	miniV1_apo (EMD-23136) (PDB-71 2P)	miniV1_DkTx pre-bound (EMD-23139)	miniV1_DkTx singly-bound (EMD-23161)	miniV1_DkTx pre-open (EMD-23138)	miniV1_DkTx partial open (EMD-23140)	miniV1_DkTx open (EMD-23141)	miniV1_RTX- NMDG a (EMD-23143)	miniV1_RTX- NMDG b (EMD-23142)	miniV1_RTX- NMDG c (EMD-23144)	FLV1_pH6 a (EMD-23129) (PDB-71 21)	FLV1_pH6 b (EMD-23131) (PDB-7L2K)	FLV1_pH6 c (EMD-23130) (PDB-7L2 I)	FLV1_pH5.5_RTX (EMD-23135) (PDB-7L20)
		(PDB-7L2S)	no model	(PDB-7L2R)	(PDB-7L2T)	(PDB-7L2U)	(PDB-7L2W)	(PDB-7L2V)	(PDB-7L2X)				(FDB-7L20)
Data Collection/Processing Microscope	Titan Krios	Titan Krios	Titan Krios	Titan Krios	Titan Krios	Titan Krios	Titan Krios	Titan Krios	Titan Krios	Talos Arctica	Talos Arctica	Talos Arctica	Talos Arctica
Detector	Gatan K2	Gatan K3	Gatan K3	Gatan K3	Gatan K3	Gatan K3	Gatan K3	Gatan K3	Gatan K3	Gatan K2	Gatan K2	Gatan K2	Gatan K2
Voltage (KV) Magnification	300 22,500	105000	105000	300 105000	300 105000	300 105000	105000	105000	105000	200 36,000	200 36,000	200 36,000	200 36,000
Defocus Range (µm)	-0.2 to -2.0	-0.5 to -3.0	-0.5 to -3.0	-0.5 to -3.0	-0.5 to -3.0	-0.5 to -3.0	-0.5 to -3.0	-0.5 to -3.0	-0.5 to -3.0	-0.5 to -2.5	-0.5 to -2.5	-0.5 to -2.5	-0.5 to -2.8
Total Electron Dose (e ⁻ /Å ²)	72	0.8488	0.8488	0.8488	0.8488	0.8488	68.4	0.835	0.835	76.8	1.15 76.8	76.8	64
Exposure Time (s)	10	5	5	5	5	5	6	6	6	12	12	12	10
Number of Images Number of Frames/Image	3925 80	7858+15288	7858+15288 100	7858+15289 100	7858+15290 100	7858+15291 100	120	3194 120	3194 120	700 60	700 60	700 60	885 50
Symmetry imposed	C4	C1	C1				C1	C1	C1	C4	C4	C4	C4
Final Particle Number	97,601	264,391	108,641	39,680	235,666	44,530	26,158	40,532	925,366 56,646	41,166	11,276	21,512	39,056
Map resolution (Å)	2.6 0 143	2.71 0.143	3.03 0.143	3.3 0 143	3.08 0.143	3.47 0.143	3.16	3.64 0.143	3.26 0.143	3.7 0.143	3.89 0.143	3.66 0.143	3.64 0.143
	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140
Refinement Initial model used (PDB code)	3J5P	3J5P	n/a	3J5P	3J5P	3J5P	3J5P	3J5P	3J5P	3J5P	3J5P	3J5P	3J5P
Model resolution (Å)	2.7	2.8	n/a	3.4	3.1	3.5	3.2	3.7	3.3	3.8	4.1	3.8	3.8
Map sharpening <i>B</i> factor ($Å^2$)	-92	-104	n/a	-98	-124	-114	-97	-126	-101	-157	-148	-153	-160
Model composition	40450	00500		04004	00171	10001	47744	47504	47740	47400	40000	470.40	45000
Non-nydrogen atoms Protein residues	18452 2234	20583 2506	n/a n/a	21381 2611	20171 2463	18821 2286	2144	17594 2144	17749 2144	17436 2124	16002 1976	17340 2116	15800 1920
water	0	0	n/a	4	4	10 10	4	0	0	0	0	0	0
<i>B</i> factors ($Å^2$)	5	3	n/a	5	5	10	5	0	5		0	-	-
Protein	69 51	89 57	n/a	95 70	55	46	106	124	108 78	102	132 p/2	101 64	120
water	n/a	n/a	n/a	67	18	11	74	n/a	n/a	n/a	n/a	n/a	n/a
R.m.s. deviations Bond lengths (Å)	0.006	0.007	n/a	0.008	0.005	0.005	0.015	0.013	0.015	0.012	0.008	0.008	0.015
Bond angles (°)	1.168	1.199	n/a	1.199	1.069	1.051	1.064	1.247	1.332	1.207	1.129	1.073	1.337
Validation MolProbity score	1.32	1.17	n/a	1.14	1.09	1.09	1.35	1.33	1.34	1.45	1.48	1.34	1.66
Clashscore	1.42	0.88	n/a	0.61	0.67	0.83	1.9	2.56	2.13	2.01	2.61	2.22	3.14
Ramachandran plot	0.55	0.32	11/a	0.35	0.0	0.15	0.42	0.37	0.79	0.75	0.40	0.10	1.07
Favored (%) Allowed (%)	93.17 6.69	93.92 6.04	n/a n/a	93.31 6.62	94.53 5 47	95.19 4.68	94.05 5.95	95.79 4 21	94.94 5.01	92.17 7.83	93.24 6.56	95.14 4 86	95.01 4 99
Disallowed (%)	0.13	0.04	n/a	0.08	0	0.13	0	0	0.05	0	0.2	0	0
							miniV1 in co	mplex with RTX					
		miniV1 in co	mpley with RTX when	OX-314 added under lo	w Na ⁺ concentration		when YO-PRO-	1 added under low	,				
		miniV1 in co	mplex with RTX when	QX-314 added under lo	w Na ⁺ concentration		when YO-PRO- Na ⁺ cor	1 added under low ncentration	FLV1_apo	FLV1_RTX C ₁	FLV1_RTX O ₁	FLV1_RTX C ₂	FLV1_DkTx-RTX
	1 perturbed Pl (EMD-24084)	miniV1 in co 4 partially bound RTX	mplex with RTX when 1 partially bound RTX	QX-314 added under lo 2 bound RTX in adjacent pockets	w Na ⁺ concentration 2 bound RTX in opposite pockets	3 bound RTX and 1 perturbed PI	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C₄	1 added under low ncentration 4 fully engaged RTX Co	_ FLV1_apo (EMD-23128) (PDB-7L2H)	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N)	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L)	FLV1_RTX C ₂ (EMD-24083) (PDB-7MZ5)	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M)
	1 perturbed Pl (EMD-24084) (PDB-7MZ6)	miniV1 in co 4 partially bound RTX (EMD-24085)	mplex with RTX when 1 partially bound RTX (EMD-24086)	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087)	2 bound RTX in opposite pockets (EMD-24091)	3 bound RTX and 1 perturbed PI (EMD-24088)	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089)	1 added under low ncentration 4 fully engaged RTX C ₂ (EMD-24090)	_ FLV1_apo (EMD-23128) (PDB-7L2H)	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N)	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L)	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5)	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M)
Data Collection/Processing	1 perturbed PI (EMD-24084) (PDB-7MZ6)	miniV1 in co 4 partially bound RTX (EMD-24085) (PDB-7MZ7)	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9)	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA)	ow Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE)	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB)	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC)	1 added under low ncentration 4 fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD)	_ FLV1_apo (EMD-23128) (PDB-7L2H)	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N)	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L)	FLV1_RTX C ₂ (EMD-24083) (PDB-7MZ5)	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M)
