Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Coronavirus disease 2019 (COVID-19) has become a global pandemic disease. SARS-CoV-2 variants have aroused great concern and are expected to continue spreading. Although many countries have promoted roll-out vaccination, the immune barrier has not yet been fully established, indicating that populations remain susceptible to infection. In this review, we summarize the literature on variants of concern and focus on the changes in their transmissibility, pathogenicity, and resistance to the immunity constructed by current vaccines. Furthermore, we analyzed relationships between variants and breakthrough infections, as well as the paradigm of new variants in countries with high vaccination rates. Terminating transmission, continuing to strengthen variant surveillance, and combining nonpharmaceutical intervention measures and vaccines are necessary to control these variants.

Free full text 


Logo of phenaturepgLink to Publisher's site
Front Med. 2022; 16(2): 196–207.
Published online 2022 Mar 6. https://doi.org/10.1007/s11684-021-0906-x
PMCID: PMC8898658
PMID: 35253097

SARS-CoV-2 variants, immune escape, and countermeasures

Abstract

Coronavirus disease 2019 (COVID-19) has become a global pandemic disease. SARS-CoV-2 variants have aroused great concern and are expected to continue spreading. Although many countries have promoted roll-out vaccination, the immune barrier has not yet been fully established, indicating that populations remain susceptible to infection. In this review, we summarize the literature on variants of concern and focus on the changes in their transmissibility, pathogenicity, and resistance to the immunity constructed by current vaccines. Furthermore, we analyzed relationships between variants and breakthrough infections, as well as the paradigm of new variants in countries with high vaccination rates. Terminating transmission, continuing to strengthen variant surveillance, and combining nonpharmaceutical intervention measures and vaccines are necessary to control these variants.

Keywords: SARS-CoV-2, COVID-19, vaccine, immune escape, breakthrough, prevention

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 82041010, 82161138018 and 92169212), Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response (No. 20dz2260100), and Key Discipline Construction Plan from Shanghai Municipal Health Commission (No. GWV-10.1-XK01).

Footnotes

Compliance with ethics guidelines

Yi Zhang, Haocheng Zhang, and Wenhong Zhang declare that they have no competing interests. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

