
A Supplementary Material

A.1 Sequencing Protocols for Viollier samples and HUG
samples

We perform whole-genome sequencing of the Viollier samples in three facilities. The
HUG samples are processed in one of them, the Health 2030 Genome Center. The
sequencing protocol for the samples sequenced at the Genomics Facility Basel and
the Functional Genomics Center Zurich is described in [1]. Samples processed at
the Health 2030 Genome Center used the Illumina COVIDSeq library preparation
reagents following the protocol provided by the supplier [2]. These reagents are
based on the ARTIC v3 multiplex PCR amplicon protocol [3]. When sufficient
volume was available, 8.5ul of RNA extracted from patient nasopharyngeal samples
were used in the cDNA synthesis step; if 8.5ul were not available, the maximum
volume possible was used. Pooled libraries were sequenced on the Illumina NovaSeq
6000 using a 50-nucleotide pair-end run configuration. Post-sequencing library read
de-multiplexing was done using an in-house developed processing pipeline [4]. The
downstream bioinformatics procedure to obtain consensus sequences is described
in [1, 5].

A.2 Screening procedure at Dr Risch

Dr Risch medical laboratories used the Taqpath assay from Thermofisher for their
diagnostic and recorded the S gene target failure (SGTF). SGTF samples are
potential B.1.1.7 variants, as the B.1.1.7 variant causes a SGTF due to its deletion
at positions 69-70 in the spike protein. Further, Dr Risch medical laboratories
screen their samples for the 501Y mutation by a variant-specific PCR test. If a
sample is identified as a potential VoC by these procedures, it was initially sent for
whole-genome sequencing to the University Hospital Basel in order to confirm the
B.1.1.7 variant. The sequencing protocol is described in [6]. For recent samples, the
confirmation may still be outstanding or not conducted due to B.1.1.7 now being
dominant. However, since typically a SGTF plus a 501Y mutation corresponds
indeed to a B.1.1.7 variant, we consider these samples as B.1.1.7 variants even
when whole genome sequencing confirmation is lacking.

A.3 Estimating the transmission fitness advantage of a
new variant

In what follows, we define two models describing the dynamics with which a new
variant with a transmission fitness advantage spreads in a population. The first
model is based on the assumption of discrete-time, while the second model is based
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on the assumption of continuous-time. Both models have been considered exten-
sively in the literature to estimate fitness advantage (see e.g. [7, 8]). While in an
epidemic, a generation does not end after a fixed time span (discrete-time model),
generations are typically less variable than modeled under an exponential distri-
bution (continuous-time model). Thus we view the two models as two extremes.
We provide estimates based on both models and suggest that the true parameter
may be anywhere within the ranges spanned by the two models. In the next sec-
tions, we provide details of how we estimate the transmission fitness advantage of
B.1.1.7 based on daily data of the total number of samples and B.1.1.7 samples
under these two models.

A.3.1 Discrete time model

We call X the common (non-B.1.1.7) variants and Y the B.1.1.7 variant. The
process starts in generation 0 with x0 cases caused by variant X and y0 cases
caused by variant Y . Let the number of cases in generation n be x(n) and y(n) for
variants X and Y .

Let the reproductive number Rd of variant X in generation n be Rd(n). Let the
transmission advantage of variant Y be fd. Then the reproductive number of Y in
generation n is (1+ fd)Rd(n). Thus, we assume a multiplicative fitness advantage.

We have x(n) = x(0) × Rd(0)Rd(1) . . . Rd(n − 1) and y(n) = y(0) ×
Rd(0)Rd(1) . . . Rd(n− 1)(1 + fd)

n. If Rd is constant through time, we have

x(n) = x(0)Rn
d and y(n) = y(0)((1 + fd)Rd)

n.

