
 

Page 1 of 6 

Article DOI: https://doi.org/10.3201/eid2804.211961 

SARS-CoV-2 IgG Seroprevalence among 
Blood Donors as a Monitor of the COVID-

19 Epidemic, Brazil 
Appendix 

Epidemic Dynamic Model 

Most studies that present dynamic models of COVID-19 epidemics use compartmental 

models with susceptible-exposed-infected-removed (SEIR) structure. This model structure is a 

variation of the traditional susceptible-infected-removed (SIR) model, with the inclusion of a 

compartment for Exposed persons, which accounts for the latent period of the infection. A key 

parameter in those models is the transmission rate, β, which aggregates the effects of some social 

behaviors in a population such as the mean number of interpersonal contacts of cases, the 

strength of protection measures in contact situations (for instance, use of facemasks, physical 

distancing during a contact, and others) and the selective isolation of persons with symptoms, 

and also the relevant biologic features that determine the ability of the virus to be transmitted 

when a contact occurs, for instance the mean exhaled viral load, the viral pathogenic 

mechanisms, and others. 

Equation 1 

Our study uses a model that follows the SEIR structure: 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
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(𝐼𝐼𝑟𝑟 + 𝐼𝐼𝑛𝑛) 

This model is like the one used by Li et al. (1). In this model, the compartment S(t) 

represents the number of susceptible persons in population, E(t) represents the number of 

exposed persons (the persons that are in the latent period of infection, in which they are not able 

to propagate the virus yet), Ir(t) represents the number of infected persons (persons who will 

propagate the virus if they contact a susceptible person) that have been reported in public health 

statistics, and In(t) represents the number of infected persons that have not been reported. The 

compartment R(t) represents removed persons (persons that have recovered from the disease and 

consequently have become immune, at least temporarily, or who have died). In this equation, N 

represents the initial number of persons in the population. In addition, equation 2 performs the 

computation of the cumulative number of reported infected persons, represented by Cr:  

Equation 2 

𝑑𝑑𝐶𝐶𝑟𝑟

𝑑𝑑𝑑𝑑
 = ∝ 𝐸𝐸

𝑍𝑍
 

Equation 1 has some parameters that are mainly biologically determined. For instance, 

Z = 3.69 (the average time a person stays in the compartment of exposed persons before 

becoming infected) and D = 7.0 (the average duration of infection).  

Most published studies concerning the dynamic modeling of COVID-19 epidemics either 

consider a constant value of β or a piecewise constant value, which changes as social distancing 

measures are changed by governments. However, the actual dynamics of COVID-19 epidemics 

varies in a much faster way, due to the varying response of populations to virus containment 

measures as can be inferred from the growth of infection rates just after holidays or other dates 

of social events. In addition to β, the α parameter also depends on social factors, representing the 

fraction of infected persons that are detected by testing and become reported cases. 

Thus, for performing a simulation of an actual scenario, estimates for the values of β and 

α are necessary, as are estimates for the initial values of all model variables, S(0), E(0), Ir(0), 

In(0), R(0). We addressed the issues related to the assignment of values to those parameters and 

modified the model in equation 1 to transform it to a state observer, as described below. This 

transformation endowed the model with the capability to auto-adapt to parameter changes while 
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performing a fitting of the accumulated number of reported cases, Cr, represented in the model, 

to the corresponding number reported by the public health services. 

State Observer for the Epidemic Dynamic Model 

State observers are crucial tools that have been developed for monitoring the internal 

variables of dynamic systems, usually for the purpose of assisting the system control. These tools 

have many reported applications, mainly in the monitoring and control of complex technological 

systems, such as in aerospace artifacts, and the chemical industry, among others. Here we offer a 

general discussion of the idea of state observers. Then, we show the specific state observer that 

we developed in this study for the monitoring of epidemic processes. 

Equation 3 

Consider a dynamic system described by the following system of differential equations: 

𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥)  

𝑦𝑦 = 𝑔𝑔(𝑥𝑥)  

In this system, 𝑓𝑓(·) represents the system dynamic function, 𝑔𝑔(·) represents the output 

measurement function, the vector 𝑥𝑥 ∈  𝑅𝑅𝑛𝑛 represents the system internal variables (the system 

states), and the vector 𝑦𝑦 ∈  𝑅𝑅𝑚𝑚 represents the vector of signals that are directly measured on the 

system. State observers are models that represent dynamic systems that are intended to provide 

estimates of the system internal signals. We assumed that the exact representation of the system, 

as described in equation 3, is not available to the analyst. 

Equation 4 

A state observer for the system in equation 3 can be represented as: 

𝑥𝑥�̇ = 𝑓𝑓(𝑥𝑥�, 𝑒̂𝑒)  

𝑦𝑦� = 𝑔𝑔�(𝑥𝑥�) 

𝑒̂𝑒 = 𝑦𝑦� − 𝑦𝑦 

In this equation, the functions fˆ(·) and 𝑔𝑔�(·) are approximated representations of functions 

f(·) and 𝑔𝑔(·), 𝑥𝑥� represents the vector of estimates of the system internal variables, 𝑦𝑦� represents 

the estimate of output measurement vector, and 𝑒̂𝑒 is the error between the estimated output 
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vector 𝑦𝑦� and the actual measurement vector y. The working principle of the state observers is that 

the error signal e is fed back into the observer, with this feedback loop designed such that the 

difference between the system state vector x and the estimate 𝑥𝑥� of the state vector provided by 

the observer converges to zero. After this convergence, the state observer provides estimates of 

all system signals, including the system internal signals that are not measured directly. The exact 

convergence can be achieved when 𝑓𝑓 = f and 𝑔𝑔� = 𝑔𝑔. When the differences between the model (𝑓𝑓, 

𝑔𝑔�) represented in the observer and the actual system dynamics (f,g) are small, the observer state 

vector, 𝑥𝑥�, is expected to represent a good estimate of the system internal variables, 𝑥𝑥. 