References

1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. 10.1038/s41586-020-2012-7. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
2. Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, Liu W, Bi Y, Gao GF. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24(6):490–502. 10.1016/j.tim.2016.03.003. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
3. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269. 10.1038/s41586-020-2008-3. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
4. Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H. The architecture of SARS-CoV-2 transcriptome. Cell. 2020;181(4):914–921.e10. 10.1016/j.cell.2020.04.011. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
5. Telenti A, Arvin A, Corey L, Corti D, Diamond MS, García-Sastre A, Garry RF, Holmes EC, Pang PS, Virgin HW. After the pandemic: perspectives on the future trajectory of COVID-19. Nature. 2021;596(7873):495–504. 10.1038/s41586-021-03792-w. [Abstract] [CrossRef] [Google Scholar]
6. Gupta RK. Will SARS-CoV-2 variants of concern affect the promise of vaccines? Nat Rev Immunol. 2021;21(6):340–341. 10.1038/s41577-021-00556-5. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
7. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C, Reeve R, Rambaut A, COVID-19 Genomics UK (COG-UK) Consortium. Peacock SJ, Robertson DL. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021;19(7):409–424. 10.1038/s41579-021-00573-0. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
8. World Health Organization. Tracking SARS-CoV-2 variants. 2020. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/(accessed September 30, 2021)
9. The New York Times. Tracking coronavirus vaccinations around the world. 2021. https://www.nytimes.com/interactive/2021/world/covid-vaccinations-tracker.html (accessed September 30, 2021)
10. Hacisuleyman E, Hale C, Saito Y, Blachere NE, Bergh M, Conlon EG, Schaefer-Babajew DJ, DaSilva J, Muecksch F, Gaebler C, Lifton R, Nussenzweig MC, Hatziioannou T, Bieniasz PD, Darnell RB. Vaccine breakthrough infections with SARS-CoV-2 variants. N Engl J Med. 2021;384(23):2212–2218. 10.1056/NEJMoa2105000. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
11. Grubaugh ND, Hanage WP, Rasmussen AL. Making sense of mutation: what D614G means for the COVID-19 pandemic remains unclear. Cell. 2020;182(4):794–795. 10.1016/j.cell.2020.06.040. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
12. Volz E, Hill V, McCrone JT, Price A, Jorgensen D, O’Toole Á, Southgate J, Johnson R, Jackson B, Nascimento FF, Rey SM, Nicholls SM, Colquhoun RM, da Silva Filipe A, Shepherd J, Pascall DJ, Shah R, Jesudason N, Li K, Jarrett R, Pacchiarini N, Bull M, Geidelberg L, Siveroni I, COG-UK Consortium. Goodfellow I, Loman NJ, Pybus OG, Robertson DL, Thomson EC, Rambaut A, Connor TR. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell. 2021;184(1):64–75.e11. 10.1016/j.cell.2020.11.020. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
13. Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, Abdulrazzaq N, Al Nusair M, Hassany M, Jawad JS, Abdalla J, Hussein SE, Al Mazrouei SK, Al Karam M, Li X, Yang X, Wang W, Lai B, Chen W, Huang S, Wang Q, Yang T, Liu Y, Ma R, Hussain ZM, Khan T, Saifuddin Fasihuddin M, You W, Xie Z, Zhao Y, Jiang Z, Zhao G, Zhang Y, Mahmoud S, ElTantawy I, Xiao P, Koshy A, Zaher WA, Wang H, Duan K, Pan A, Yang X. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. JAMA. 2021;326(1):35–45. 10.1001/jama.2021.8565. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
14. Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y, Baum A, Diehl WE, Dauphin A, Carbone C, Veinotte K, Egri SB, Schaffner SF, Lemieux JE, Munro JB, Rafique A, Barve A, Sabeti PC, Kyratsous CA, Dudkina NV, Shen K, Luban J. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell. 2020;183(3):739–751.e8. 10.1016/j.cell.2020.09.032. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
15. Meng B, Kemp SA, Papa G, Datir R, Ferreira IATM, Marelli S, Harvey WT, Lytras S, Mohamed A, Gallo G, Thakur N, Collier DA, Mlcochova P, COVID-19 Genomics UK (COG-UK) Consortium. Duncan LM, Carabelli AM, Kenyon JC, Lever AM, De Marco A, Saliba C, Culap K, Cameroni E, Matheson NJ, Piccoli L, Corti D, James LC, Robertson DL, Bailey D, Gupta RK. Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Rep. 2021;35(13):109292. 10.1016/j.celrep.2021.109292. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
16. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, Pearson CAB, Russell TW, Tully DC, Washburne AD, Wenseleers T, Gimma A, Waites W, Wong KLM, van Zandvoort K, Silverman JD, CMMID COVID-19 Working Group. COVID-19 Genomics UK (COG-UK) Consortium. Diaz-Ordaz K, Keogh R, Eggo RM, Funk S, Jit M, Atkins KE, Edmunds WJ. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science. 2021;372(6538):eabg3055. 10.1126/science.abg3055. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