Data Collection/Processing Microscope	1 perturbed Pl (EMD-24084) (PDB-7MZ6) Titan Krios	miniV1 in co 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios	ow Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios	1 added under low ncentration 4 fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios	FLV1_apo (EMD-23128) (PDB-7L2H)	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N)	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5)	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M)
Data Collection/Processing Microscope Detector Voltage (kV)	1 perturbed Pl (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300	miniV1 in co 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300	bw Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300	1 added under low ncentration 4 fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200
Data Collection/Processing Microscope Detector Voltage (kV) Magnification	1 perturbed PI (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000	miniV1 in con 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 0.8 to 2.0	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 0.8 to 2.0	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 0.8 to 2.0	w Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 0.8 to 2.0	3 bound RTX and 1 perturbed Pl (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 0.8 to 2.0	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000	1 added under low ncentration 4 fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 0.8 to 2.0	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (µm) Pixel Size (Å)	1 perturbed Pl (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834	miniV1 in co 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834	bw Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834	1 added under low ncentration 4 fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (μm) Pixel Size (Å) Total Electron Dose (e ⁻ /Å ²)	1 perturbed Pl (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66	miniV1 in co 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6	bw Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66	1 added under low ncentration 4 fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4	FLV1_RTX C ₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (μm) Pixel Size (Å) Total Electron Dose (e ⁻ /Å ²) Exposure Time (s) Number of Images	1 perturbed Pl (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427	miniV1 in co 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 6 2427	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427	bw Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 6 2427	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 6 2783	1 added under low ncentration 4 fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 2.4 1174
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (µm) Pixel Size (Å) Total Electron Dose (e ⁻ /Å ²) Exposure Time (s) Number of Images Number of Frames/Image Symmetry imposed	1 perturbed Pl (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1	miniV1 in co 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1	bw Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1	3 bound RTX and 1 perturbed Pl (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4	1 added under low ncentration 4 fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022 100 C4	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 1174 120 C4
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (µm) Pixel Size (Å) Total Electron Dose (e ⁻ /Å ²) Exposure Time (s) Number of Images Number of Frames/Image Symmetry imposed Initial Particle Number	1 perturbed Pl (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229	miniV1 in co 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229	bw Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933	1 added under low ncentration 4 fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022 100 C4 2,014,065	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 1174 120 C4 818,141
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (µm) Pixel Size (Å) Total Electron Dose (e ⁻ /Å ²) Exposure Time (s) Number of Images Number of Frames/Image Symmetry imposed Initial Particle Number Final Particle Number Map resolution (Å)	1 perturbed Pl (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 61,712 2.91	miniV1 in co 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 23,122 3.35	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 38,184 3.18	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 19,877 3.46	bw Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 10,873 3.42	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 18,122 3.72	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 30,401 3.03	1 added under low ncentration 4 fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 42,542 2.9	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022 100 C4 2,014,065 151,505 2.63	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 24,855 3.09	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 29,314 3.42	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 81,361 2.76	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 1174 120 C4 818,141 36,689 3.84
