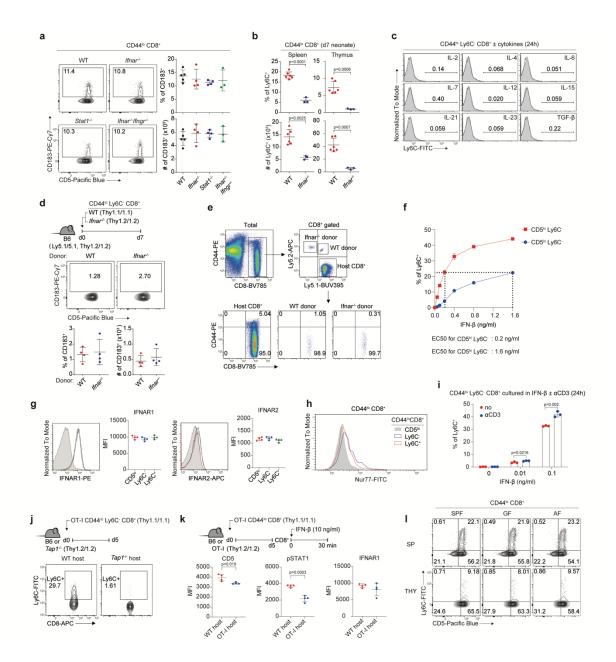

Supplementary Information

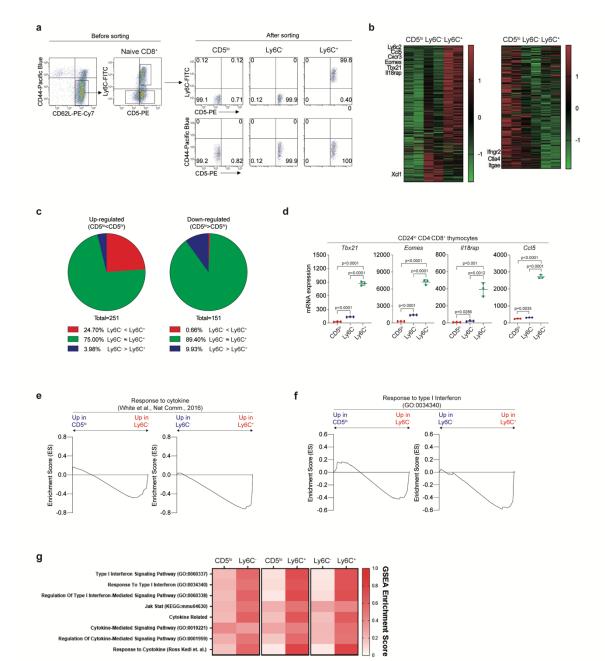
Self-reactivity controls functional diversity of naive CD8⁺ T cells by co-opting tonic type I interferon

Young-Jun Ju, Sung-Woo Lee, Yoon-Chul Kye, Gil-Woo Lee, Hee-Ok Kim, Cheol-Heui Yun, and Jae-Ho Cho