17. Kidd M, Richter A, Best A, Cumley N, Mirza J, Percival B, Mayhew M, Megram O, Ashford F, White T, Moles-Garcia E, Crawford L, Bosworth A, Atabani SF, Plant T, McNally A. S-Variant SARS-CoV-2 lineage B1.1.7 is associated with significantly higher viral load in samples tested by TaqPath polymerase chain reaction. J Infect Dis. 2021;223(10):1666–1670. 10.1093/infdis/jiab082. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
18. Davies NG, Jarvis CI, Edmunds WJ, Jewell NP, Diaz-Ordaz K, Keogh RH. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature. 2021;593(7858):270–274. 10.1038/s41586-021-03426-1. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
19. Challen R, Brooks-Pollock E, Read JM, Dyson L, Tsaneva-Atanasova K, Danon L. Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ. 2021;372:n579. 10.1136/bmj.n579. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
20. Collier DA, De Marco A, Ferreira IATM, Meng B, Datir RP, Walls AC, Kemp SA, Bassi J, Pinto D, Silacci-Fregni C, Bianchi S, Tortorici MA, Bowen J, Culap K, Jaconi S, Cameroni E, Snell G, Pizzuto MS, Pellanda AF, Garzoni C, Riva A, CITIID-NIHR BioResource COVID-19 Collaboration. Elmer A, Kingston N, Graves B, McCoy LE, Smith KGC, Bradley JR, Temperton N, Ceron-Gutierrez L, Barcenas-Morales G, COVID-19 Genomics UK (COG-UK) Consortium. Harvey W, Virgin HW, Lanzavecchia A, Piccoli L, Doffinger R, Wills M, Veesler D, Corti D, Gupta RK. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature. 2021;593(7857):136–141. 10.1038/s41586-021-03412-7. [Abstract] [CrossRef] [Google Scholar]
21. Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, Doolabh D, Pillay S, San EJ, Msomi N, Mlisana K, von Gottberg A, Walaza S, Allam M, Ismail A, Mohale T, Glass AJ, Engelbrecht S, Van Zyl G, Preiser W, Petruccione F, Sigal A, Hardie D, Marais G, Hsiao NY, Korsman S, Davies MA, Tyers L, Mudau I, York D, Maslo C, Goedhals D, Abrahams S, Laguda-Akingba O, Alisoltani-Dehkordi A, Godzik A, Wibmer CK, Sewell BT, Lourenço J, Alcantara LCJ, Kosakovsky Pond SL, Weaver S, Martin D, Lessells RJ, Bhiman JN, Williamson C, de Oliveira T. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature. 2021;592(7854):438–443. 10.1038/s41586-021-03402-9. [Abstract] [CrossRef] [Google Scholar]
22. Li Q, Nie J, Wu J, Zhang L, Ding R, Wang H, Zhang Y, Li T, Liu S, Zhang M, Zhao C, Liu H, Nie L, Qin H, Wang M, Lu Q, Li X, Liu J, Liang H, Shi Y, Shen Y, Xie L, Zhang L, Qu X, Xu W, Huang W, Wang Y. SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape. Cell. 2021;184(9):2362–2371.e9. 10.1016/j.cell.2021.02.042. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
23. Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS, Mishra S, Crispim MAE, Sales FC, Hawryluk I, McCrone JT, Hulswit RJG, Franco LAM, Ramundo MS, de Jesus JG, Andrade PS, Coletti TM, Ferreira GM, Silva CAM, Manuli ER, Pereira RHM, Peixoto PS, Kraemer MU, Gaburo N, Jr, Camilo CDC, Hoeltgebaum H, Souza WM, Rocha EC, de Souza LM, de Pinho MC, Araujo LJT, Malta FSV, de Lima AB, Silva JDP, Zauli DAG, de S Ferreira AC, Schnekenberg RP, Laydon DJ, Walker PGT, Schlüter HM, Dos Santos ALP, Vidal MS, Del Caro VS, Filho RMF, Dos Santos HM, Aguiar RS, Modena JLP, Nelson B, Hay JA, Monod M, Miscouridou X, Coupland H, Sonabend R, Vollmer M, Gandy A, Suchard MA, Bowden TA, Pond SLK, Wu CH, Ratmann O, Ferguson NM, Dye C, Loman NJ, Lemey P, Rambaut A, Fraiji NA, Carvalho MDPSS, Pybus OG, Flaxman S, Bhatt S, Sabino EC. Genomics and epidemiology of a novel SARS-CoV-2 lineage in Manaus, Brazil. Science. 2021;372(6544):815–821. 10.1126/science.abh2644. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
24. Virological. Identification of SARS-CoV-2 P.1-related lineages in Brazil provides new insights about the mechanisms of emergence of Variants of Concern. 2021. https://virological.org/t/identification-of-sars-cov-2-p-1-related-lineages-in-brazil-provides-new-insights-about-the-mechanisms-of-emergence-of-variants-of-concern/694 (accessed September 30, 2021) [Europe PMC free article] [Abstract]
25. Naveca FG, Nascimento V, de Souza VC, Corado AL, Nascimento F, Silva G, Costa Á, Duarte D, Pessoa K, Mejía M, Brandão MJ, Jesus M, Gonçalves L, da Costa CF, Sampaio V, Barros D, Silva M, Mattos T, Pontes G, Abdalla L, Santos JH, Arantes I, Dezordi FZ, Siqueira MM, Wallau GL, Resende PC, Delatorre E, Gräf T, Bello G. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence. Nat Med. 2021;27(7):1230–1238. 10.1038/s41591-021-01378-7. [Abstract] [CrossRef] [Google Scholar]