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (μm) Pixel Size (Å) Total Electron Dose (e ⁻ /Å ²) Exposure Time (s) Number of Images Number of Images Number of Frames/Image Symmetry imposed Initial Particle Number Final Particle Number Final Particle Number Map resolution (Å) FSC threshold	1 perturbed Pl (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 61,712 2.91 0.143	miniV1 in co 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 6 2427 120 0.834 66 6 2427 120 0.143	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 38,184 3.18 0.143	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 19,877 3.46 0.143	bw Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 10,873 3.42 0.143	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 18,122 3.72 0.143	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 30,401 3.03 0.143	1 added under low ncentration 4 fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 42,542 2.9 0.143	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022 100 C4 2,014,065 151,505 2.63 0.143	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 24,855 3.09 0.143	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 29,314 3.42 0.143	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 81,361 2.76 0.143	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 1174 120 C4 818,141 36,689 3.84 0.143
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (µm) Pixel Size (Å) Total Electron Dose (e ⁻ /Å ²) Exposure Time (s) Number of Images Number of Frames/Image Symmetry imposed Initial Particle Number Final Particle Number Final Particle Number Map resolution (Å) FSC threshold	1 perturbed Pl (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 61,712 2.91 0.143	miniV1 in co 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 23,122 3.35 0.143	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 38,184 3.18 0.143	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 19,877 3.46 0.143	bw Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 10,873 3.42 0.143	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 18,122 3.72 0.143	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 30,401 3.03 0.143	1 added under low <u>ncentration</u> 4 fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 42,542 2.9 0.143	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022 100 C4 2,014,065 151,505 2.63 0.143	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 24,855 3.09 0.143	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 29,314 3.42 0.143	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 81,361 2.76 0.143	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 1174 120 C4 818,141 36,689 3.84 0.143
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (µm) Pixel Size (Å) Total Electron Dose (e ⁻ /Å ²) Exposure Time (s) Number of Images Number of Frames/Image Symmetry imposed Initial Particle Number Final Particle Number Final Particle Number Map resolution (Å) FSC threshold Refinement Initial model used (PDB code) Model resolution (Å)	1 perturbed Pl (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 61,712 2.91 0.143 3J5P 3	miniV1 in co 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 23,122 3.35 0.143 3J5P 3.5	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 38,184 3.18 0.143 3J5P 3.2	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 19,877 3.46 0.143 3J5P 3.6	bw Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 10,873 3.42 0.143 3J5P 3.6	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 18,122 3.72 0.143	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 30,401 3.03 0.143	1 added under low <u>ncentration</u> 4 fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 42,542 2.9 0.143 3J5P 2.9	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022 100 C4 2,014,065 151,505 2.63 0.143 3J5P 2.7	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 24,855 3.09 0.143 3J5P 3.3	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 29,314 3.42 0.143	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 81,361 2.76 0.143 3J5P 2.9	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 1174 120 C4 818,141 36,689 3.84 0.143 3J5P 4
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (µm) Pixel Size (Å) Total Electron Dose (e ⁻ /Å ²) Exposure Time (s) Number of Images Number of Frames/Image Symmetry imposed Initial Particle Number Final Particle Number Final Particle Number Final Particle Number Map resolution (Å) FSC threshold	1 perturbed PI (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 61,712 2.91 0.143 3J5P 3 0.5	miniV1 in col 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 62 2427 120 C1 2,160,229 23,122 3.35 0.143	Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 62 2427 120 C1 2,160,229 38,184 3.18 0.143	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 19,877 3.46 0.143 3J5P 3.6 0.5	bw Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 10,873 3.42 0.143 3J5P 3.6 0.5	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 6 2427 120 C1 2,160,229 18,122 3.72 0.143 3J5P 3.8 0.5	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 30,401 3.03 0.143 3J5P 3.2 0.5	1 added under low <u>ncentration</u> 4 fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 42,542 2.9 0.143 3J5P 2.9 0.5	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022 100 C4 2,014,065 151,505 2.63 0.143 3J5P 2.7 0.5	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 24,855 3.09 0.143 3J5P 3.3 0.5	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 29,314 3.42 0.143 3J5P 3.7 0.5	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 81,361 2.76 0.143 3J5P 2.9 0.5	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 1174 120 C4 818,141 36,689 3.84 0.143 3J5P 4 0.5
