Expanded View Figures

Figure EV1. UPF1_{LL} has distinct effects on NMD autoregulation and factor requirements.

- A Sashimi plot from representative RNA-seq samples of siNT and siUPF1_{LL} knockdown cells. Percent spliced in values and FDR were calculated with rMATS software (Shen *et al*, 2014).
- B Density plot of changes in mRNA stability as determined by REMBRANDTS analysis of RNA-seq following isoform-specific UPF1_{LL} depletion (Alkallas *et al*, 2017). mRNAs were binned according to up- or down-regulation in response to siUPF1_{LL}. Statistical significance was determined by K–W test, with Dunn's correction for multiple comparisons.
- C RT-qPCR analysis of indicated transcripts following transfection of HEK-293 cells with siRNAs that target both UPF1 isoform (UPF1_{total}) and the UPF1_{LL} isoform. Relative fold changes are in reference to NT siRNA. siUPF1_{total} or siUPF1_{LL} was compared to the NT siRNA control for significance testing. Asterisk (*) indicates P < 0.05, as determined by two-way ANOVA. Black dots represent individual data points and error bars indicate mean \pm SD (n = 3 biological replicates). Dashed lines indicate log₂ (fold change) of \pm 0.5. See also Dataset EV3 for *P*-values associated with each statistical comparison.
- D Venn diagram (to scale) of overlapping targets identified from RNA-seq following UPF1_{LL} knockdown (this dataset), total UPF1 knockdown, or SMG6/7 double knockdown and rescue (Colombo *et al*, 2017). Depicted are genes that increased in abundance at least 1.4-fold (FDR < 0.05) with UPF1_{LL}-specific knockdown and their overlap with genes that increased in abundance (FDR < 0.05) with total UPF1 knockdown or genes that increased in abundance with SMG6/7 double knockdown and were significantly rescued by expression of SMG6 or SMG7 (SMG6/7 targets). *P*-values indicate enrichment of genes that increased in abundance at least 1.4-fold (FDR < 0.05) with UPF1_{LL}-specific knockdown among those regulated by total UPF1 and SMG6/7, as determined by Fisher's exact test. Only genes that met read count cutoffs in all conditions were included in the analysis.
- E Density plot of changes in relative mRNA abundance as determined by RNA-seq in SMG7^{ko}/SMG5^{kd} cells, relative to a parental cell line treated with control siRNAs (Boehm *et al*, 2021). Genes were categorized as up-regulated by siUPF1_{total} only, siUPF1_{LL} only, or both siUPF1_{total} and siUPF1_{LL}. Statistical significance was determined by K–W test, with Dunn's correction for multiple comparisons.
- F Density plot of changes in relative mRNA abundance as determined by RNA-seq following UPF1_{LL} knockdown in HEK-293 cells. Genes were categorized as upregulated by SMG7^{ko}, SMG7^{ko}/SMG5^{kd}, SMG7^{ko}/SMG6^{kd}, or SMG7^{ko}/SMG5^{kd} and SMG7^{ko}/SMG6^{kd} (Boehm *et al*, 2021). Statistical significance was determined by K–W test, with Dunn's correction for multiple comparisons.
- G Box plot of log₂ enrichment for translation at the ER (Jan *et al*, 2014). mRNAs were binned by sensitivity to UPF1_{LL}-specific knockdown in HEK-293 cells. Statistical significance was determined by K–S test (*****P* = 1 × 10⁻⁶). Boxes indicate interquartile ranges, horizontal lines represent medians, and bars indicate Tukey whiskers.

Figure EV2. NMD protection can be overcome by UPF1_{LL}.

- A Western blots of CLIP-UPF1_{SL} and CLIP-UPF1_{LL} overexpression. Membranes were probed with an anti-UPF1 antibody that detects both endogenous and CLIP-tagged UPF1. Wedge indicates serial twofold dilutions of lysate. Mean (± SD) of CLIP-UPF1 overexpression was determined from two replicate membranes.
- B RT–qPCR analysis of well-characterized NMD targets following total UPF1 knockdown and rescue with siRNA-resistant CLIP-tagged UPF1. Relative fold changes are in reference to the GFP-expressing control line treated with a NT siRNA. Significance of NMD rescue by CLIP-UPF1 was compared to the GFP-expressing control line treated with total UPF1 siRNA. Asterisk (*) indicates P < 0.0001, as determined by two-way ANOVA with multiple comparisons. Black dots represent individual data points and error bars indicate mean \pm SD (n = 3 biological replicates). PTC+ indicates the use of primers specific to transcript isoforms with validated poison exons (Lareau *et al*, 2007; Ni *et al*, 2007). See also Dataset EV3 for *P*-values associated with each statistical comparison.
- C Density plot of recovered mRNAs in CLIP-UPF1_{LL} affinity purifications relative to that of CLIP-UPF1_{SL}. Genes were categorized as up-regulated by siUPF1_{total} only, siUPF1_{LL} only, or both siUPF1_{total} and siUPF1_{LL}. Statistical significance was determined by K–W test, with Dunn's correction for multiple comparisons.
- D RT–qPCR analysis of indicated transcripts from UPF1 RIP-seq experiments. Relative fold enrichment was determined by dividing the recovered mRNA by its corresponding input amount. Significance of differential recovery in CLIP-UPF1_{LL} RIP was determined by comparison to that in CLIP-UPF1_{SL}. Asterisk (*) indicates *P* < 0.05, as determined by unpaired Student's *t*-test. Black dots represent individual data points, and error bars indicate mean ± SD (*n* = 3 biological replicates). For protected mRNAs, the PTBP1/hnRNP L motif density bin of the 3'UTR is indicated. PTC⁺ indicates the use of primers specific to transcript isoforms with validated poison exons (Lareau *et al*, 2007; Ni *et al*, 2007). See also Dataset EV3 for *P*-values associated with each statistical comparison.
- E Density plots of changes in relative mRNA abundance as determined by RNA-seq following UPF1_{LL} (top) or UPF1_{SL} (bottom) overexpression. mRNAs were binned according to enrichment in the CLIP-UPF1_{LL} or CLIP-UPF1_{SL} affinity purifications. Statistical significance was determined by K–W test, with Dunn's correction for multiple comparisons.
- F Density plots of changes in mRNA stability as determined by REMBRANDTS analysis of RNA-seq following UPF1_{LL} (top) or UPF1_{SL} (bottom) overexpression. mRNAs were binned according to enrichment in the CLIP-UPF1_{SL} or CLIP-UPF1_{SL} affinity purifications. Statistical significance was determined by K–W test, with Dunn's correction for multiple comparisons.

