We define this excessive

association as a form of PARP1 trapping. When NAD+ becomes

sufficiently depleted by excessive cycles of PARP1 association,

the ability of PARP1 to auto-ribosylate and dissociate from BER

intermediates is progressively reduced, leading to even tighter

trapping and accumulation of PARP1 in chromatin. By assem-

bling POLb and LIG3 into protein complexes, XRCC1 can pro-

mote the molecular ‘‘hand-off’’ of SSB intermediates from one

enzyme to the next during BER, limiting the opportunity for

excessive PARP1 engagement and thereby suppressing PARP1

trapping and promoting repair. Consequently, in the absence of

PARP1, XRCC1 is dispensable for rapid rates of BER because

this pathway can be conducted by POLb and LIG3 and/or other

DNA repair enzymes without hindrance. Intriguingly, we also de-

tected increased PARP1 trapping in primary human fibroblasts

from XRCC1-mutated disease, and we reported recently that

loss of cerebellar interneurons and cerebellar ataxia in Xrcc1-

deleted mice are suppressed greatly by Parp1 deletion (Hoch

et al., 2017). It will be of interest to determine whether endoge-

nous PARP1 trapping during BER accounts for this Parp1-depen-

dent neuropathology in Xrcc1-defective brain and disease.

Here we show that, in the absence of XRCC1, PARP1 can

become excessively engaged on BER intermediates in a manner

similar to that induced by anti-cancer PARP1 inhibitors, demon-

strating that PARP1 trapping is a threat to normal genome integ-

rity. We show that the essential role of XRCC1 during BER is as a

PARP1 anti-trapper that regulates the engagement and activity

of this enzyme, ensuring that this essential DNA repair pathway

occurs rapidly and without obstruction.

Limitations of the study
We show here that PARP1 trapping is an endogenous threat to

genome integrity and that it is the role of XRCC1 to prevent

this from happening. Although this role requires XRCC1 to bind
Molecular Cell 81, 3018–3030, July 15, 2021 3027
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poly(ADP-ribose) and assemble DNA BER enzymes into protein

complexes, the precise details of how such complexes coordi-

nate BER remain to be defined.
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Schreiber, V., Amé, J.-C., Dollé, P., Schultz, I., Rinaldi, B., Fraulob, V.,

Ménissier-de Murcia, J., and de Murcia, G. (2002). Poly(ADP-ribose) polymer-

ase-2 (PARP-2) is required for efficient base excision DNA repair in association

with PARP-1 and XRCC1. J. Biol. Chem. 277, 23028–23036.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-PARP1 Santa Cruz Cat#sc-8007; RRID:AB_628105

Rabbit polyclonal anti-XRCC1 Novus Cat#NBP1-87154; RRID:AB_11029388

Rabbit anti-poly-ADP-ribose binding reagent Millipore Cat#MABE1031; RRID:AB_2665467

Mouse monoclonal anti-alpha-Tubulin Sigma-Aldrich Cat#T6074; RRID:AB_477582

Rabbit polyclonal anti-histone H3 Abcam Cat#ab1791; RRID:AB_302613

Rabbit polyclonal anti-DNA Polymerase Beta Millipore Cat#6C0087; RRID:N/A

Rabbit sera anti-DNA ligase III Tomas Lindahl TL25; RRID:N/A

Rabbit polyclonal anti-PARP2 Active Motif Cat#39743; RRID:AB_2793328

Bacterial and virus strains

BL21 (DE3) NEB Cat#C2527H

Chemicals, peptides, and recombinant proteins

Poly (ADP ribose) polymerase (PARP) inhibitor,

KU0058948 hydrochloride

Axon Cat#2001; CAS: 763111-49-5

Poly (ADP ribose) glycohydrolase (PARG) inhibitor Tocris Cat#5952; CAS: 1945950-21-9