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (μm) Pixel Size (Å) Total Electron Dose (e ⁻ /Å ²) Exposure Time (s) Number of Images Number of Frames/Image Symmetry imposed Initial Particle Number Final Particle Number Final Particle Number Final Particle Number Final Particle Number Map resolution (Å) FSC threshold Refinement Initial model used (PDB code) Model resolution (Å) FSC threshold Map sharpening <i>B</i> factor (Å ²) Model composition	1 perturbed PI (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 61,712 2.91 0.143 3J5P 3 0.5 90	miniV1 in co 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 23,122 3.35 0.143 3J5P 3.5 0.5 105	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 38,184 3.18 0.143 3J5P 3.2 0.5 85	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 19,877 3.46 0.143 3J5P 3.6 0.5 86	bw Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 10,873 3.42 0.143 3J5P 3.6 0.5 82	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 18,122 3.72 0.143 3J5P 3.8 0.5 98	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 30,401 3.03 0.143 3J5P 3.2 0.5 99	A added under low ncentration 4 fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 42,542 2.9 0.143 3J5P 2.9 0.5 91	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022 100 C4 2,014,065 151,505 2.63 0.143 3J5P 2.7 0.5 -94	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 24,855 3.09 0.143 3J5P 3.3 0.5 -99	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 29,314 3.42 0.143 3J5P 3.7 0.5 -136	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 81,361 2.76 0.143 3J5P 2.9 0.5 -99	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 1174 120 C4 818,141 36,689 3.84 0.143 3J5P 4 0.5 -176
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (μm) Pixel Size (Å) Total Electron Dose (e ⁻ /Å ²) Exposure Time (s) Number of Images Number of Frames/Image Symmetry imposed Initial Particle Number Final Particle Number Final Particle Number Final Particle Number Map resolution (Å) FSC threshold Refinement Initial model used (PDB code) Model resolution (Å) FSC threshold Map sharpening <i>B</i> factor (Å ²) Model composition Non-hydrogen atoms	1 perturbed PI (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 61,712 2.91 0.143 3J5P 3 0.5 90 20381	miniV1 in co 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 23,122 3.35 0.143 3J5P 3.5 0.5 105 17893 2426	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 38,184 3.18 0.143 3J5P 3.2 0.5 85 18644	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 19,877 3.46 0.143 3J5P 3.6 0.5 86 18246 2005	2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 10,873 3.42 0.143 3J5P 3.6 0.5 82	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 18,122 3.72 0.143 3J5P 3.8 0.5 98 17611	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 30,401 3.03 0.143 3J5P 3.2 0.5 99 17338	1 added under low <u>ncentration</u> 4 fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 42,542 2.9 0.143 3J5P 2.9 0.5 91 17490	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022 100 C4 2,014,065 151,505 2.63 0.143 3J5P 2.7 0.5 -94 17560	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 24,855 3.09 0.143 3J5P 3.3 0.5 -99 14728	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 29,314 3.42 0.143 3J5P 3.7 0.5 -136 14256	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 81,361 2.76 0.143 3J5P 2.9 0.5 -99 14295	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 1174 120 C4 818,141 36,689 3.84 0.143 3J5P 4 0.5 -176 15985
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (μm) Pixel Size (Å) Total Electron Dose (e ⁻ /Å ²) Exposure Time (s) Number of Images Number of Frames/Image Symmetry imposed Initial Particle Number Final Particle Number Final Particle Number Final Particle Number Map resolution (Å) FSC threshold Refinement Initial model used (PDB code) Model resolution (Å) FSC threshold Map sharpening <i>B</i> factor (Å ²) Model composition Non-hydrogen atoms Protein residues water	1 perturbed PI (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 61,712 2.91 0.143 3J5P 3 0.5 90 20381 2476 0	miniV1 in col 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 23,122 3.35 0.143	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 38,184 3.18 0.143 3J5P 3.2 0.5 85 18644 2278 0	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 19,877 3.46 0.143 3J5P 3.6 0.5 86 18246 2229 0	bw Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 10,873 3.42 0.143 3J5P 3.6 0.5 82 17622 2147 0	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 18,122 3.72 0.143 3J5P 3.8 0.5 98 17611 2145 0	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 30,401 3.03 0.143 3J5P 3.2 0.5 99 17338 2112 0	1 added under low <u>ncentration</u> 4 fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 42,542 2.9 0.143 3J5P 2.9 0.5 91 17490 2128 4	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022 100 C4 2,014,065 151,505 2.63 0.143 3J5P 2.7 0.5 -94 17560 2123 0	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 24,855 3.09 0.143 3J5P 3.3 0.5 -99 14728 1780 0	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 29,314 3.42 0.143 3J5P 3.7 0.5 -136 14256 1716 0	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 81,361 2.76 0.143 3J5P 2.9 0.5 -99 14295 1724 0	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 1174 120 C4 818,141 36,689 3.84 0.143 3J5P 4 0.5 -176 15985 1934 0