Let the proportion of variant Y at generation n be p(n). We have,

p(n) =
y(n)

x(n) + y(n)
=

y(0)(1 + f)n

x(0) + y(0)(1 + f)n

=
p(0)(1 + fd)

n

1− p(0) + p(0)(1 + fd)n

=
1

1 + (1 + fd)−n (p(0)−1 − 1)
.

Thus, p(n) is the logistic function. It does not depend on Rd.
If we write time in days t rather than generations n and assume a generation

time of g days, we get

p(t) =
1

1 + (1 + fd)−t/g (p(0)−1 − 1)
. (1)

2



We now switch our parameterization to the more common

p(t) =
1

1 + e−a(t−t0)
(2)

for parameter estimation from daily data. Parameter a is the logistic growth rate
and parameter t0 the sigmoid’s midpoint.

The two free parameters, a and t0, are related to the two free parameters in
Equation 1, fd and p(0), as follows:

a =
ln(1 + fd)

g
, t0 = g

ln(p(0)−1 − 1)

ln(1 + fd)
.

In particular, we get fd = eag − 1.

A.3.2 Continuous time model

In continuous-time, instead of Rd and generation time g, we define the transmission
rate β and the recovery rate µ. Under this model, the reproductive number is
Rc = β/µ. Further, since an individual in the discrete model recovers after a
generation of duration g (during which they left Rd offspring), we note that g is
related to the expected time to recovery 1/µ in the continuous model, and in fact
assume g = 1/µ in what follows. Again our initial numbers of the variants X and
Y are x(0) and y(0). Calendar time is denoted by a continuous parameter t. We
then have in expectation,

x(t) = x(0)e(β−µ)t. (3)

We note that β − µ is coined the Malthusian growth parameter [8].
Further, we again assume that variant Y has a transmission fitness advantage

of fc, with transmission rate β(1+ fc) and recovery rate µ. The population size of
the variant at time t is thus

y(t) = y(0)e(β(1+fc)−µ)t. (4)

The proportion of the variant in the population at time t is

p(t) =
y(0)e(β(1+fc)−µ)t

x(0)e(β−µ)t + y(0)e(β(1+fc)−µ)t

=
p(0)eβfct

1− p(0) + p(0)eβfct

=
1

1 + e−βfct(p(0)−1 − 1)
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where we again recognize the logistic function. We turn again to the more common
parameterization,

p(t) =
1

1 + e−a(t−t0)
(5)

where we thus have fc =
a
β
.

The reproductive number is Rc = β/µ and the mean time to recovery, 1/µ, is
equaled to g. Then, β = Rc/g. Thus,

a =
fcRc

g
, t0 = g

ln(p(0)−1 − 1)

fcRc

.

In particular, we have fc =
ag
Rc
. Note that the estimated fitness advantage under

this model depends on the reproductive number Rc and is thus changing if Rc is
changing through time.

A.3.3 Connection between discrete and continuous time

The discrete and continuous models are very similar. Both have the intitial con-
ditions x(0) and y(0). For the dynamics, the discrete model has parameters Rd

and g while the continuous model has parameters β and µ. We have Rc = β/µ
and we further assumed that g = 1/µ (1/µ is the expected time until recovery
in the continuous setting while g is the time to recovery in the discrete setting).
The different parameterizations of fitness advantage are coined fc and fd. We now
determine how fc and fd are related.

To compare the two models, we now assume that their overall dynamics for the
variant X are the same. After n generations of duration g, we have for variant X,

x(0)e(β−µ)ng = x(0)Rn
d

⇐⇒ e(β−µ)g = Rd

⇐⇒ Rd = eRc−1

Using a Taylor expansion for β/µ close to 1, we obtain that indeed Rd = Rc.
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For the two models to produce the same growth also for variant Y , we require,

y0e
(β(1+fc)−µ)ng = y0((1 + fd)Rd)

n

⇐⇒(β(1 + fc)− µ)g = ln((1 + fd)Rd)

⇐⇒(β − µ)g + fcβg = ln(Rd) + ln(1 + fd)

⇐⇒fcβg = ln(1 + fd))

⇐⇒fc =
ln(1 + fd)

βg

⇐⇒fc =
ln(1 + fd)

Rc

.