Methyl methanesulfonate (MMS) Sigma-Aldrich Cat#129925

cOmplete, EDTA-free Protease Inhibitor Cocktail Roche Cat#11873580001

Adenine 9-b-D-arabinofuranoside (Ara-A) Sigma-Aldrich Cat#A5762

b-Nicotinamide adenine dinucleotide (NAD+) NEB Cat#B9007S

Phenazine ethosulfate (PES) Sigma-Aldrich Cat#P4544

Thiazolyl blue tetrazolium bromide (MTT) Sigma-Aldrich Cat#M2128

SYBR Green Sigma-Aldrich Cat# S9430

Alcohol dehydrogenase (Adh) Sigma-Aldrich Cat#A3263

PARG enzyme Trevigen N/A

Exonuclease III NEB Cat#M0206S

APE1 NEB Cat#M0282S

Uracil-DNA Glycosylase (UDG) NEB Cat#M0280S

Recombinant PARP1 This paper N/A

Recombinant XRCC1 This paper & Caldecott et al., 1995 N/A

Recombinant DNA Polymerase Beta This paper & Sam Wilson/

Caldecott et al., 1996

N/A

Recombinant DNA ligase IIIa This paper & Caldecott et al., 1996 N/A

Critical commercial assays

CellTiter-Glo Promega Cat#G7570

Experimental models: cell lines

Human: hTERT RPE-1 ATCC N/A

Human: hTERT RPE-1 PARP1�/� Hanzlikova et al., 2017 N/A

Human: hTERT RPE-1 PARP2�/� Hanzlikova et al., 2017 N/A

Human: hTERT RPE-1 PARP1�/� PARP2�/� Hanzlikova et al., 2017 N/A

Human: hTERT RPE-1 XRCC1�/� Hanzlikova et al., 2017 N/A

Human: hTERT RPE-1 XRCC1�/� PARP1�/� Hoch et al., 2017 N/A

Human: U2OS ATCC HTB-96

Human: U2OS XRCC1�/� (Polo et al., 2019) N/A

Human: U2OS PARP1�/� Hanzlikova et al., 2017 N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Human: U2OS XRCC1�/� + Myc-His-XRCC1 This paper N/A

Human: U2OS XRCC1�/� + Myc-His-XRCC1-161-406 This paper N/A

Human: TK6 ATCC N/A

Human: TK6 PARP1�/� This paper N/A

Human: TK6 XRCC1�/� This paper N/A

Human: TK6 XRCC1�/� PARP1�/� This paper N/A

Oligonucleotides

For oligonucleotides see Table S1 This paper N/A

Recombinant DNA

pCD2E (Empty vector) Caldecott et al., 1994 N/A

pCD2E-Myc-His-XRCC1 This paper N/A

pCD2E-Myc-His-XRCC1-161-406 This paper N/A

pET16b-XRCC1-His Caldecott et al., 1995 N/A

Bacterial DNA Polymerase Beta expression Sam Wilson/Caldecott et al., 1996 N/A

pET16b-His-DNA Ligase IIIa Caldecott et al., 1996 N/A

GFP-PARP1 Shao et al., 2020 N/A

Software and algorithms

Comet Assay IV software Perceptive Instruments N/A

Graph/statistical software GraphPad Prism 9 https://www.graphpad.com/

Other

Lipofectamine RNAiMAX Transfection Reagent Thermofisher Scientific Cat #13778100

Lipofectamine 2000 Transfection Reagent Invitrogen Cat #11668019

Neon Transfection System Invitrogen MPK5000

Amicon Ultra-0.5 Centrifugal Filter Unit Millipore Cat #UFC501024

Spin-X Centrifuge Tube Filter Costar Cat #8163

Fluoroskan Ascent FL Thermofisher Scientific N/A

His-Trap GE Healthcare GE29-0510-21

HiLoad 16/600 Superdex 200 GE Healthcare GE28-9893-35

HiTrap Q GE Healthcare GE29-0513-25

HiTrap SP GE Healthcare GE29-0513-24

AKTA Pure FPLC system GE Healthcare N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact,

K.W.Caldecott (k.w.caldecott@sussex.ac.uk).

Materials availability
All unique reagents (plasmids/cell lines etc) will be provided on request to academic laboratories without restrictions.

Data and code availability
All primary data are available on request to the lead contact. No code or large genomic/proteomic datasets are associated with

this work.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
Human hTERT RPE-1 cells (ATCC) and U2OS cells were incubated in a low oxygen (3%) incubator (37�C, 5%CO2). RPE-1 cells were

maintained in DMEM-F12 Glutamax 10% FBS supplemented with penicillin/streptomycin. U2OS were maintained in DMEM 10%
e2 Molecular Cell 81, 3018–3030.e1–e5, July 15, 2021
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FBS supplemented with penicillin/streptomycin and L-glutamine. Human TK6 cells were cultured in 20% oxygen (37�C, 5% CO2) in