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (μ m) Pixel Size (Å) Total Electron Dose (e ⁻ /Å ²) Exposure Time (s) Number of Images Number of Frames/Image Symmetry imposed Initial Particle Number Final Particle Number Final Particle Number Map resolution (Å) FSC threshold Refinement Initial model used (PDB code) Model resolution (Å) FSC threshold Map sharpening <i>B</i> factor (Å ²) Model composition Non-hydrogen atoms Protein residues water Ligands D factor (Å ²)	1 perturbed PI (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 61,712 2.91 0.143 3J5P 3 0.5 90 20381 2476 0 9	miniV1 in col 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 23,122 3.35 0.143	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 38,184 3.18 0.143 3J5P 3.2 0.5 85 18644 2278 0 5	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 19,877 3.46 0.143 3J5P 3.6 0.5 86 18246 2229 0 5	by Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 10,873 3.42 0.143 3J5P 3.6 0.5 82 17622 2147 0 5	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 18,122 3.72 0.143 3J5P 3.8 0.5 98 17611 2145 0 5	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 30,401 3.03 0.143 3J5P 3.2 0.5 99 17338 2112 0 6	1 added under low ncentration 4 fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 42,542 2.9 0.143 3J5P 2.9 0.5 91 17490 2128 4 6	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022 100 C4 2,014,065 151,505 2.63 0.143 3J5P 2.7 0.5 -94 17560 2123 0 9	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 24,855 3.09 0.143 3J5P 3.3 0.5 -99 14728 1780 0 4	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 29,314 3.42 0.143 3J5P 3.7 0.5 -136 14256 1716 0 4	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 81,361 2.76 0.143 3J5P 2.9 0.5 -99 14295 1724 0 7	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 1174 120 C4 818,141 36,689 3.84 0.143 3J5P 4 0.5 -176 15985 1934 0 7
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (μ m) Pixel Size (Å) Total Electron Dose (e ⁻ /Å ²) Exposure Time (s) Number of Images Number of Frames/Image Symmetry imposed Initial Particle Number Final Particle Number Final Particle Number Map resolution (Å) FSC threshold Refinement Initial model used (PDB code) Model resolution (Å) FSC threshold Map sharpening <i>B</i> factor (Å ²) Model composition Non-hydrogen atoms Protein residues water Ligands <i>B</i> factors (Å ²) Protein	1 perturbed Pl (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 62427 120 C1 2,160,229 61,712 2,91 0.143 3J5P 3 0.5 90 20381 2476 0 9 84	miniV1 in col 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 23,122 3.35 0.143 3J5P 3.5 0.5 105 17893 2180 0 5 109	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 38,184 3.18 0.143 3J5P 3.2 0.5 85 18644 2278 0 5 104	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 19,877 3.46 0.143 3J5P 3.6 0.5 86 18246 2229 0 5 123	Dew Na* concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 6 2427 120 C1 2,160,229 10,873 3.42 0.143 3J5P 3.6 0.5 82 10,873 3.42 0.143 3J5P 3.6 0.5 82 17622 2147 0 5 10 17622 2147 0 5 10 107	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 6 2427 120 C1 2,160,229 18,122 3.72 0.143 3J5P 3.8 0.5 98 17611 2145 0 5	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 30,401 3.03 0.143 3J5P 3.2 0.5 99 17338 2112 0 6	1 added under low 1 added under low ncentration 1 4 fully engaged RTX C2 (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 42,542 2.9 0.143 3J5P 2.9 0.5 91 17490 2128 4 6 88	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022 100 C4 2,014,065 151,505 2.63 0.143 3J5P 2.7 0.5 -94 17560 2123 0 9 80	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 24,855 3.09 0.143 3J5P 3.3 0.5 -99 14728 1780 0 4 97	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 29,314 3.42 0.143 3J5P 3.7 0.5 -136 14256 1716 0 4 98	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 81,361 2.76 0.143 3J5P 2.9 0.5 -99 14295 1724 0 7	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 1174 120 C4 818,141 36,689 3.84 0.143 3J5P 4 0.5 -176 15985 1934 0 7
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (μ m) Pixel Size (Å) Total Electron Dose (e ⁻ /Å ²) Exposure Time (s) Number of Images Number of Frames/Image Symmetry imposed Initial Particle Number Final Particle Number Final Particle Number Map resolution (Å) FSC threshold Refinement Initial model used (PDB code) Model resolution (Å) FSC threshold Map sharpening <i>B</i> factor (Å ²) Model composition Non-hydrogen atoms Protein residues water Ligands <i>B</i> factors (Å ²) Protein Ligand water	1 perturbed PI (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 61,712 2.91 0.143 3J5P 3 0.5 90 20381 2476 0 9 84 63 p/2	miniV1 in col 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 23,122 3.35 0.143 3J5P 3.5 0.5 105 17893 2180 0 5 109 83	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 38,184 3.18 0.143 3J5P 3.2 0.5 85 18644 2278 0 5 104 78 p/2	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 19,877 3.46 0.143 3J5P 3.6 0.5 86 18246 2229 0 5 123 102 p/2	bw Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 10,873 3.42 0.143 3J5P 3.6 0.5 82 17622 2147 0 5 107 85 p/2	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 6 2427 120 C1 2,160,229 18,122 3.72 0.143 3J5P 3.8 0.5 98 17611 2145 0 5	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 30,401 3.03 0.143 3J5P 3.2 0.5 99 17338 2112 0 6 102 65 n/2	A fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 42,542 2.9 0.143 3J5P 2.9 0.5 91 17490 2128 4 6 88 58 51	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022 100 C4 2,014,065 151,505 2.63 0.143 3J5P 2.7 0.5 -94 17560 2123 0 9 80 48 p/2	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 24,855 3.09 0.143 3J5P 3.3 0.5 -99 14728 1780 0 4 97 70 p/2	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 29,314 3.42 0.143 3J5P 3.7 0.5 -136 14256 1716 0 4 98 65 p/2	FLV1_RTX C ₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 81,361 2.76 0.143 3J5P 2.9 0.5 -99 14295 1724 0 7	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 1174 120 C4 818,141 36,689 3.84 0.143 3J5P 4 0.5 -176 15985 1934 0 7