In the last step, we make use of Rc = β/µ and g = 1/µ.
This is equivalent to fd = eRcfc − 1. Using a Taylor expansion we get fd =

1 +Rcfc +O((Rcfc)
2)− 1 and thus fd = Rcfc for small Rcfc.

A.3.4 Maximum likelihood parameter estimation

Next we explain how we estimate a and t0 of the logistic functions (Eqn. 2 and 5)
from our data using maximum likelihood. We consider that we have data at times
t1, ..., td. At time ti, we obtained ni samples, where ni is fixed, non-random.

We assume that the true number of B.1.1.7 variants at time ti is a random
variable, Ki which is binomially distributed with parameter p(ti), i.e.

Ki ∼ B (ni, p(ti)) , where p(ti) =
ea(ti−t0)

1 + ea(ti−t0)
.

In particular, we assume here a deterministic logistic growth model for the
increase in the proportion of variant Y (Eqn. 2 and 5), on top of which only
the drawing process is random. This model simplifies naturally to a very popular
logistic regression. This is an instance of a Generalized Linear Model, where the
natural parameter of the binomial distribution is a linear function of predictors,
the only predictor considered here being the time t.

We use the Python library statsmodel [9] to recover maximum likelihood es-
timates (MLEs) and confidence intervals. The confidence intervals are based on
an asymptotic Gaussian distribution for the parameters of the logistic regression
fitted to our data, i.e. the fixed values t1, . . . , td, n1, . . . , nd as well as the numbers
of samples at each time point being the variant B.1.1.7, k1, . . . , kd. Given the large
number of sequences – we have at least 100 samples per region – the use of an
asymptotic Gaussian approximation is justified. Parameters a, t0, fd, fc as well as
the proportions of variant B.1.1.7 p(t) through time are simple transformations
of the parameters of the logistic regression. Their MLEs are the same transfor-
mations applied to the MLEs of the logistic regression parameters. The difference
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between the MLEs and the true parameters are again Gaussian, with a covariance
matrix found by applying the delta method. This is used to construct confidence
intervals for all these quantities. We used the default fitting procedure provided in
the statsmodel package. This procedure reported convergence for all analyses.

A.4 Estimation of the effective reproductive number

We use the number of confirmed cases per day from the Federal Office of Public
Health, Switzerland, for 14 December 2020 to 11 March 2021. Then, for each day,
we estimate the number of B.1.1.7 variants by multiplying the total number of
confirmed cases by the proportion of B.1.1.7 in our dataset (Viollier or Risch).
We then estimate an effective reproductive number of the B.1.1.7 variant and of
the non-B.1.1.7 variants using these data. For this estimation, we use the method
developed in [10]. This method consists of two main parts: first, the observed case
data is related to the corresponding time series of infections. We smooth the obser-
vations using LOESS smoothing to remove weekend effects. Then, we deconvolve
with the delay of infection to symptom onset (gamma distributed with mean 5.3
and sd 3.2) and the delay from symptom onset to case confirmation (gamma dis-
tributed with mean 5.5 and sd 3.8). Second, we estimate the effective reproductive
number from the time series of infection incidence using EpiEstim [11]. The re-
ported point estimate is the estimate on the original case data. To account for
uncertainty in the observation process, the observed daily case incidences are ad-
ditionally bootstrapped 1000 times, resulting in an ensemble of alternative case
incidence time series and corresponding estimated effective reproductive numbers.
These are used to construct the 95% confidence interval around the effective repro-
ductive number, and to calculate the standard deviation of the ratios of effective
reproductive number estimates (see below).