RPMI 1640 medium (Nacalai Tesque, Kyoto, Japan) supplemented with heat-inactivated horse serum (10%) (GIBCO, lot no. 2017-

06), Sodium pyruvate (0.1 mM), L-glutamine, and penicillin/streptomycin. The XRCC1�/�, PARP1�/� and XRCC1�/�/ PARP1�/�

RPE-1 cells, and U2OS XRCC1�/� cells, used in this study were generated and characterized previously (Hanzlikova et al., 2017;

Hoch et al., 2017; Polo et al., 2019). U2OS XRCC1�/� cells complemented with full-length N-terminal Myc-His-tagged XRCC1 or

truncated N-terminal Myc-His-tagged XRCC1161-406 were generated as described below (‘‘siRNA and cell transfection’’).

METHOD DETAILS

Chemicals
The PARP inhibitor KU 0058948 hydrochloride and PARG inhibitor were purchased from Axon (Cat#2001; CAS: 763111-49-5) and

Tocris (PDD0017273; Cat#5952; CAS: 1945950-21-9), respectively. Both inhibitors were dissolved in dimethyl sulfoxide (DMSO)

to a stock concentration of 10 mM and used at a final working concentration of 10 mM. Methyl methanesulfonate (MMS; Sigma-

Aldrich, Cat#129925) was dissolved directly into culture medium and concentration used is as indicated in Figures. Recombinant

PARG enzyme was from Trevigen.

Antibodies
Mouse anti-PARP1 monoclonal (Santa Cruz Cat#sc-8007; RRID:AB_628105) was employed at 1:500 rabbit polyclonal anti-PARP2

(Active Motif Cat#39743; RRID:AB_2793328) at 1:5000, rabbit anti-XRCC1 polyclonal (Novus; Cat#NBP1-87154; RRI-

D:AB_11029388) at 1:5000, rabbit anti-DNA polymerase beta polyclonal (Millipore; Cat#6C0087) at 1:1000, rabbit anti-DNA ligase

III polyclonal sera (TL25) at 1:5000, anti-poly-ADP-ribose binding reagent (Millipore; Cat# MABE1031; RRID:AB_2665467) at

1:10,000, mouse anti-alpha-Tubulin monoclonal (Sigma-Aldrich; Cat#T6074; RRID:AB_477582) at 1:10000, and rabbit anti-histone

H3 polyclonal (Abcam; Cat#ab1791; RRID:AB_302613) at 1:10000.

siRNA and transfection
Non-targeting siRNA (ON-TARGETplus) and SMARTpool siRNA (25 nM) against PARP1 or PARP2were reverse-transfected into cells

using Lipofectamine� RNAiMAX (Invitrogen) according to the manufacturer’s instructions. All experiments were carried out 72 hr

post-transfection. U2OS XRCC1�/� cells complemented with full-length N-terminal Myc-His-tagged XRCC1 or truncated N-terminal

Myc-His-tagged XRCC1161-406 were generated by co-transfection with an empty vector (pCI-Puro) encoding resistance to puromy-

cin and either pCD2E (empty vector), pcD2E-Myc-His-XRCC1, or pcD2E-Myc-His-XRCC1161-406. Following transfection, cells were

selected against puromycin (2 mg/ml) and after one week single colonies were isolated, amplified, and validated for expression of

recombinant XRCC1.

Live cell imaging
The recruitment and exchange of GFP-tagged PARP1 wasmeasured in wild-type and Xrcc1�/�MEFs as described previously (Shao

et al., 2020) with minor modification. Briefly, �1x104 MEFs were seeded on 35 mm diameter glass-bottom plate on day 1 and tran-

siently transfected with GFP-PARP1 plasmid (1 mg) via Lipofectamine 2000 on day 2 (Invitrogen). All images were collected on day 4

(2 days after transfection) with a Nikon Ti Eclipse invertedmicroscope equipped with the Lu-N3 Laser Units and the A1 RMP confocal

system (all from Nikon Inc, Tokyo, Japan). The micro-irradiation was generated by a 405 nm laser (energy level�500 mW) in�0.8 mm

diameter nucleoli-free region of the nuclei. The GFP-PARP1 recruitment were measured in control untreated cells and cells treated

with 0.3 mg/ml MMS (Sigma, Cat. 64294) forR 60min. Images were taken immediately followingmicro-irradiation (defined as 0 s) up

to 1 minute with 2 s interval. The relative intensity of GFP-PARP1 foci is defined as the mean green fluorescent intensity at the micro-

radiated area (0.8 mm diameter)/mean green fluorescent intensity in the entire nucleus. For FRAP, the cells were either untreated or

pre-treated as indicatedwith 0.3mg/mlMMS for 0-30minutes orR 60minutes beforemicro-irradiation. A confined nucleoli-free area

of�0.8 mm diameter in the nucleus was bleached with a 488 nm laser targeting GFP (energy level = 217 mW) and images were taken

every other second to 1 minute. The recovery curve was plotted as the percentage of GFP intensity (damage region)/GFP intensity