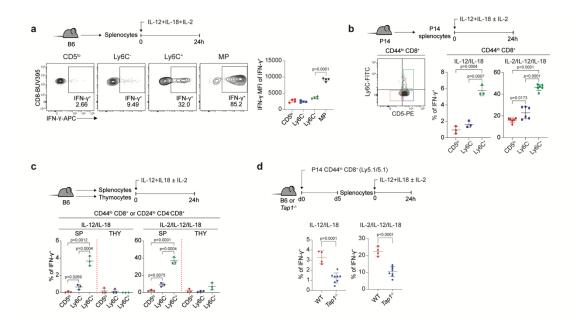
Supplementary Figure 1

Phenotypic heterogeneity of peripheral naive CD8⁺ T cells

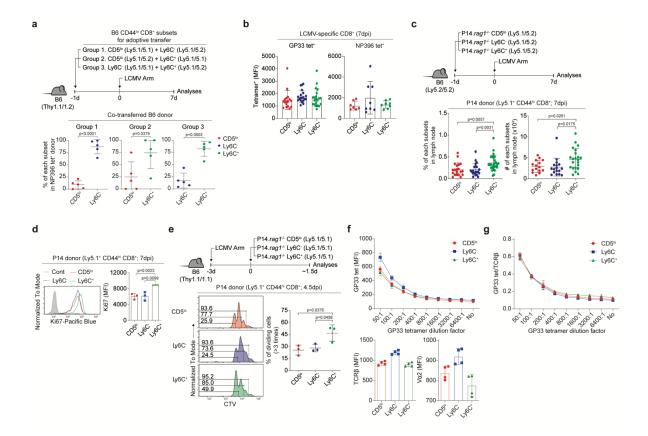

a, Expression of various surface molecules on CD5^{lo} and CD5^{hi} B6 naive CD8⁺ T cells (n=7 mice for each group). **b**, Levels of CD44, CD122, Ly6C and CD183 expression in B6 CD8⁺ T cell subsets indicated (n=3 mice for each group). **c**, Proliferation of the indicated subsets of B6 CD8⁺ T cells after stimulation with plate-bound anti-CD3/CD28, IL-7 or IL-15 in vitro. **d**, IFN-

 γ production of the indicated subsets of B6 CD8⁺ T cells after 5h PMA and ionomycin stimulation in vitro (n=6 mice for each group). **e**, Percentage of CD103⁻ cells in CD24^{lo} CD5^{lo}, CD24^{lo} CD5^{hi,} and CD24^{hi} CD4⁻CD8⁺ B6 thymocytes (n=3 mice for each group). **f**, Splenic and thymic CD183⁺ B6 naive CD8⁺ T cell changes over time after birth (n=3 mice for each group). **g**, Proportions of B6 naive CD8⁺ T cell subsets in peripheral lymphoid organs of young adult (4-8 wk) and aged (>1 yr) mice (PLN; peripheral lymph node, MLN; mesenteric lymph node, SP; spleen) (n=3 mice for each group). **h**, Expressions of several TCR variable chain repertoire in B6 naive CD8⁺ T cell subsets (n=3 mice for each group). Statistical significance was confirmed by two-tailed unpaired Student's t-test. Results are shown as mean ± SD. Data representative of 2-3 independent experiments. Source data are provided as a Source Data file.

Effect of type I IFN on Ly6C, CD183, and CD103 expression in naive CD8⁺ T cells

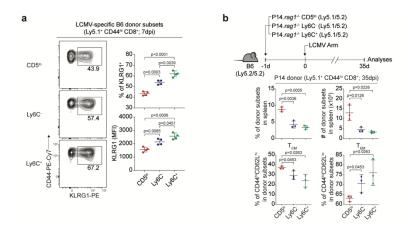

a, Percentage and absolute number of CD183⁺ cells in spleen from different type I IFN signal deficient mice (n=5 for WT, n=4 for *Ifnar*^{-/-}, n=4 for *Stat1*^{-/-}, n=3 for *Ifnar*^{-/-} *Ifngr*^{-/-} mice). **b**, Percentage and absolute of Ly6C⁺ cells in spleen and thymus from WT and *Ifnar*^{-/-} neonatal mice (n=6 for WT, n=3 *Ifnar*^{-/-} mice). **c**, Percentage of induced Ly6C⁺ cells from B6 CD44^{lo}Ly6C⁻ cells cultured with various cytokines. **d** and **e**, Percentage and absolute of CD183⁺ CD8⁺ T cells (n=4 mice for each group) (**d**) and CD44 expression profile (**e**) from WT and *lfnar*^{-/-} CD44^{lo}Ly6C⁻ donor cells. **f**, Percentage of induced Ly6C⁺ cells from B6 CD44^{lo}Ly6C⁻ CD5^{lo} and CD5^{hi} cells cultured with various amounts of IFN- β (n=3 mice for each group). **g** and **h** Expression of IFNAR1 and IFNAR2 (n=4 mice for each group) (**g**) and Nur77 expression (**h**) on CD5^{lo}, Ly6C⁻, and Ly6C⁺ naive CD8⁺ T cells. **i**, Percentage of induced Ly6C⁺ cells from CD5^{lo} and Ly6C⁻ B6 naive T cells cultured with IFN- β with or without soluble anti-CD3 (n=3 mice for each group). **j**, Percentage of Ly6C⁺ cells induced from Ly6C⁻ naive OT-I CD8⁺ T cells transferred to WT or *Tap1*^{-/-} hosts. **k**, Levels of CD5, phospho-STAT1 and IFNAR1 expression in OT-I donor cells transferred to B6 or OT-I hosts (n=4 mice for each group). **l**, Percentage of naive CD8⁺ T cell subsets from SPF, GF, and AF mice. Statistical significance was confirmed by two-tailed unpaired Student's t-test. Results are shown as mean ± SD. Data representative of 2-3 independent experiments. Source data are provided as a Source Data file.