We perform the estimation of the reproductive number in two different ways.
First, we estimate smooth changes in the reproductive number, by estimating it
across the entire time series using a 3-day sliding window. Second, we assume
the reproductive number was constant during time intervals in which the non-
pharmaceutical interventions did not change. Since 18 January 2021, Switzerland
has implemented a set of tighter measures (in particular, shops are closed and the
size of gatherings is restricted to five people [12]). Thus we fix the reproductive
number to be constant between 01 January and 17 January 2021. Then the re-
productive number is allowed to change and again fixed to be constant from 18
January 2021 onwards.

To compare the effective reproductive number R of the B.1.1.7 variant (Y ) to
that of non-B.1.1.7 variants (X), we take the ratio ρ = RY

RX
at every time point. The

standard deviation of this ratio σρ was found through Gaussian error propagation
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of the standard deviation of the individual R estimates (σX , σY ):

σρ =

√
1

(RX)2
σ2
Y +

(RY )2

(RX)4
σ2
X .

A.5 Discrepancy for Ticino and Lake Geneva

The discrepancy for Ticino and Lake Geneva is not surprising: they had a repro-
ductive number which was different from the national reproductive number in the
first half of January. For Ticino, the empirical case numbers drop faster than the
model, which is in line with a lower reported reproductive number compared to the
national level[13]. For the Lake Geneva region, the empirical case numbers drop
slower than the model, which is in line with a higher reported reproductive number
compared to the national level[13]. For all regions but Ticino, we have enough data
to estimate a reproductive number for the non-B.1.1.7 variants for 01 January-17
January 2021. While for Switzerland, we obtained a point estimate of 0.83, the
point estimates for all regions but Lake Geneva are between 0.81-0.83. Thus using
the point estimate for all of Switzerland for the regional plots - with the excep-
tion of Lake Geneva and Ticino - in Fig. 5 is justified. For Geneva, we obtain a
point estimate of 0.88. We use this point estimate in a Lake Geneva specific model
(Fig. S1). Again we observe that the total number of confirmed cases dropped re-
cently faster compared to the model. For a discussion on the discrepancy see main
text.
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Figure S1: Change in the number of B.1.1.7 variants and in the number of all
cases through time for the Lake Geneva region. For details see legend of Fig. 4.
Compared to Fig. 4, we here use the average reproductive number estimated for
non-B.1.1.7 in Geneva for the time period 01 January 2021-17 January 2021. The
transmission fitness advantage is calculated based on this reproductive number
and the estimate of the growth rate a for the Lake Geneva region.
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Figure S2: Logistic growth of frequency of B.1.1.7 in the Lake Geneva region based
on HUG data.
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A.6 Additional Tables

Grossregion Total confirmed cases Sequenced Proportion
Central Switzerland 17663 503 2.85%
Espace Mittelland 35933 2948 8.20%
Nordwestschweiz 24275 2716 11.19%
Tessin 9442 119 1.26%
Zurich 33615 1820 5.41%
Lake Geneva 36515 807 2.21%
Ostschweiz 26722 859 3.21%
Total 184165 9772 5.31%

Table S1: The proportion of sequenced cases out of all cases for the Viollier dataset.

Grossregion Total confirmed cases Sequenced Proportion
Central Switzerland 17663 321 1.82%
Espace Mittelland 35933 3893 10.83%
Nordwestschweiz 24275 1135 4.68%
Tessin 9442 113 1.20%
Zurich 33615 1090 3.24%
Lake Geneva 36515 405 1.11%
Ostschweiz 26722 4594 17.19%
Total 184165 11551 6.27%

Table S2: The proportion of characterized cases out of all cases for the Risch
dataset.

A.7 GISAID Accession Numbers

The used sequences were, if fulfilling the quality criteria, uploaded to GISAID.
The GISAID accession numbers are in the files supplementary material a7 d-
bsse gisaid ids.txt and supplementary material a7 hug gisaid ids.txt which are at-
tached to this paper.
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