(whole nucleus) at the given time points versus before bleaching of each given cell. At least 6 cells were collected for recruitment

analysis of each condition and at least 10 cells were collected for FRAP assay of each condition.

XRCC1 protein complexes and PARP1 activity, in vitro.
Recombinant histidine-tagged human XRCC1 (XRCC1-His) and DNA ligase IIIa (His-LIG3), and untagged DNA polymerase b (POLb),

were expressed in and purified from 1-2 l of E.coli culture essentially as described previously (Caldecott et al., 1995, 1996), using an

AKTA Pure FPLC system. In brief, recombinant XRCC1-His and His-LIG3 were purified by sequential metal-chelate affinity chroma-

tography and gel filtration using 1ml HisTrap (GE Healthcare) HiLoad 16/600 Superdex 200 (GE Healthcare), respectively. Recom-

binant human POLb was purified by sequential anion exchange, cation exchange, and gel filtration using HiTrap Q HP (2x1ml; GE

healthcare), HiTrap SP (1ml; GE Healthcare) and HiLoad 16/600 Superdex 200 columns.

PARP1 reactions (20 mL) were incubated at room temp for 5 min and contained 50mMTris-HCl pH7.9, 100mMNaCl, 10mMMgCl2,

100 mg/ml BSA, 0.3 mM each of the indicated recombinant proteins, 10 mMNAD+ (where indicated), and 0.15 mMof fluorescein labeled
Molecular Cell 81, 3018–3030.e1–e5, July 15, 2021 e3
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double-hairpin duplex substrate containing a single uracil residue (IDT; Integrated DNA Technologies). Reactions were terminated by

the addition of SDS-PAGE sample buffer and heating at 95�C. for 5 minutes. The duplex hairpin substrate was generated by heating/

cooling the single strand oligonucleotide 50- GCACGGCGCATCAGCTGCAGAACAACTGCAGCTGATGCGC/deoxyU/GTGCGGAT

CCGGTGCAAC/iFluorT/AAGCACCGGATCC-30 to form the duplex followed by ligation of the residual nick with T4 ligase and gel

purification. The substrate possessed a single internal fluorescein dT residue for visualization/purification. The substrate was pre-incu-

bated or not as indicated with uracil DNA glycosylase and AP endonuclease (UDG/APE1; 1.2 U each; NEB) to create a SSB interme-

diate of BER (cleaved abasic site) prior to the addition, where indicated, of recombinant PARP1, XRCC1, POLB, LIG3.

Gene-targeting XRCC1 in TK6 cells
XRCC1 was disrupted with knockout constructs prepared using primers 50-GTAGTAAAAGACAGATGCCCACAGTCCACA-30 and
50-CTGGCTGCTGCAGGACACGACATGGCGGAG-30 for the left arm and 50-ACTCACTGTGCAGAAAATCTTCTCAAGGCA-30 and
50-AACCACCATACCTGGCTATTATTCTTTAAA-30 for the right arm. The TALEN vector was designed to recognize the following se-

quences: 50-TGACATGCCGGAGATCCG-30 and 50-GTCCTGCAGCAGCCAGGA-30. PARP1 was disrupted with knockout constructs

prepared using primers 50-TGGGGAGTAGTGCTTTGTTTGGATATATCC-30 and 50-CTGGAGAATCAAACAGACAGCAATGCTCAT-30

for the left arm and 50-GTAAGATCTTGGGGGCCCAGATCCCTGAAC-30 and 50-CTTAAATTCCAAATGGCTGGCAACCTACCT-30 for
the right arm.We usedCRISPR/Cas9 and the guide sequence 50-GAAGTACGTGCAAGGGGTGTATGG-30 to facilitate gene targeting.