Different transcriptomes in distinct subsets of naive CD8⁺ T cells


a, Gating strategy and purity before and after cell sorting. **b**, Microarray of CD5^{lo}, Ly6C⁻ and Ly6C⁺ cells were performed to generate the heat map that shows genes that are either upregulated (n=328 genes) (left panel) or down- (n=151 genes) (right panel) in CD5^{hi} cells compared to CD5^{lo} cells. The color scale is based on Z-score scaling from -1.75 (Green) to 1.75 (Red). **c**, Pie charts illustrating genes that are regulated similarly or differently in Ly6C⁻

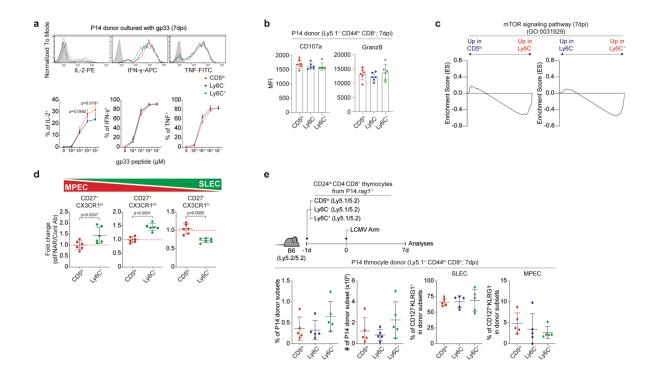
and Ly6C⁺ cells in up- (left panel) or down-regulated (right panel) genes. **d**, RT-PCR results of *Tbx21, Eomes, Il18rap, and Ccl5* genes in CD5¹⁰, Ly6C⁻ and Ly6C⁺ CD24¹⁰CD4⁻CD8⁺ thymocytes (n=3 mice for each group). Y-axis represent relative mRNA expression. Statistical significance was confirmed by two-tailed unpaired Student's t-test. Results are shown as mean \pm SD. Data representative of two independent experiments. **e** and **f**, GSEA results between CD5¹⁰ and Ly6C⁻, or Ly6C⁻ and Ly6C⁺ cells for pathway: Response to cytokine (White et al., Nat Comm., 2016) (**e**) and Response to type I IFN (GO:0034340) (**f**). **g**, GSEA were performed between CD5¹⁰ and Ly6C⁻, CD5¹⁰ and Ly6C⁺, or Ly6C⁻ and Ly6C⁺ cells for indicated pathways. GSEA Enrichment Score (ES) represent either minimum or maximum running enrichment score. The color scale is based on ES, scaling from 0 (White) to 1.0 (Red). Source data are provided as a Source Data file.