26. Outbreak.info. Mutation Tracker. 2021. https://outbreak.info/situation-reports (accessed September 30, 2021)
27. Mlcochova P, Kemp SA, Dhar MS, Papa G, Meng B, Ferreira IATM, Datir R, Collier DA, Albecka A, Singh S, Pandey R, Brown J, Zhou J, Goonawardane N, Mishra S, Whittaker C, Mellan T, Marwal R, Datta M, Sengupta S, Ponnusamy K, Radhakrishnan VS, Abdullahi A, Charles O, Chattopadhyay P, Devi P, Caputo D, Peacock T, Wattal C, Goel N, Satwik A, Vaishya R, Agarwal M, Indian SARS-CoV-2 Genomics Consortium (INSACOG) Genotype to Phenotype Japan (G2P-Japan) Consortium. CITIID-NIHR BioResource COVID-19 Collaboration. Mavousian A, Lee JH, Bassi J, Silacci-Fegni C, Saliba C, Pinto D, Irie T, Yoshida I, Hamilton WL, Sato K, Bhatt S, Flaxman S, James LC, Corti D, Piccoli L, Barclay WS, Rakshit P, Agrawal A, Gupta RK. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature. 2021;599(7883):114–119. 10.1038/s41586-021-03944-y. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
28. Challen R, Dyson L, Overton C, Guzman-Rincon L, Hill E, Stage H, Brooks-Pollock E, Pellis L, Scarabel F, Pascall DJ, Blomquist P, Tildesley MJ, Williamson D, Siegert S, Xiong X, Youngman B, JUNIPER Consortium, Read JM, Gog JR, Keeling MJ, Danon L. Early epidemiological signatures of novel SARS-CoV-2 variants: establishment of B.1.617.2 in England. medRxiv 2021; 2021.06.05.21258365
29. Motozono C, Toyoda M, Zahradnik J, Saito A, Nasser H, Tan TS, Ngare I, Kimura I, Uriu K, Kosugi Y, Yue Y, Shimizu R, Ito J, Torii S, Yonekawa A, Shimono N, Nagasaki Y, Minami R, Toya T, Sekiya N, Fukuhara T, Matsuura Y, Schreiber G, Genotype to Phenotype Japan (G2P-Japan) Consortium. Ikeda T, Nakagawa S, Ueno T, Sato K. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe. 2021;29(7):1124–1136.e11. 10.1016/j.chom.2021.06.006. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
30. Twohig KA, Nyberg T, Zaidi A, Thelwall S, Sinnathamby MA, Aliabadi S, Seaman SR, Harris RJ, Hope R, Lopez-Bernal J, Gallagher E, Charlett A, De Angelis D, Presanis AM, Dabrera G; COVID-19 Genomics UK (COG-UK) consortium. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infect Dis 2021; S1473-3099(21)00475-8 [Europe PMC free article] [Abstract]
31. Public Health England. SARS-CoV-2 variants of concern and variants under investigation in England Technical briefing 22. 2021. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1014926/Technical_Briefing_22_21_09_02.pdf (accessed September 3, 2021)
32. Kimura I, Kosugi Y, Wu J, Yamasoba D, Butlertanaka EP, Tanaka YL, Liu Y, Shirakawa K, Kazuma Y, Nomura R, Horisawa Y, Tokunaga K, Takaori-Kondo A, Arase H, Saito A, Nakagawa S, Sato K. SARS-CoV-2 Lambda variant exhibits higher infectivity and immune resistance. bioRxiv 2021: 2021.07.28.454085
33. West AP, Jr, Wertheim JO, Wang JC, Vasylyeva TI, Havens JL, Chowdhury MA, Gonzalez E, Fang CE, Di Lonardo SS, Hughes S, Rakeman JL, Lee HH, Barnes CO, Gnanapragasam PNP, Yang Z, Gaebler C, Caskey M, Nussenzweig MC, Keeffe JR, Bjorkman PJ. Detection and characterization of the SARS-CoV-2 lineage B.1.526 in New York. Nat Commun. 2021;12(1):4886. 10.1038/s41467-021-25168-4. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
34. Starr TN, Greaney AJ, Addetia A, Hannon WW, Choudhary MC, Dingens AS, Li JZ, Bloom JD. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science. 2021;371(6531):850–854. 10.1126/science.abf9302. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
35. Cherian S, Potdar V, Jadhav S, Yadav P, Gupta N, Das M, Rakshit P, Singh S, Abraham P, Panda S, Team N. SARS-CoV-2 spike mutations, L452R, T478K, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. Microorganisms. 2021;9(7):1542. 10.3390/microorganisms9071542. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
36. Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK, Sotomayor-González A, Glasner DR, Reyes KR, Gliwa AS, Reddy NP, Sanchez San Martin C, Federman S, Cheng J, Balcerek J, Taylor J, Streithorst JA, Miller S, Sreekumar B, Chen PY, Schulze-Gahmen U, Taha TY, Hayashi JM, Simoneau CR, Kumar GR, McMahon S, Lidsky PV, Xiao Y, Hemarajata P, Green NM, Espinosa A, Kath C, Haw M, Bell J, Hacker JK, Hanson C, Wadford DA, Anaya C, Ferguson D, Frankino PA, Shivram H, Lareau LF, Wyman SK, Ott M, Andino R, Chiu CY. Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell. 2021;184(13):3426–3437.e8. 10.1016/j.cell.2021.04.025. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
37. Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020;369(6501):330–333. 10.1126/science.abb9983. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