For gene targeting, we used the maker genes DT-ApA/NEOR (provided by the Laboratory for Animal Resources and Genetic Engi-

neering, Center for Developmental Biology, RIKEN Kobe; http://www.clst.riken.jp/arg/cassette.html) and DT-ApA/PUROR digested

with ApaI and AflII. Wild-type TK6 cells were transfected with the above-mentioned targeting vectors (2 mg), and the expression vec-

tor (10 mg) for TALEN or CRISPR (pX330; Addgene, US), employing the NEON transfection system (Invitrogen, CA) at 1500 V 20msec.

b-actin transcripts were used as a positive control for the RT-PCR analysis using primers 50-GATGGTGGGCATGGGTCAGAAG

GATTCC-30 and 50-GTCCAGGGCGAGGTAGCACAGCTTCTC-30.

Alkaline comet assays
Cells were treated with the indicated concentration ofMMS in the presence/absence of 10 mMPARP inhibitor (KU0058948) for 15min

at 37�C in medium, and alkaline comet assays conducted essentially as described previously (Breslin et al., 2006). In brief, following

the indicated treatment of 5x104 cells in suspension (1 ml) with MMS , cells were washed once in ice-cold PBS and resuspended in

0.45mLPBS. Aliquots (0.15ml) of the cell suspensionmixedwith an equal volume of low gelling agarose (at 42�C), spread on agarose

pre-coated frosted slides and set on ice, and then lysed in alkaline lysis buffer (2.5M NaCl, 100 mM EDTA, 10 mM Tris-Cl, 1% v/v

DMSO, 1% v/v Triton X-100, pH 10) at 4�C for 60 min. Samples were then pre-incubated for 45 min and subject to electrophoresis

at 12V for 25 min in electrophoresis buffer (50mMNaOH, 1mM EDTA, 1%DMSO, pH13) at 4�C. Slides were neutralized in 0.4M Tris-

Cl pH 7.4 prior to staining in PBS containing SYBR Green (Sigma, 1:10000 dilution) and 0.04 mg/ml p-Phenyledenediamine dihydro-

chloride anti-fade (Fisher 417481000). Comet tail moments (an arbitrary-unit measure of DNA strand breaks) from 50-100 cells per

sample were scored blinded and using automated Comet Assay IV software (Perceptive Instruments, UK).

Cell survival assays
For RPE-1 and U2OS cells we conducted clonogenic survival assays. Cells were plated in 10 mm plates and 4 h later treated with

indicated concentrations of MMS for 30 min or with CPT continuously. Cells were rinsed twice with PBS, incubated in drug-free me-

dium for 10 days, and then fixed in 100%ethanol and stainedwith 0.05%crystal violet. The surviving fraction at each dosewas calcu-

lated by dividing the average number of colonies (defined as > 50 cells) in treated dishes by the average number in untreated dishes.

For TK6 cells, we employed a liquid-culture cell survival assay, as described previously (Tsuda et al., 2017). 1x106 cells were sus-

pended in PBS (1 ml) containing horse serum (1%) and treated with MMS for 1 h. Treated cells (10 ml) were transferred to culture

medium (1 ml) and cultured for 72 h. The incubated cells (100 ml) were transferred to 96-well plates, and the amount of ATP was

measured using CellTiter-Glo (Promega; Cat# G7570), according to the manufacturer’s instructions. Luminescence was measured

using the Fluoroskan Ascent FL (Thermo Fisher Scientific Inc., Waltham, MA).

Chromatin retention assay & immunoblotting
RPE-1, U2OS or human fibroblast cells were harvested and lysed in lysis buffer containing 100 mM, 150 mM or 150 mMKCl, respec-

tively, and 50 mMHEPES pH 7.4, 2.5 mMMgCl2, 5 mM EDTA pH 8, 3 mM dithiothreitol (DTT), 0.5% Triton X-100, 10% glycerol, and

protease inhibitor cocktail (Roche) for 45 min on ice. Soluble and chromatin-bound proteins were separated by centrifugation