Innate function of splenic vs. thymic subsets of naive CD8⁺ T cells

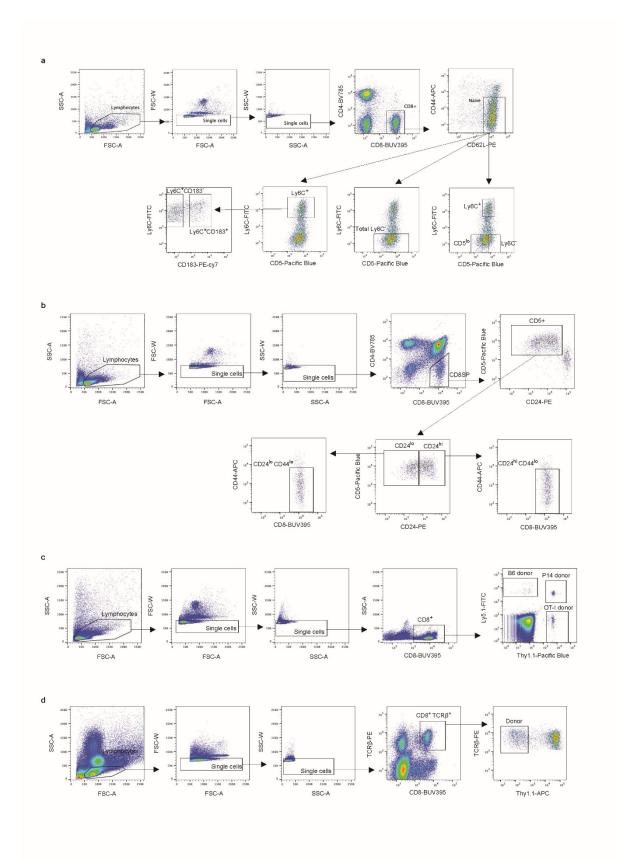

a, IFN- γ production of B6 naive CD5^{lo}, Ly6C⁻, and Ly6C⁺ and MP CD8⁺ T cells after culture with IL-12/IL-18 (n=4 mice for each group). **b**, IFN- γ production of CD5^{lo}, Ly6C⁻, and Ly6C⁺ P14 naive CD8⁺ T cells after culture with IL-12/IL-18 (n=3 mice for IL-12/IL-18, n=6 mice for IL-2/IL-12/IL-18). **c**, IFN- γ production of CD5^{lo}, Ly6C⁻, and Ly6C⁺ cells in CD44^{lo}CD8⁺ splenocytes and CD24^{lo}CD4⁻CD8⁺ thymocytes after culture with IL-12/IL-18 (n=3 mice for each group). **d**, IFN- γ production of P14 naive CD8⁺ T cells that had been parked for 5 days in either WT or *Tap1^{-/-}* hosts after culture with IL-12/IL-18 (n=4 for WT, n=8 for *Tap1^{-/-}* mice). Statistical significance was confirmed by two-tailed unpaired Student's t-test. Results are shown as mean ± SD. Data representative of 2-3 independent experiments. Source data are provided as a Source Data file.

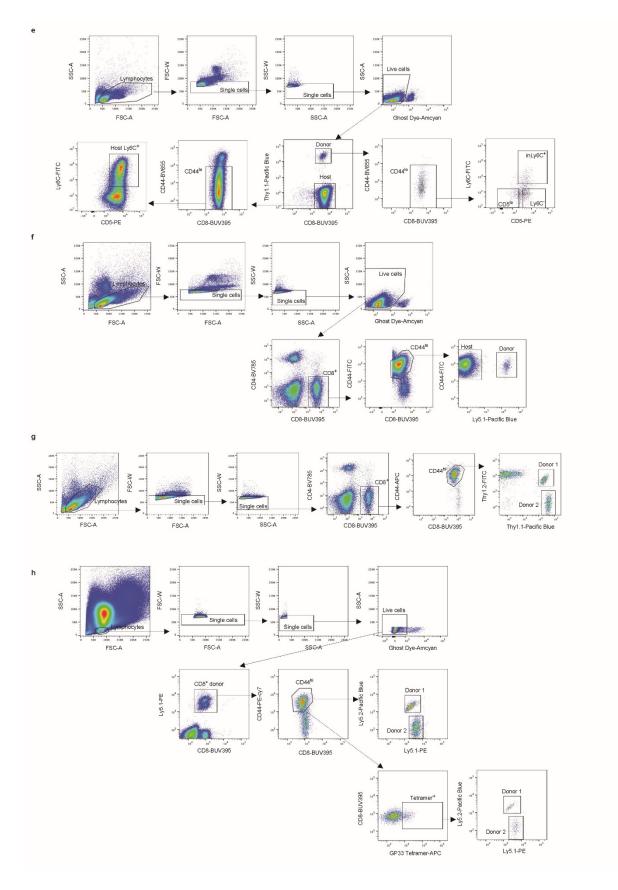
Supplementary Figure 5

The enhanced proliferative responses of Ly6C⁺ cells compared to CD5^{lo} and Ly6C⁻ cells upon LCMV infection