38. Plante JA, Mitchell BM, Plante KS, Debbink K, Weaver SC, Menachery VD. The variant gambit: COVID-19’s next move. Cell Host Microbe. 2021;29(4):508–515. 10.1016/j.chom.2021.02.020. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
39. Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, Wang M, Yu J, Zhang B, Kwong PD, Graham BS, Mascola JR, Chang JY, Yin MT, Sobieszczyk M, Kyratsous CA, Shapiro L, Sheng Z, Huang Y, Ho DD. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021;593(7857):130–135. 10.1038/s41586-021-03398-2. [Abstract] [CrossRef] [Google Scholar]
40. Starr TN, Greaney AJ, Dingens AS, Bloom JD. Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. Cell Rep Med. 2021;2(4):100255. 10.1016/j.xcrm.2021.100255. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
41. Andreano E, Rappuoli R. SARS-CoV-2 escaped natural immunity, raising questions about vaccines and therapies. Nat Med. 2021;27(5):759–761. 10.1038/s41591-021-01347-0. [Abstract] [CrossRef] [Google Scholar]
42. Copin R, Baum A, Wloga E, Pascal KE, Giordano S, Fulton BO, Zhou A, Negron N, Lanza K, Chan N, Coppola A, Chiu J, Ni M, Wei Y, Atwal GS, Hernandez AR, Saotome K, Zhou Y, Franklin MC, Hooper AT, McCarthy S, Hamon S, Hamilton JD, Staples HM, Alfson K, Carrion R, Jr, Ali S, Norton T, Somersan-Karakaya S, Sivapalasingam S, Herman GA, Weinreich DM, Lipsich L, Stahl N, Murphy AJ, Yancopoulos GD, Kyratsous CA. The monoclonal antibody combination REGEN-COV protects against SARS-CoV-2 mutational escape in preclinical and human studies. Cell. 2021;184(15):3949–3961.e11. 10.1016/j.cell.2021.06.002. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
43. Emary KRW, Golubchik T, Aley PK, Ariani CV, Angus B, Bibi S, Blane B, Bonsall D, Cicconi P, Charlton S, Clutterbuck EA, Collins AM, Cox T, Darton TC, Dold C, Douglas AD, Duncan CJA, Ewer KJ, Flaxman AL, Faust SN, Ferreira DM, Feng S, Finn A, Folegatti PM, Fuskova M, Galiza E, Goodman AL, Green CM, Green CA, Greenland M, Hallis B, Heath PT, Hay J, Hill HC, Jenkin D, Kerridge S, Lazarus R, Libri V, Lillie PJ, Ludden C, Marchevsky NG, Minassian AM, McGregor AC, Mujadidi YF, Phillips DJ, Plested E, Pollock KM, Robinson H, Smith A, Song R, Snape MD, Sutherland RK, Thomson EC, Toshner M, Turner DPJ, Vekemans J, Villafana TL, Williams CJ, Hill AVS, Lambe T, Gilbert SC, Voysey M, Ramasamy MN, Pollard AJ, COVID-19 Genomics UK consortium. AMPHEUS Project. Oxford COVID-19 Vaccine Trial Group Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet. 2021;397(10282):1351–1362. 10.1016/S0140-6736(21)00628-0. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
44. Novavax. Novavax COVID-19 vaccine demonstrates 89.3% efficacy in UK phase 3 trial. 2021. https://www.globenewswire.com/news-release/2021/01/28/2166253/0/en/Novavax-COVID-19-Vaccine-Demonstrates-89-3-Efficacy-in-UK-Phase-3-Trial.html (accessed February 3, 2021)
45. Supasa P, Zhou D, Dejnirattisai W, Liu C, Mentzer AJ, Ginn HM, Zhao Y, Duyvesteyn HME, Nutalai R, Tuekprakhon A, Wang B, Paesen GC, Slon-Campos J, López-Camacho C, Hallis B, Coombes N, Bewley KR, Charlton S, Walter TS, Barnes E, Dunachie SJ, Skelly D, Lumley SF, Baker N, Shaik I, Humphries HE, Godwin K, Gent N, Sienkiewicz A, Dold C, Levin R, Dong T, Pollard AJ, Knight JC, Klenerman P, Crook D, Lambe T, Clutterbuck E, Bibi S, Flaxman A, Bittaye M, Belij-Rammerstorfer S, Gilbert S, Hall DR, Williams MA, Paterson NG, James W, Carroll MW, Fry EE, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR. Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell. 2021;184(8):2201–2211.e7. 10.1016/j.cell.2021.02.033. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
46. Liu Y, Liu J, Xia H, Zhang X, Fontes-Garfias CR, Swanson KA, Cai H, Sarkar R, Chen W, Cutler M, Cooper D, Weaver SC, Muik A, Sahin U, Jansen KU, Xie X, Dormitzer PR, Shi PY. Neutralizing activity of BNT162b2-elicited serum. N Engl J Med. 2021;384:1466–1468. 10.1056/NEJMc2102017. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
47. Wang GL, Wang ZY, Duan LJ, Meng QC, Jiang MD, Cao J, Yao L, Zhu KL, Cao WC, Ma MJ. Susceptibility of circulating SARS-CoV-2 variants to neutralization. N Engl J Med. 2021;384(24):2354–2356. 10.1056/NEJMc2103022. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
48. Garcia-Beltran WF, Lam EC, St Denis K, Nitido AD, Garcia ZH, Hauser BM, Feldman J, Pavlovic MN, Gregory DJ, Poznansky MC, Sigal A, Schmidt AG, Iafrate AJ, Naranbhai V, Balazs AB. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell. 2021;184(9):2372–2383.e9. 10.1016/j.cell.2021.03.013. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
49. Wu K, Werner AP, Koch M, Choi A, Narayanan E, Stewart-Jones GBE, Colpitts T, Bennett H, Boyoglu-Barnum S, Shi W, Moliva JI, Sullivan NJ, Graham BS, Carfi A, Corbett KS, Seder RA, Edwards DK. Serum neutralizing activity elicited by mRNA-1273 vaccine. N Engl J Med. 2021;384(15):1468–1470. 10.1056/NEJMc2102179. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