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (μm) Pixel Size (Å) Total Electron Dose (e ⁻ /Å ²) Exposure Time (s) Number of Images Number of Frames/Image Symmetry imposed Initial Particle Number Final Particle Number Final Particle Number Final Particle Number Map resolution (Å) FSC threshold Refinement Initial model used (PDB code) Model resolution (Å) FSC threshold Map sharpening <i>B</i> factor (Å ²) Model composition Non-hydrogen atoms Protein residues water Ligands <i>B</i> factors (Å ²) Protein Ligand water R.m.s. deviations	1 perturbed PI (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 61,712 2.91 0.143 3J5P 3 0.5 90 20381 2476 0 9 84 63 n/a	miniV1 in col 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 23,122 3.35 0.143 3J5P 3.5 0.5 105 17893 2180 0 5 109 83 n/a	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 38,184 3.18 0.143 3J5P 3.2 0.5 85 18644 2278 0 5 104 78 n/a	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 19,877 3.46 0.143 3J5P 3.6 0.5 86 18246 2229 0 5 123 102 n/a	bw Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 10,873 3.42 0.143 3J5P 3.6 0.5 82 17622 2147 0 5 107 85 n/a	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 18,122 3.72 0.143 3J5P 3.8 0.5 98 17611 2145 0 5	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 30,401 3.03 0.143 3J5P 3.2 0.5 99 17338 2112 0 6 102 65 n/a	A fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 42,542 2.9 0.143 3J5P 2.9 0.143 3J5P 2.9 0.5 91 17490 2128 4 6 88 58 51	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022 100 C4 2,014,065 151,505 2.63 0.143 3J5P 2.7 0.5 -94 17560 2123 0 9 80 48 n/a	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 24,855 3.09 0.143 3J5P 3.3 0.5 -99 14728 1780 0 4 97 70 n/a	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 29,314 3.42 0.143 3J5P 3.7 0.5 -136 14256 1716 0 4 98 65 n/a	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 81,361 2.76 0.143 3J5P 2.9 0.5 -99 14295 1724 0 7	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 1174 120 C4 818,141 36,689 3.84 0.143 3J5P 4 0.5 -176 15985 1934 0 7
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (μ m) Pixel Size (Å) Total Electron Dose (e ⁻ /Å ²) Exposure Time (s) Number of Images Number of Frames/Image Symmetry imposed Initial Particle Number Final Particle Number Map resolution (Å) FSC threshold Refinement Initial model used (PDB code) Model resolution (Å) FSC threshold Map sharpening <i>B</i> factor (Å ²) Model composition Non-hydrogen atoms Protein residues water Ligands <i>B</i> factors (Å ²) Protein Ligand water R.m.s. deviations Bond lengths (Å) Bond angles (°)	1 perturbed Pl (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 61,712 2.91 0.143 3J5P 3 0.5 90 20381 2476 0 9 20381 2476 0 9 84 63 n/a	miniV1 in col 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 23,122 3.35 0.143 3J5P 3.5 0.5 105 17893 2180 0 5 109 83 0.012 1.281	I partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 38,184 3.18 0.143 3J5P 3.2 0.5 85 3J5P 3.2 0.5 85 3J5P 3.2 0.5 85 18644 2278 0 5 18644 2278 0 5 104 78 n/a 0.01 1.14	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 19,877 3.46 0.143 3J5P 3.6 0.5 86 18246 2229 0 5 123 102 n/a 0.009 1.152	Dew Na* concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 6 2427 120 C1 2,160,229 10,873 3.42 0.143 3J5P 3.6 0.5 82 10,873 3.42 0.143 3J5P 3.6 0.5 82 17622 2147 0 5 107 85 n/a 107 85 n/a 0.009 1.166	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 18,122 3.72 0.143 3J5P 3.8 0.5 98 3J5P 3.8 0.5 98 3J5P 3.8 0.5 98 17611 2145 0 5 17611 2145 0 5 134 112 n/a 0.01 1.204	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 30,401 3.03 0.143 3J5P 3.2 0.5 99 17338 2112 0 6 102 65 n/a 0.01 1.22	A fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 42,542 2.9 0.143 3J5P 2.9 0.5 91 17490 2128 4 6 88 51 0.007 1.171	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022 100 C4 2,014,065 151,505 2.63 0.143 3J5P 2.7 0.5 -94 17560 2123 0 9 80 48 n/a 0.005 1.067	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 24,855 3.09 0.143 3J5P 3.3 0.5 -99 14728 1780 0 4 97 70 n/a 0.008 1.21	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 29,314 3.42 0.143 3J5P 3.7 0.5 -136 14256 1716 0 4 98 65 n/a 0.015 1.404	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 81,361 2.76 0.143 3J5P 2.9 0.5 -99 14295 1724 0 7 7 41 n/a 0.013 1.196	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 1174 120 C4 818,141 36,689 3.84 0.143 3J5P 4 0.5 -176 15985 1934 0 7 105 85 n/a 0.007 1.158