a, Percentage of CD44^{hi}CD8⁺NP396-tetramer⁺ B6 donor cells (n=5 mice for each group). **b**, Binding intensity of GP33- (left) and NP396- (right) tetramers on CD44^{hi}B6 donor (n=25 mice for GP33 tet⁺, n=8 mice for NP396 tet⁺). **c**, Percentage and absolute number of P14 CD44^{hi} donor cells in LN (n=22 mice for each group). **d**, Ki67 expression on P14 CD44^{hi} donor cells (n=3 mice for each group). **e**, CTV dilutions of P14 CD44^{hi} donor cells at 4.5 dpi (n=3 mice for each group). **f**, Binding intensity of GP33-tetramer (upper) and expression of TCR β (lower left) and Va2 (lower right) on CD5^{lo}, Ly6C⁻ and Ly6C⁺ P14 naive CD8⁺ T cells (n=4 mice for each group). **g**, Binding affinity of GP33-tetramer normalized by TCR β expression (n=4 mice for each group). Statistical significance was confirmed by two-tailed unpaired Student's t-test. Results are shown as mean \pm SD. Data representative of 2-3 independent experiments. Source data are provided as a Source Data file.

Supplementary Figure 6


Effector and memory differentiation of CD5^{lo}, Ly6C⁻, and Ly6C⁺ cells upon LCMV infection


a, Percentage of CD44^{hi}KLRG1⁺ donor (n=4 mice for each group). **b**, Percentage and donor recovery of P14 CD44^{hi} donor cells (upper), and percentage of CD44^{hi}CD62L^{hi} and CD44^{hi}CD62L^{lo} P14 donor cells (bottom) at 35 dpi (n=3 mice for each group). Statistical significance was confirmed by two-tailed unpaired Student's t-test. Results are shown as mean \pm SD. Data representative of 2-3 independent experiments. Source data are provided as a Source Data file.

Differentiation profiles in splenic and thymic CD5¹⁰, Ly6C⁻, and Ly6C⁺ cells upon LCMV infection

a, IL-2, IFN- γ , and TNF production of P14 CD44^{hi} donor cells stimulated by gp33 peptide (n=6 mice for each group). **b**, CD107a (left) and Granzyme B (right) expression on P14 CD44^{hi} donor cells (n=6 mice for each group). **c**, GSEA results between CD5^{lo} and Ly6C⁺ cells or Ly6C⁻ and Ly6C⁺ P14 CD44^{hi} donor cells for pathway "mTOR signaling pathway". **d**, Fold change of CD27⁺CX3CR1^{lo}, CD27⁺CX3CR1^{int}, and CD27⁻CX3CR1^{hi} cells between donor cells previously treated with Control Ab or IFNAR Ab (n=6 mice for each group). **e**, Percentage and donor recovery (left) and percentage of CD127⁻KLRG1⁺ and CD127⁺KLRG1⁻ cells (right) of P14 thymic donors (n=5 mice for each group). Statistical significance was confirmed by two-tailed unpaired Student's t-test. Results are shown as mean ± SD. Data representative of 2-3 independent experiments. Source data are provided as a Source Data file.

Supplementary Figure 8

Gating strategies

a, Gating strategy for Figures 1b, 1c, 1e, 1f, 2a, 2c, 2e, 2f, 4a, 4b, and 4d. **b**, Gating strategy for Figures 1d, 1e, and 1f. **c**, Gating strategy for Figure 2j. **d**, Gating strategy for Figure 2i. **e**, Gating strategy for Figure 4c. **f**, Gating strategy for Figures 5d, 5e, 5f, 6b, 6c, 6f, 6g, 6h, 7b, and 7c. **g**, Gating strategy for Figures 5b, 5c, 7f, and 7e. **h**, Gating strategy for Figure 5a.