50. Huang B, Dai L, Wang H, Hu Z, Yang X, Tan W, Gao F. Neutralization of SARS-CoV-2 VOC 501YV2 by human antisera elicited by both inactivated BBIBP-CorV and recombinant dimeric RBD ZF2001 vaccines. bioRxiv 2021: 20210201429069
51. Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, Planchais C, Porrot F, Robillard N, Puech J, Prot M, Gallais F, Gantner P, Velay A, Le Guen J, Kassis-Chikhani N, Edriss D, Belec L, Seve A, Courtellemont L, Péré H, Hocqueloux L, Fafi-Kremer S, Prazuck T, Mouquet H, Bruel T, Simon-Lorière E, Rey FA, Schwartz O. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021;596(7871):276–280. 10.1038/s41586-021-03777-9. [Abstract] [CrossRef] [Google Scholar]
52. Novavax. COVID-19 vaccine demonstrates 90% overall efficacy and 100% protection against moderate and severe disease in PREVENT-19 phase 3 trial. 2021. https://ir.novavax.com/2021-06-14-Novavax-COVID-19-Vaccine-Demonstrates-90-Overall-Efficacy-and-100-Protection-Against-Moderate-and-Severe-Disease-in-PREVENT-19-Phase-3-Trial/ (accessed September 30, 2021)
53. Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, Stowe J, Tessier E, Groves N, Dabrera G, Myers R, Campbell CNJ, Amirthalingam G, Edmunds M, Zambon M, Brown KE, Hopkins S, Chand M, Ramsay M. Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) variant. N Engl J Med. 2021;385(7):585–594. 10.1056/NEJMoa2108891. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
54. Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, Hernán MA, Lipsitch M, Reis B, Balicer RD. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med. 2021;384(15):1412–1423. 10.1056/NEJMoa2101765. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
55. Abu-Raddad LJ, Chemaitelly H, Butt AA, National Study Group for COVID-19 Vaccination Effectiveness of the BNT162b2 Covid-19 vaccine against the B.1.1.7 and B.1.351 variants. N Engl J Med. 2021;385(2):187–189. 10.1056/NEJMc2104974. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
56. Mahase E. Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. BMJ. 2021;372:n296. 10.1136/bmj.n296. [Abstract] [CrossRef] [Google Scholar]
57. Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, Padayachee SD, Dheda K, Barnabas SL, Bhorat QE, Briner C, Kwatra G, Ahmed K, Aley P, Bhikha S, Bhiman JN, Bhorat AE, du Plessis J, Esmail A, Groenewald M, Horne E, Hwa SH, Jose A, Lambe T, Laubscher M, Malahleha M, Masenya M, Masilela M, McKenzie S, Molapo K, Moultrie A, Oelofse S, Patel F, Pillay S, Rhead S, Rodel H, Rossouw L, Taoushanis C, Tegally H, Thombrayil A, van Eck S, Wibmer CK, Durham NM, Kelly EJ, Villafana TL, Gilbert S, Pollard AJ, de Oliveira T, Moore PL, Sigal A, Izu A, NGS-SA Group. Wits-VIDA COVID Group Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant. N Engl J Med. 2021;384(20):1885–1898. 10.1056/NEJMoa2102214. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
58. Palacios R, Batista AP, Albuquerque CSN, Patiño EG. Efficacy and safety of a COVID-19 inactivated vaccine in healthcare professionals in Brazil: The PROFISCOV Study. SSRN 2021: 3822780
59. Jara A, Undurraga EA, González C, Paredes F, Fontecilla T, Jara G, Pizarro A, Acevedo J, Leo K, Leon F, Sans C, Leighton P, Suárez P, García-Escorza H, Araos R. Effectiveness of an inactivated SARS-CoV-2 vaccine in Chile. N Engl J Med. 2021;385(10):875–884. 10.1056/NEJMoa2107715. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
60. Sheikh A, McMenamin J, Taylor B, Robertson C, Public Health Scotlandthe EAVE II Collaborators SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. Lancet. 2021;397(10293):2461–2462. 10.1016/S0140-6736(21)01358-1. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
61. Wall EC, Wu M, Harvey R, Kelly G, Warchal S, Sawyer C, Daniels R, Adams L, Hobson P, Hatipoglu E, Ngai Y, Hussain S, Ambrose K, Hindmarsh S, Beale R, Riddell A, Gamblin S, Howell M, Kassiotis G, Libri V, Williams B, Swanton C, Gandhi S, Bauer DL. AZD1222-induced neutralising antibody activity against SARS-CoV-2 Delta VOC. Lancet. 2021;398(10296):207–209. 10.1016/S0140-6736(21)01462-8. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
62. Li XN, Huang Y, Wang W, Jing QL, Zhang CH, Qin PZ, Guan WJ, Gan L, Li YL, Liu WH, Dong H, Miao YT, Fan SJ, Zhang ZB, Zhang DM, Zhong NS. Effectiveness of inactivated SARS-CoV-2 vaccines against the Delta variant infection in Guangzhou: a test-negative case-control real-world study. Emerg Microbes Infect. 2021;10(1):1751–1759. 10.1080/22221751.2021.1969291. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