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (μ m) Pixel Size (Å) Total Electron Dose (e ⁷ /Å ²) Exposure Time (s) Number of Images Number of Frames/Image Symmetry imposed Initial Particle Number Final Particle Number Map resolution (Å) FSC threshold Refinement Initial model used (PDB code) Model resolution (Å) FSC threshold Map sharpening <i>B</i> factor (Å ²) Model composition Non-hydrogen atoms Protein residues water Ligands <i>B</i> factors (Å ²) Protein Ligand water R.m.s. deviations Bond lengths (Å) Bond angles (°) Validation MelDeckie	1 perturbed PI (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 61,712 2.91 0.143 3J5P 3 0.5 90 20381 2476 0 9 20381 2476 0 9 84 63 n/a 0.009 1.116	miniV1 in co 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 23,122 3.35 0.143 3J5P 3.5 0.5 105 17893 2180 0 5 109 83 n/a 0.012 1.281	mplex with RTX when 1 partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 38,184 3.18 0.143 335P 3.2 0.5 85 3J5P 3.2 0.5 85 3J5P 3.2 0.5 85 18644 2278 0 5 104 78 n/a 0.01 1.14	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 19,877 3.46 0.143 3J5P 3.6 0.5 86 18246 2229 0 5 123 102 n/a 0.009 1.152	Dew Na* concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 6 2427 120 C1 2,160,229 10,873 3.42 0.143 3J5P 3.6 0.5 82 10,873 3.42 0.143 3J5P 3.6 0.5 82 17622 2147 0 5 17622 2147 0 5 107 85 n/a 0.009 1.166	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 18,122 3.72 0.143 3J5P 3.8 0.5 98 17611 2145 0 5 134 112 n/a 0.01 1.204	when YO-PRO- Na ⁺ cor 4 fully engaged RTX C₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 30,401 3.03 0.143 3J5P 3.2 0.5 99 17338 2112 0 6 102 65 n/a 0.01 1.22	A added under low ncentration 4 fully engaged RTX C ₂ (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 42,542 2.9 0.143 3J5P 2.9 0.5 91 17490 2128 4 6 88 51 0.007 1.171	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022 100 C4 2,014,065 151,505 2.63 0.143 3J5P 2.7 0.5 -94 17560 2123 0 9 80 48 n/a 0.005 1.067	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 24,855 3.09 0.143 3J5P 3.3 0.5 -99 14728 1780 0 4 97 70 n/a 0.008 1.21	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 29,314 3.42 0.143 3J5P 3.7 0.5 -136 14256 1716 0 4 98 65 n/a 0.015 1.404	FLV1_RTX C ₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 81,361 2.76 0.143 3J5P 2.9 0.5 -99 14295 1724 0 7 7 41 n/a 0.013 1.196	FLV1_DKTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 1174 120 C4 818,141 36,689 3.84 0.143 3J5P 4 0.5 -176 15985 1934 0 7 105 85 n/a 0.007 1.158
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (µm) Pixel Size (Å) Total Electron Dose (e ⁻ /Å ²) Exposure Time (s) Number of Images Number of Frames/Image Symmetry imposed Initial Particle Number Final Particle Number Final Particle Number Map resolution (Å) FSC threshold Refinement Initial model used (PDB code) Model resolution (Å) FSC threshold Map sharpening <i>B</i> factor (Å ²) Model composition Non-hydrogen atoms Protein residues water Ligands <i>B</i> factors (Å ²) Protein Ligand water R.m.s. deviations Bond lengths (Å) Bond angles (°) Validation MolProbity score Clashscore	1 perturbed PI (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 61,712 2.91 0.143 3J5P 3 0.5 90 20381 2476 0 9 20381 2476 0 9 84 63 n/a 0.009 1.116	miniV1 in col 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 23,122 3.35 0.143 3J5P 3.5 0.5 105 17893 2180 0 5 105 17893 2180 0 5 109 83 0.012 1.281 1.27 1.4	I partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 38,184 3.18 0.143 63 12,160,229 38,184 3.18 0.143 3J5P 3.2 0.5 85 3J5P 3.2 0.5 85 18644 2278 0 5 104 78 n/a 0.01 1.14 1.25 1.23	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 19,877 3.46 0.143 3J5P 3.6 0.5 86 18246 2229 0 5 123 102 n/a 0.009 1.152 1.32 1.7	bw Na ⁺ concentration 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 10,873 3.42 0.143 3J5P 3.6 0.5 82 17622 2147 0 5 107 85 n/a 0.009 1.166 1.31 1.59	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 18,122 3.72 0.143 3J5P 3.8 0.5 98 17611 2145 0 5 134 112 n/a 0.01 1.204	when YO-PRO-Na ⁺ cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 30,401 3.03 0.143 3J5P 3.2 0.5 99 17338 2112 0 6 102 65 n/a 0.01 1.22 1.28 1.62	1 added under low ncentration 4 fully engaged RTX C_2 (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 42,542 2.9 0.143 3J5P 2.9 0.5 91 17490 2128 4 6 88 58 51 0.007 1.171 1.02 0.8	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022 100 C4 2,014,065 151,505 2.63 0.143 3J5P 2.7 0.5 -94 17560 2123 0 9 80 48 n/a 0.005 1.067 1.16 0.89	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 24,855 3.09 0.143 3J5P 3.3 0.5 -99 14728 1780 0 4 97 70 n/a 0.008 1.21 1.25 1.56	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 29,314 3.42 0.143 3J5P 3.7 0.5 -136 14256 1716 0 4 98 65 n/a 0.015 1.404 1.52 3.4	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 81,361 2.76 0.143 3J5P 2.9 0.5 -99 14295 1724 0 7 7 77 41 n/a 0.013 1.196 1.06 0.77	FLV1_DKTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 1174 120 C4 818,141 36,689 3.84 0.143 3J5P 4 0.5 -176 15985 1934 0 7 105 85 n/a 0.007 1.158 1.3 1.79
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (μ m) Pixel Size (Å) Total Electron Dose (e ⁻ /Å ²) Exposure Time (s) Number of Images Number of Frames/Image Symmetry imposed Initial Particle Number Final Particle Number Map resolution (Å) FSC threshold Refinement Initial model used (PDB code) Model resolution (Å) FSC threshold Map sharpening <i>B</i> factor (Å ²) Model composition Non-hydrogen atoms Protein residues water Ligands <i>B</i> factors (Å ²) Protein Ligand water R.m.s. deviations Bond lengths (Å) Bond angles (°) Validation MolProbity score Clashscore Poor rotamers (%) Ramachandron plot	1 perturbed Pl (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 61,712 2.91 0.143 3J5P 3 0.5 90 20381 2476 0 90 20381 2476 0 90 20381 2476 0 90 20381 2476 0 9 3 .5 90	miniV1 in col 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 23,122 3.35 0.143 3J5P 3.5 0.5 105 17893 2180 0 5 105 17893 2180 0 5 109 83 0.012 1.281 1.27 