Immgen Cluster	# of genes in cluster	# of core enrichment genes	Expected # of IFN-β regulated core enrichment genes	Actual # of IFN-β regulated core enrichment genes	
		(CD5 ^{to} vs Ly6C ⁺ , CD5 ^{to} vs Ly6C ⁺ , Ly6C ⁺ vs Ly6C ⁺)	(CD5° vs Ly6C°, CD5° vs Ly6C*, Ly6C* vs Ly6C*)	(CD5% ve Lv6C; CD5% ve Lv6C; Lv6C; ve Lv6C;)	
Cluster I (Initial cytokine or effector response)	16	5, 7, 2	0.51, 0.71, 0.2	proprio (2010) (
Cluster II (Preparation for cell division)	149	59, 72, 56	6.02, 7.35, 5.72	3, 3, 2	
Cluster III (Cell cycle & division)	155	87, 59, 67	8.88, 6.02, 6.84	32, 24, 17	
Cluster IV (Naive and late memory)	5	3, 2, 3	0.3, 0.2, 0.3	1, 1, 1	
Cluster V (Early effector, late memory)	16	12, 14, 13	1.22, 1.43, 1.32	0, 0, 0	
Cluster VI (Short-term effector and memory)	34	3, 6, 7	0.3, 0.61, 0.71	1, 2, 4 ^{pr0.0058}	
Cluster VII (Memory precursor)	29	10, 7, 7	1.02, 0.71, 0.71	3, 3, 3	
Cluster VIII (Naive or late effector or memory)	76	14, 21, 31	1.43, 2.14, 3.16	1, 3, 5	
Cluster IX (Short-term effector or memory)	7	3, 4, 2	0.3, 0.4, 0.2	0, 2, 0	
Cluster X (Late effector or memory)	16	5, 5, 7	0.51, 0.51, 0.71	1, 1, 1	

Supplementary Table 1

Influence of IFN-β on core enrichment genes of Immgen clusters

Influence of IFN- β on core enrichment genes of Immgen clusters between CD5^{lo} and Ly6C⁻, CD5^{lo} and Ly6C⁺, or Ly6C⁻ and Ly6C⁺ naive B6 CD8⁺ T cells. P-values are calculated using Eq.2 and shown above the values of actual number of IFN- β regulated core enrichment genes.