63. Thompson MG, Stenehjem E, Grannis S, Ball SW, Naleway AL, Ong TC, DeSilva MB, Natarajan K, Bozio CH, Lewis N, Dascomb K, Dixon BE, Birch RJ, Irving SA, Rao S, Kharbanda E, Han J, Reynolds S, Goddard K, Grisel N, Fadel WF, Levy ME, Ferdinands J, Fireman B, Arndorfer J, Valvi NR, Rowley EA, Patel P, Zerbo O, Griggs EP, Porter RM, Demarco M, Blanton L, Steffens A, Zhuang Y, Olson N, Barron M, Shifflett P, Schrag SJ, Verani JR, Fry A, Gaglani M, Azziz-Baumgartner E, Klein NP. Effectiveness of Covid-19 vaccines in ambulatory and inpatient care settings. N Engl J Med. 2021;385(15):1355–1371. 10.1056/NEJMoa2110362. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
64. Bager P, Wohlfahrt J, Rasmussen M, Albertsen M, Krause TG. Hospitalisation associated with SARS-CoV-2 delta variant in Denmark. Lancet Infect Dis. 2021;21(10):1351. 10.1016/S1473-3099(21)00580-6. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
65. Rincon-Arevalo H, Choi M, Stefanski AL, Halleck F, Weber U, Szelinski F, Jahrsdörfer B, Schrezenmeier H, Ludwig C, Sattler A, Kotsch K, Potekhin A, Chen Y, Burmester GR, Eckardt KU, Guerra GM, Durek P, Heinrich F, Ferreira-Gomes M, Radbruch A, Budde K, Lino AC, Mashreghi MF, Schrezenmeier E, Dörner T. Impaired humoral immunity to SARS-CoV-2 BNT162b2 vaccine in kidney transplant recipients and dialysis patients. Sci Immunol. 2021;6(60):eabj1031. 10.1126/sciimmunol.abj1031. [Abstract] [CrossRef] [Google Scholar]
66. Yuan M, Huang D, Lee CD, Wu NC, Jackson AM, Zhu X, Liu H, Peng L, van Gils MJ, Sanders RW, Burton DR, Reincke SM, Prüss H, Kreye J, Nemazee D, Ward AB, Wilson IA. Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants. Science. 2021;373(6556):818–823. 10.1126/science.abh1139. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
67. Agerer B, Koblischke M, Gudipati V, Montaño-Gutierrez LF, Smyth M, Popa A, Genger JW, Endler L, Florian DM, Mühlgrabner V, Graninger M, Aberle SW, Husa AM, Shaw LE, Lercher A, Gattinger P, Torralba-Gombau R, Trapin D, Penz T, Barreca D, Fae I, Wenda S, Traugott M, Walder G, Pickl WF, Thiel V, Allerberger F, Stockinger H, Puchhammer-Stöckl E, Weninger W, Fischer G, Hoepler W, Pawelka E, Zoufaly A, Valenta R, Bock C, Paster W, Geyeregger R, Farlik M, Halbritter F, Huppa JB, Aberle JH, Bergthaler A. SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8+ T cell responses. Sci Immunol. 2021;6(57):eabg6461. 10.1126/sciimmunol.abg6461. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
68. Reynolds CJ, Pade C, Gibbons JM, Butler DK, Otter AD, Menacho K, Fontana M, Smit A, Sackville-West JE, Cutino-Moguel T, Maini MK, Chain B, Noursadeghi M, UK COVIDsortium Immune Correlates Network. Brooks T, Semper A, Manisty C, Treibel TA, Moon JC, UK COVIDsortium Investigators. Valdes AM, McKnight Á, Altmann DM, Boyton R. Prior SARS-CoV-2 infection rescues B and T cell responses to variants after first vaccine dose. Science. 2021;372(6549):1418–1423. 10.1126/science.abh1282. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
69. Keehner J, Horton LE, Binkin NJ, Laurent LC, Pride D, Longhurst CA, Abeles SR, Torriani FJ. Resurgence of SARS-CoV-2 infection in a highly vaccinated health system workforce. N Engl J Med. 2021;385(14):1330–1332. 10.1056/NEJMc2112981. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
70. McEwen AE, Cohen S, Bryson-Cahn C, Liu C, Pergam SA, Lynch J, Schippers A, Strand K, Whimbey E, Mani NS, Zelikoff AJ, Makarewicz VA, Brown ER, Bakhash SAM, Baker NR, Castor J, Livingston RJ, Huang ML, Jerome KR, Greninger AL, Roychoudhury P. Variants of concern are overrepresented among postvaccination breakthrough infections of SARS-CoV-2 in Washington State. Clin Infect Dis 2021; ciab581 [Europe PMC free article] [Abstract]
71. Centers for Disease Control and Prevention. COVID-19 vaccine breakthrough infections reported to CDC—United States, January 1–April 30, 2021. 2021. https://www.cdc.gov/mmwr/volumes/70/wr/mm7021e3.htm (accessed September 30, 2021) [Europe PMC free article] [Abstract]
72. Bergwerk M, Gonen T, Lustig Y, Amit S, Lipsitch M, Cohen C, Mandelboim M, Levin EG, Rubin C, Indenbaum V, Tal I, Zavitan M, Zuckerman N, Bar-Chaim A, Kreiss Y, Regev-Yochay G. Covid-19 breakthrough infections in vaccinated health care workers. N Engl J Med. 2021;385(16):1474–1484. 10.1056/NEJMoa2109072. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
73. Kustin T, Harel N, Finkel U, Perchik S, Harari S, Tahor M, Caspi I, Levy R, Leshchinsky M, Ken Dror S, Bergerzon G, Gadban H, Gadban F, Eliassian E, Shimron O, Saleh L, Ben-Zvi H, Keren Taraday E, Amichay D, Ben-Dor A, Sagas D, Strauss M, Shemer Avni Y, Huppert A, Kepten E, Balicer RD, Netzer D, Ben-Shachar S, Stern A. Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals. Nat Med. 2021;27(8):1379–1384. 10.1038/s41591-021-01413-7. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