(15 min, 16,000 g). The pellet containing the detergent insoluble material (including chromatin) was washed twice in lysis buffer

and then subjected to sonication to shear the DNA. The soluble and chromatin extracts were mixed with SDS-PAGE sample buffer

and heated for 10 min at 95�C. For protein levels in whole cell extracts (WCE), cells were lysed directly in SDS-PAGE sample

buffer and heated as above. All protein extracts were subjected to SDS-PAGE followed by protein transfer onto nitrocellulose

membrane and western blotting with the indicated antibodies.
e4 Molecular Cell 81, 3018–3030.e1–e5, July 15, 2021
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NAD+ measurements.
NAD+ levels in RPE-1 cells were determined by a chromogenic assay as described before (Baker et al., 2016). Briefly, cells were

treated with 0.3 mg/ml MMS in culture media at 37�C for the indicated time, washed with PBS and scraped in PBS supplemented

with 100 mM PARG inhibitor (PDD00017273, Sigma), 40 mM PARP inhibitor (KU 0058948, Axon), and cOmplete protease inhibitors

(04693132001, Roche). Cell pellets were resuspended in lysis buffer (20 mM sodium bicarbonate, 100 mM sodium carbonate,

0.5% Triton X-100, 10 mM nicotinamide, 100 mM PARG inhibitor, 40 mM PARP inhibitor, and cOmplete protease inhibitors, pH

10.3) and lysed by two freeze/thaw cycles. Protein concentration was normalized, lysates were transferred to a 10,000 MWCO cen-

trifugal filter (UFC501024, Merck) and centrifuged at 14,000 3 g at 4 �C for 30 min. Half of each lysate was incubated at 60 �C for

30 min to decompose NAD+. Samples were incubated in cycling buffer [100 mM tricine-NaOH (pH 8), 4 mM EDTA, 40 mM NaCl,

1.66 mM phenazine ethosulfate (PES), 0.42 mM thiazolyl blue tetrazolium bromide (MTT), 10% ethanol] at 37 �C for 5 min, and

10 U/ml alcohol dehydrogenase, reconstituted in 100 mM tricine-NaOH (pH 8), was added to drive a cycling reaction at 37 �C for

40 min. The reaction was terminated by addition of NaCl (2 M final concentration) and samples were centrifuged at 14,000 3 g at

4 �C for 5 min. Reduced MTT was resuspended in 100% ethanol and the absorbance was measured at 560 nm. NAD+ concentra-

tions were calculated by subtracting the absorbance of samples with thermal decomposition prior to the cycling reaction from those

samples without thermal decomposition prior to the cycling reaction.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were examined for statistical significance using GraphPad Prism 9 using one- or two-way ANOVA with appropriate post hoc

tests, as indicated in the figure legends. For survival assays, plotted data are mean (+/�SEM) surviving fraction (%) calculated

from the indicated number (N) of independent biological replicate experiments. For comet assays, plotted data are the comet tail

moments of every individual cell in each of the indicated number (N) of independent experiments. Note that for the comet assays,

individual cells within each experiment are technical replicates, and independent experiments are biological replicates.
Molecular Cell 81, 3018–3030.e1–e5, July 15, 2021 e5
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Figure S1. PARP1 but not PARP2 is responsible for the accumulation of SSBs in XRCC1-/- RPE-1 cells
(see also Figure1 & Figure 2). A, Left, PARP1, PARP2, and XRCC1 levels in the indicated gene edited and/or
siRNA treated cell lines. Right, Strand breaks quantified by alkaline comet assays in untreated or MMS-treated
(0.1 mg/ml MMS, 15 min) wild-type (WT) and the indicated RPE1-cell lines, with or without prior treatment with
PARP1/PARP2 siRNA. Data plotted are the individual comet tail moments of 50 cells per sample per experiment,
for two independent experiments, with tail moments for each experiment plotted vertically and each experiment
plotted side by side. Statistical significance was ascertained by one-way ANOVA, with Sidak’s multiple