Name	Company	Clone	Catalogue No.	Application	Dilutio
anti-CD103	Biolegend	2E7	121414	Flow cytometry	1:400
anti-CD107a	Biolegend	1D4B	121614	Flow cytometry	1:400
anti-CD122	Biolegend	5H4	105912	Flow cytometry	1:400
anti-CD122	Biolegend	ΤΜ-β1	123214	Flow cytometry	1:400
anti-CD123	Biolegend	6H6	306014	Flow cytometry	1:400
anti-CD124	Biolegend	1015F8	144807	Flow cytometry	1:400
anti-CD126	Biolegend	D7715A7	115812	Flow cytometry	1:400
anti-CD127	Biolegend	A7R34	135008	Flow cytometry	1:400
anti-CD130	eBiosciences	KGP130	15536876	Flow cytometry	1:400
anti-CD132	Biolegend	TUGm2	132308	Flow cytometry	1:400
anti-CD183	Biolegend	CXCR3-173	126506	Flow cytometry	1:400
			101806		
anti-CD24	Biolegend	M1/69		Flow cytometry	1:400
anti-CD25	Invitrogen	PC61.5	16370834	Flow cytometry	1:40
anti-CD27	Biolegend	O323	302806	Flow cytometry	1:40
anti-CD28	Biolegend	37.51	102110	Flow cytometry	1:40
anti-CD38	Biolegend	90	102708	Flow cytometry	1:40
anti-CD3ɛ	Biolegend	145-2C11	100334	Flow cytometry	1:40
anti-CD4	Biolegend	RM4-5	100510	Flow cytometry	1:40
anti-CD44	Biolegend	IM7	103020	Flow cytometry	1:400
anti-CD45.1	BD Biosciences	A20	565212	Flow cytometry	1:40
anti-CD45.2	Biolegend	104	109820	Flow cytometry	1:400
anti-CD45RA	BD Biosciences	14.8	564360	Flow cytometry	1:40
anti-CD45RB	Biolegend	C363.16A	103305	Flow cytometry	1:40
anti-CD5	Biolegend	53-7.3	100642	Flow cytometry	1:40
anti-CD62L	Biolegend	MEL-14	104408	Flow cytometry	1:40
anti-CD82		53-6.7	20-0081-U100		
	Tonbo			Flow cytometry	1:40
anti-CD90.1	eBiosciences	HIS51	15238149	Flow cytometry	
anti-CD90.2	eBiosciences	53-2.1	15298609	Flow cytometry	1:40
anti-CD98	eBiosciences	RL388	15218629	Flow cytometry	1:40
anti-CX3CR1	Biolegend	2A9-1	341610	Flow cytometry	1:40
anti-GITR	Biolegend	DTA-1	126308	Flow cytometry	1:40
anti-Granzyme B	Biolegend	GB11	515406	Flow cytometry	1:20
anti-IFNAR1	SinoBiological	110	50469-R110-P	Flow cytometry	1:40
anti-IFNAR2	R&D Systems	Polyclonal	FAB1083A	Flow cytometry	1:40
anti-IFN-γ	Biolegend	XMG1.2	505814	Flow cytometry	1:20
anti-IL-2	Biolegend	JES6-5H4	503810	Flow cytometry	1:20
anti-Ki-67	eBiosciences	SolA15	15268809	Flow cytometry	1:20
anti-KLRG1	Biolegend	2F1/KLRG1	138412	Flow cytometry	1:40
anti-Ly6C	eBiosciences	HK1.4	15518606	Flow cytometry	1:40
anti-Nur77		12.14	12-5965-82		1:20
	Invitrogen			Flow cytometry	
anti-TCRβ	Biolegend	H57-597	109226	Flow cytometry	1:40
anti-TNF	Biolegend	MP6-XT22	506314	Flow cytometry	1:20
anti-Vα11.1/11.2	Biolegend	RR8-1	139904	Flow cytometry	1:40
anti-Vα2	eBiosciences	B20.1	15248269	Flow cytometry	1:40
anti-Vα3.2	eBiosciences	RR3-16	15556566	Flow cytometry	1:40
anti-Va8.3	Biolegend	KT50	125707	Flow cytometry	1:40
anti-Vβ10b	BD Biosciences	B21.5	553284	Flow cytometry	1:40
anti-Vβ11	BD Biosciences	RR3-15	553196	Flow cytometry	1:40
anti-Vβ11.1/11.2	Biolegend	RR8-1	139904	Flow cytometry	1:40
anti-Vβ12	Biolegend	MR11-1	139704	Flow cytometry	1:40
anti-Vβ13	BD Biosciences	MR12-3	561541	Flow cytometry	1:40
anti-Vβ14	BD Biosciences	14-2	553258	Flow cytometry	1:40
anti-Vβ17a	BD Biosciences	KJ23	553212	Flow cytometry	1:40
anti-Vβ2		B20.6	127906		1:40
	Biolegend			Flow cytometry	
anti-Vβ3	BD Biosciences	KJ25	553208	Flow cytometry	1:40
anti-Vβ4	BD Biosciences	KT4	553365	Flow cytometry	1:40
anti-Vβ5.1/5.2	eBiosciences	MR9-4	16380614	Flow cytometry	1:40
anti-Vβ6	eBiosciences	RR4-7	15300760	Flow cytometry	1:40
anti-Vβ7	Biolegend	TR310	118306	Flow cytometry	1:40
anti-Vβ8	BD Biosciences	F23.1	553861	Flow cytometry	1:40
anti-Vβ8.3	BD Biosciences	1B3.3	553663	Flow cytometry	1:40
anti-Vβ9	BD Biosciences	MR10-2	553201	Flow cytometry	1:40
anti-β2	Biolegend	M18/2	101408	Flow cytometry	1:40
anti-β7	Biolegend	FIB504	321208	Flow cytometry	1:40
GP33-tetramer	Immudex		JA2142-APC	Flow cytometry	1:50
NP396 tetramer	Immudex		JA2160-APC	Flow cytometry	1:50
anti-phospho-STAT1 (Tyr701)	Cell Signaling Technologies	58D6	9167	Western blot	1:100
anti-phospho-STAT2 (Tyr690)	Cell Signaling Technologies	D3P2P	88410	Western blot	1:100
anti-b-actin	Sigma-Aldrich	AC-15	A1978-200UL	Western blot	1:500
m-IgGk BP-HRP	Santa Cruz Biotechnology	1	sc-516102	Western blot	1:100

Supplementary Table 2

Antibodies and reagents

Name	Company	Assay ID	Exon Boundary	Amplicon Length	Applications
Ly6C2	Applied Biosystems	Mm00841873_m1	1-2	162	Real-time PCR
Tbx21	Applied Biosystems	Mm00450960_m1	1-2	69	Real-time PCR
Eomes	Applied Biosystems	Mm01351984_m1	1-2	78	Real-time PCR
ll18rap	Applied Biosystems	Mm00516053_m1	9-10	113	Real-time PCR
Ccl5	Applied Biosystems	Mm01302427_m1	1-2	103	Real-time PCR

Supplementary Table 3

Primers