74. Pollett SD, Richard SA, Fries AC, Simons MP, Mende K, Lalani T, Lee T, Chi S, Mody R, Madar C, Ganesan A, Larson DT, Colombo CJ, Colombo R, Samuels EC, Broder CC, Laing ED, Smith DR, Tribble D, Agan BK, Burgess TH. The SARS-CoV-2 mRNA vaccine breakthrough infection phenotype includes significant symptoms, live virus shedding, and viral genetic diversity. Clin Infect Dis 2021; ciab543 [Europe PMC free article] [Abstract]
75. The New York Times. Coronavirus in the U.S.: latest map and case count. 2021. https://www.nytimes.com/interactive/2021/us/covid-cases.html (accessed September 30, 2021)
76. Evening Standard. Delta variant cases up 79% in a week with young people ‘driving the spread’. 2021. https://www.standard.co.uk/news/uk/covid-delta-indian-variant-cases-up-young-people-driving-spread-b941421.html (accessed September 30, 2021)
77. Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, Grifoni A, Ramirez SI, Haupt S, Frazier A, Nakao C, Rayaprolu V, Rawlings SA, Peters B, Krammer F, Simon V, Saphire EO, Smith DM, Weiskopf D, Sette A, Crotty S. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021;371(6529):eabf4063. 10.1126/science.abf4063. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
78. Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Tokuyama M, Cho A, Jankovic M, Schaefer-Babajew D, Oliveira TY, Cipolla M, Viant C, Barnes CO, Bram Y, Breton G, Hägglöf T, Mendoza P, Hurley A, Turroja M, Gordon K, Millard KG, Ramos V, Schmidt F, Weisblum Y, Jha D, Tankelevich M, Martinez-Delgado G, Yee J, Patel R, Dizon J, Unson-O’Brien C, Shimeliovich I, Robbiani DF, Zhao Z, Gazumyan A, Schwartz RE, Hatziioannou T, Bjorkman PJ, Mehandru S, Bieniasz PD, Caskey M, Nussenzweig MC. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021;591(7851):639–644. 10.1038/s41586-021-03207-w. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
79. Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, Subbarao K, Kent SJ, Triccas JA, Davenport MP. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;27(7):1205–1211. 10.1038/s41591-021-01377-8. [Abstract] [CrossRef] [Google Scholar]
80. Milman O, Yelin I, Aharony N, Katz R, Herzel E, Ben-Tov A, Kuint J, Gazit S, Chodick G, Patalon T, Kishony R. Community-level evidence for SARS-CoV-2 vaccine protection of unvaccinated individuals. Nat Med. 2021;27(8):1367–1369. 10.1038/s41591-021-01407-5. [Abstract] [CrossRef] [Google Scholar]
81. Salo J, Hägg M, Kortelainen M, Leino T, Saxell T, Siikanen M, Sääksvuori L. The indirect effect of mRNA-based Covid-19 vaccination on unvaccinated household members. medRxiv 2021: 2021.05.27.21257896 [Europe PMC free article] [Abstract]
82. Moderna. COVID-19 vaccine retains neutralizing activity against emerging variants first identified in the U.K. and the Republic of South Africa. 2021. https://investors.modernatx.com/news-releases/news-release-details/moderna-covid-19-vaccine-retains-neutralizing-activity-against (accessed September 30, 2021)
83. Pfizer. BioNTech to seek authorization for COVID booster shot as Delta variant spreads. 2021. https://www.reuters.com/business/healthcare-pharmaceuticals/pfizer-ask-fda-authorize-booster-dose-covid-vaccine-delta-variant-spreads-2021-07-08/ (accessed September 30, 2021)
84. Krause PR, Fleming TR, Longini IM, Peto R, Briand S, Heymann DL, Beral V, Snape MD, Rees H, Ropero AM, Balicer RD, Cramer JP, Muñoz-Fontela C, Gruber M, Gaspar R, Singh JA, Subbarao K, Van Kerkhove MD, Swaminathan S, Ryan MJ, Henao-Restrepo AM. SARS-CoV-2 variants and vaccines. N Engl J Med. 2021;385(2):179–186. 10.1056/NEJMsr2105280. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
85. World Health Organization. Episode #45—Delta variant. 2021. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/media-resources/cience-in-5/episode-45—delta-variant (accessed August 5, 2021)
86. Yang J, Marziano V, Deng X, Guzzetta G, Zhang J, Trentini F, Cai J, Poletti P, Zheng W, Wang W, Wu Q, Zhao Z, Dong K, Zhong G, Viboud C, Merler S, Ajelli M, Yu H. Despite vaccination, China needs non-pharmaceutical interventions to prevent widespread outbreaks of COVID-19 in 2021. Nat Hum Behav. 2021;5(8):1009–1020. 10.1038/s41562-021-01155-z. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
87. Moore S, Hill EM, Tildesley MJ, Dyson L, Keeling MJ. Vaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling study. Lancet Infect Dis. 2021;21(6):793–802. 10.1016/S1473-3099(21)00143-2. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1007/s11684-021-0906-x

Supporting
Mentioning
Contrasting
1
52
0

Article citations


Go to all (35) article citations