Equation 5 

Most of the state observers that have been studied until recently use an additive feedback 

of the measurement error, which makes the observer dynamic equation become: 

𝑥𝑥�̇ = 𝑓𝑓(𝑥𝑥�) + 𝐾𝐾𝑒̂𝑒 

in which K ∈  𝑅𝑅𝑛𝑛×𝑚𝑚 is a matrix of constant feedback coefficients. 

The feedback structure in equation 5 has been used in some published works that propose 

state observers for SIR-like epidemic models (2,3). A main drawback of those approaches is that 

they depend on the function 𝑓𝑓(·) being a reasonable approximation of the function 𝑓𝑓(·) in the 

actual system. As we discussed, in the case of COVID-19, the parameter β presents strong and 

fast variations, which makes the use of those observers difficult because they could be used for 

very short time horizons in which estimates of β could be considered reasonable approximations 

of the actual disease transmission rate. In addition, those observers would have no role in the 

estimation of β values, thus failing to provide the estimate of the variable that would likely be the 

most crucial. 

In our work, we offer a new structure of state observer for SIR-like models in which the 

infection transmission rate β continuously varies along the timeline. In the proposed technique, 

the actual accumulated number of COVID-19 cases, Cr, is measured as reported by public health 

services, and the error between this number and the number Ĉr estimated by the observer is 

calculated. This error is fed back to the estimator in a rather unusual way. First, we assumed that 

β is a time-varying parameter, which becomes represented by 𝛽𝛽(𝑡𝑡). We run an optimization 

procedure, searching for a time-varying estimate 𝛽̂𝛽(𝑡𝑡) that minimizes that error on each day. 
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When we find the optimal sequence 𝛽̂𝛽∗(𝑡𝑡), the estimates of the other system internal variables 

appear as byproducts of the optimization procedure that result from the simulation of the model 

with optimal values of the transmission rate. More specifically, the following cost function is 

defined in Equation 6 as: 

𝐽𝐽(𝛽̂𝛽,𝑘𝑘) =  � (log�𝐶𝐶𝑟𝑟(𝑖𝑖)� − log (
𝑘𝑘 + 𝑑𝑑

𝑖𝑖=𝑘𝑘−𝑑𝑑

𝐶̂𝐶𝑟𝑟(𝑖𝑖, 𝛽̂𝛽)))2 

in which 𝐶𝐶𝑟𝑟(𝑖𝑖) represents the accumulated number of actual reported cases in the city on day i 

and 𝐶̂𝐶𝑟𝑟(i,𝛽̂𝛽) represents the accumulated number of reported cases calculated by the model from 

time t = 1 to t = k, using 𝛽𝛽 = 𝛽̂𝛽 in a time window of length 2d + 1 centered in t = k. 

Equation 7 

The estimated values of the daily disease transmission rate 𝛽𝛽∗(𝑡𝑡) are given by: 

β∗(t) = arg minβ J(β,t) 

subject to: {equation 1, equation 2 
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Appendix Table. SARS-CoV-2 IgG serology results and seroprevalence among blood donors from 7 cities, Minas Gerais, Brazil, 
2020* 

Mo. 

City 

Pouso Alegre Uberaba Juiz de Fora Belo Horizonte Montes Claros 
Governador 
Valadares Uberlândia 

– + % – + % – + % – + % – + % – + % – + % 
Mar 44 0 0 44 0 0 44 0 0 44 0 0 44 0 0 44 0 0 43 1 2.3 
Apr 44 0 0 42 2 4.6 44 0 0 44 0 0 44 0 0 44 0 0 44 0 0 
May 58 1 1.7 60 0 0 59 1 1.7 59 1 1.7 59 1 1.7 60 0 0 60 0 0 
Jun 65 0 0 64 1 1.5 64 0 0 156 2 1.3 50 0 0 63 2 3.1 70 0 0 
Jul 67 3 4.3 67 3 4.3 68 2 2.9 186 5 2.6 50 0 0 66 4 5.7 67 2 2.9 
Aug 76 1 1.3 51 1 1.9 83 4 4.6 189 12 6.0 60 2 3.2 97 4 4.0 64 2 3.0 
Sep 66 3 4.4 66 4 5.7 76 1 1.3 204 8 3.8 47 4 7.8 77 12 13.5 136 12 8.1 
Oct 95 3 3.1 99 3 2.9 111 4 3.5 157 9 5.4 53 8 13.1 126 11 8.0 219 30 12.1 
Nov 136 4 2.9 138 6 4.2 160 9 5.3 377 36 8.7 62 9 12.7 192 18 8.6 324 38 10.5 
Dec 188 7 3.6 196 17 8.0 222 21 8.6 369 35 8.7 103 12 10.4 274 30 9.9 372 30 7.5 
Total 839 22 2.6 827 37 4.3 931 42 4.3 1,785 108 5.7 572 36 5.9 1,043 81 7.2 1,399 115 7.6 
*SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; –, negative; +, positive.  

 


	SARS-CoV-2 IgG Seroprevalence among Blood Donors as a Monitor of the COVID-19 Epidemic, Brazil
	Appendix
	Epidemic Dynamic Model
	Equation 1
	Equation 2

	State Observer for the Epidemic Dynamic Model
	Equation 3
	Equation 4
	Equation 5
	Equation 7


	References
	Appendix Table. SARS-CoV-2 IgG serology results and seroprevalence among blood donors from 7 cities, Minas Gerais, Brazil, 2020*