2

comparisons test (*p≤0.05; ***p≤0.001). B, Clonogenic survival of wild-type (WT) and the indicated gene-edited
RPE-1 (left panel) or U2OS (right panel) cells after mock-treatment or treatment with PARP2 siRNA and with the
indicated concentrations of MMS for 30 min, followed by incubation in drug-free medium for 10-14 days. Data are
the mean (+/-SEM) of three independent experiments. Statistical significance was assessed by two-way ANOVA
with Tukey’s multiple comparisons test (ns, not significant; *p≤0.05; ***p≤0.001). C, PARP1 levels in cell-
equivalent aliquots of soluble and chromatin-containing fractions of wild-type (1BR) and XRCC1-mutated patient
(XD1) primary human fibroblasts, measured by western blotting D, PARP1 and PARP2 levels in cell-equivalent
aliquots of soluble and chromatin-containing fractions of wild-type (WT) and XRCC1-/- RPE-1 cells, measured by
western blotting. Cells were incubated or not with 10 µM PARP inhibitor (KU0058948) and/or MMS (0.1 mg/ml) for
1h as indicated, prior to subcellular fractionation.
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Figure S2. Reduced GFP-PARP1 mobility in MMS-treated Xrcc1-/- MEFs. A, Wild type (Xrcc1+/+) and
Xrcc1-/- MEFs expressing GFP-tagged PARP1 were pre-treated or not with 0.3 mg/ml MMS ≥60 min and
then irradiated with 405 nm laser (yellow arrow). GFP-PARP1 recruitment at the site of damage was
monitored for 60 sec following irradiations. B, Wild type and Xrcc1-/- MEFs expressing GFP-tagged
PARP1 were pre-treated or not with 0.3 mg/ml MMS for 60 min, photobleaching by 488nm laser and
monitoring of fluorescence recovery was conducted before, 5-30min after adding 0.3 mg/ml MMS, or
≥60min after adding MMS. Exchanging curves were fitted using one site ligand specific binding model
using the Prism software suite. Data are representative of two independent experiments.
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Figure S3. Increased PARP1-dependent NAD+ depletion in XRCC1-/- RPE1 cells, during BER (see also,
Figure 4). The indicated wild type and gene-edited RPE1 cells were treated with 0.3mg/ml MMS for the
indicated periods and NAD+ levels present in protein extracts quantified chromogenically. Data are the mean of
three independent experiments and statistical significance was assessed by 2-way ANOVA.
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Supplementary Table S1; oligonucleotides employed in this study

ON-TARGETplus Human PARP1 siRNA (SMARTPool) Dharmacon L-006656-
03-0005

ON-TARGETplus Human PARP2 siRNA (SMARTPool) Dharmacon L-010127-
02-0020

ON-TARGETplus Non-targeting Pool Dharmacon D-001810-
10

Double hairpin substrate 5’-
GCACGGCGCATCAGCTGCAGAACAACTGCAGCTGA
TGCGC/deoxyU/GTGCGGATCCGGTGCAAC/iFluorT/AA
GCACCGGATCC-3’

Integrated DNA
Technologies (IDT)

N/A

TK6 XRCC1 knockout construct, left arm:
5’-GTAGTAAAAGACAGATGCCCACAGTCCACA-3’ and
5’-CTGGCTGCTGCAGGACACGACATGGCGGAG-3’

This paper N/A

TK6 XRCC1 knockout construct, right arm
5’-ACTCACTGTGCAGAAAATCTTCTCAAGGCA-3’ and
5’-AACCACCATACCTGGCTATTATTCTTTAAA-3’

This paper N/A

TK6 PARP1 knockout construct, left arm
5’-TGGGGAGTAGTGCTTTGTTTGGATATATCC-3’ and
5’-CTGGAGAATCAAACAGACAGCAATGCTCAT-3’

This paper N/A

TK6 PARP1 knockout construct right arm: 5’-
GTAAGATCTTGGGGGCCCAGATCCCTGAAC-3’ and
5’-CTTAAATTCCAAATGGCTGGCAACCTACCT-3’

This paper N/A

β-actin (forward)
5’-GATGGTGGGCATGGGTCAGAAGGATTCC-3 ’

This paper N/A

β-actin (reverse)
5 ’-GTCCAGGGCGAGGTAGCACAGCTTCTC-3 ’

This paper N/A


	MOLCEL7967_proof_v81i14.pdf
	XRCC1 prevents toxic PARP1 trapping during DNA base excision repair
	Introduction
	Results
	XRCC1 suppresses PARP1-induced SSB accumulation and toxicity during BER
	XRCC1 suppresses endogenous PARP1 trapping during BER
	XRCC1 protein complexes prevent excessive PARP1 engagement and activity during BER
	Progressive PARP1 inactivation during BER in XRCC1-defective cells is a result of β-nicotinamide adenine dinucleotide (NAD+ ...
	Endogenous PARP1 trapping during BER impedes POLβ recruitment into chromatin

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Cell lines

	Method details
	Chemicals
	Antibodies
	siRNA and transfection
	Live cell imaging
	XRCC1 protein complexes and PARP1 activity, in vitro.
	Gene-targeting XRCC1 in TK6 cells
	Alkaline comet assays
	Cell survival assays
	Chromatin retention assay & immunoblotting
	NAD+ measurements.

	Quantification and statistical analysis