1.4 0.41	I partially bound Titan Krios Gatan K3 300 105,000 0.8 to -2.0 0.834 66 62 2427 120 C1 2,160,229 38,184 3.18 0.143 3J5P 3.2 0.5 85 18644 2278 0 5 104 78 0.01 1.14 1.25 1.23 0.45	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 19,877 3.46 0.143 3J5P 3.6 0.5 86 18246 2229 0 5 123 102 n/a 0.009 1.152 1.32 1.7 0.66	Description 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 6 2427 120 C1 2,160,229 10,873 3.42 0.143 3J5P 3.6 0.5 82 10,873 3.42 0.143 3J5P 3.6 0.5 82 17622 2147 0 5 107 85 n/a 0,009 1.166 1.31 1.59 0.42	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 18,122 3.72 0.143 3J5P 3.8 0.5 98 17611 2145 0 5 98 17611 2145 0 5 98 17611 2145 0 5 98 17611 2145 0 5 134 112 n/a 0.01 1.204 1.32 1.65 0.84	when YO-PRO- Na ^{$+$} cor 4 fully engaged RTX C ₁ (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 30,401 3.03 0.143 3J5P 3.2 0.5 99 17338 2112 0 6 102 65 n/a 0.01 1.22 1.28 1.62 0.96	1 added under low ncentration 4 fully engaged RTX C_2 (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 42,542 2.9 0.143 3J5P 2.9 0.5 91 17490 2128 4 6 88 51 0.007 1.171 1.02 0.8 0.59	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022 100 C4 2,014,065 151,505 2.63 0.143 3J5P 2.7 0.5 -94 17560 2123 0 9 80 48 n/a 0.005 1.067 1.16 0.89 0.53	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 24,855 3.09 0.143 3J5P 3.3 0.5 -99 14728 1780 0 4 97 70 n/a 0.008 1.21 1.25 1.56 0.25	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 29,314 3.42 0.143 3J5P 3.7 0.5 -136 14256 1716 0 4 98 65 n/a 0.015 1.404 1.52 3.4 0.06	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 81,361 2.76 0.143 3J5P 2.9 0.5 -99 14295 1724 0 7 7 41 n/a 0.013 1.196 1.06 0.77 0.77	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 1174 120 C4 818,141 36,689 3.84 0.143 3J5P 4 0.5 -176 15985 1934 0 7 105 85 n/a 0.007 1.158 1.3 1.79 0.75
Data Collection/Processing Microscope Detector Voltage (kV) Magnification Defocus Range (µm) Pixel Size (Å) Total Electron Dose (e'/Å ²) Exposure Time (s) Number of Images Number of Frames/Image Symmetry imposed Initial Particle Number Final Particle Number Final Particle Number Map resolution (Å) FSC threshold Refinement Initial model used (PDB code) Model resolution (Å) FSC threshold Map sharpening <i>B</i> factor (Å ²) Model composition Non-hydrogen atoms Protein residues water Ligands <i>B</i> factors (Å ²) Protein Ligand water R.m.s. deviations Bond lengths (Å) Bond angles (°) Validation MolProbity score Clashscore Poor rotamers (%) Ramachandran plot Favored (%)	1 perturbed Pl (EMD-24084) (PDB-7MZ6) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 61,712 2.91 0.143 3J5P 3 0.5 90 3J5P 3 0.5 90 3J5P 3 0.5 90 20381 2476 0 9 3J5P 3 0.5 90 84 63 n/a 0.009 1.116 1.22 1.16 0.55 94.25	miniV1 in co 4 partially bound RTX (EMD-24085) (PDB-7MZ7) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 6 2427 120 C1 2,160,229 23,122 3.35 0.143 3J5P 3.5 0.5 105 17893 2180 0 5 17893 2180 0 5 109 83 n/a 0.012 1.281 1.27 1.4 0.41 94.11	I partially bound RTX (EMD-24086) (PDB-7MZ9) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 62 2427 120 C1 2,160,229 38,184 3.18 0.143 3J5P 3.2 0.5 85 18644 2278 0 5 104 78 0.01 1.14 1.25 1.23 0.39.96	QX-314 added under lo 2 bound RTX in adjacent pockets (EMD-24087) (PDB-7MZA) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 19,877 3.46 0.143 3J5P 3.6 0.5 86 18246 2229 0 5 123 102 n/a 0.009 1.152 1.32 1.7 0.66 94.01	Description 2 bound RTX in opposite pockets (EMD-24091) (PDB-7MZE) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 6 2427 120 C1 2,160,229 10,873 3.42 0.143 3J5P 3.6 0.5 82 10,873 3.42 0.143 3J5P 3.6 0.5 82 17622 2147 0 5 107 85 n/a 0.009 1.166 1.31 1.59 0.42 93.92	3 bound RTX and 1 perturbed PI (EMD-24088) (PDB-7MZB) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2427 120 C1 2,160,229 18,122 3.72 0.143 3J5P 3.8 0.5 98 17611 2145 0 5 98 17611 2145 0 5 98 17611 2145 0 5 98 17611 2145 0 5 134 112 n/a 0.01 1.204 1.32 1.65 0.84 94.01	when YO-PRO-Na ⁺ cor 4 fully engaged RTX C1 (EMD-24089) (PDB-7MZC) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 62 2,361,933 30,401 3.03 0.143 3J5P 3.2 0.5 99 17338 2112 0 6 102 65 n/a 0.01 1.22 1.28 1.62 0.96 94.58	1 added under low ncentration 4 fully engaged RTX C_2 (EMD-24090) (PDB-7MZD) Titan Krios Gatan K3 300 105,000 -0.8 to -2.0 0.834 66 6 2783 120 C4 2,361,933 42,542 2.9 0.143 3J5P 2.9 0.5 91 17490 2128 4 6 88 58 51 0.007 1.171 1.02 0.8 0.59 96.04	FLV1_apo (EMD-23128) (PDB-7L2H) Titan Krios Gatan K2 300 29,000 -1.0 to -2.0 0.822 74 10 4022 100 C4 2,014,065 151,505 2.63 0.143 3J5P 2.7 0.5 -94 17560 2123 0 9 80 48 n/a 0.005 1.067 1.16 0.89 0.53 94.28	FLV1_RTX C ₁ (EMD-23134) (PDB-7L2N) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 24,855 3.09 0.143 3J5P 3.3 0.5 -99 14728 1780 0 4 97 70 n/a 0.008 1.21 1.25 1.56 0.25 94.9	FLV1_RTX O ₁ (EMD-23132) (PDB-7L2L) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 29,314 3.42 0.143 3J5P 3.7 0.5 -136 14256 1716 0 4 98 65 n/a 0.015 1.404 1.52 3.4 0.06 94.33	FLV1_RTX C₂ (EMD-24083) (PDB-7MZ5) Titan Krios Gatan K2 300 130,000 -1.0 to -2.0 1.032 70.4 10 4109 50 C4 3,409,673 81,361 2.76 0.143 3J5P 2.9 0.5 -99 14295 1724 0 7 14295 1724 0 7 7 41 n/a 0.013 1.196	FLV1_DkTx-RTX (EMD-23133) (PDB-7L2M) Talos Arctica Gatan K3 200 36,000 -0.5 to -3.0 1.14 55.4 2.4 1174 120 C4 818,141 36,689 3.84 0.143 3J5P 4 0.5 -176 15985 1934 0 7 105 85 n/a 0.007 1.158 1.3 1.79 0.75 94.67

Table S1. Cryo-EM data collection, image processing, and validation statistics, Related to STAR Methods