Figure EV2.

Figure EV3. Transcripts targeted by UPF1_{LL} are coordinately down-regulated during ER stress and induction of the ISR.

- A Volcano plot of relative mRNA abundance as determined from RNA-seq following treatment of HEK-293 cells with 1 μ M tunicamycin for 6 h (Data ref: Park *et al*, 2017). mRNAs were binned by RIP-seq efficiency in CLIP-UPF1_{LL} or CLIP-UPF1_{SL} affinity purifications. Statistical significance was determined by K–W test, with Dunn's correction for multiple comparisons. Dashed line indicates the significance threshold $P \le 0.05$ (n = 3 biological replicates).
- B Western blot of $eIF2\alpha$ phosphorylation following treatment of HEK-293 cells with 1 μ M thapsigargin for 6 h.
- C Schematic of the RNA-seq experimental workflow and conditions for UPF1_{LL} knockdown and thapsigargin treatment.
- D Density plot of relative mRNA stability as determined by REMBRANDTS analysis of RNA-seq following treatment of HEK-293 cells with 1 μ M thapsigargin for 6 h. mRNAs were binned by changes in relative mRNA abundance in thapsigargin. Statistical significance was determined by K–S test.
- E Density plot of relative mRNA stability as determined by REMBRANDTS analysis of RNA-seq following UPF1_{LL} knockdown in HEK-293 cells and treatment with 1 μM thapsigargin for 6 h (Alkallas *et al*, 2017). mRNAs were binned by changes in relative mRNA abundance in thapsigargin with UPF1_{LL} knockdown. Statistical significance was determined by K–W test, with Dunn's correction for multiple comparisons.
- F Quantification of characterized ISR-target transcript abundance in RNA-seq of the indicated conditions. Error bars indicate mean ± SD (n = 3 biological replicates).
- G Quantification of UPF1_{LL} isoform expression in control and thapsigargin-treated HEK-293 cells from rMATS analyses (*n* = 3 biological replicates).

F

G

	mRNA	FDR
DMSO	13.4 ± 1.9	n.a.
Thapsigargin	15.8 ± 5.1	1

Figure EV4. UPF1 $_{\rm LL}$ targets decrease in abundance with translational inhibition.

- A Volcano plot of relative mRNA abundance as determined from RNA-seq following treatment of MCF7 cells with 150 nM hippuristanol for 1 h (Data ref: Waldron *et al*, 2019). mRNAs were binned by RIP-seq efficiency in CLIP-UPF1_{LL} or CLIP-UPF1_{SL} affinity purifications. Statistical significance was determined by K–W test, with Dunn's correction for multiple comparisons. Dashed line indicates the significance threshold $P \le 0.05$ (n = 3 biological replicates).
- B Volcano plot as in (A), following treatment of HEK-293 cells with 50 ng/ml emetine for 4 h (Martinez-Nunez *et al*, 2017). Dashed line indicates the significance threshold $P \le 0.05$ (n = 3 biological replicates).
- C Volcano plot as in (A), following treatment of HeLa cells with 100 μ g/ml cycloheximide for 15 min (Data ref: Kearse *et al*, 2019). Dashed line indicates the significance threshold $P \le 0.05$ (n = 3 biological replicates).

Figure EV5. Reduced translation efficiency promotes $\mathsf{UPF1}_{\mathsf{LL}}$ activity.

- A Schematic of the RNA-seq experimental workflow and conditions for UPF1LL knockdown and puromycin treatment.
- B Density plot of relative mRNA abundance as determined by RNA-seq following treatment of HEK-293 cells with 50 μg/ml puromycin. mRNAs were binned according to destabilization in CLIP-UPF1_{LL} or CLIP-UPF1_{SL} overexpression experiments, as determined by REMBRANDTS analysis (Alkallas *et al*, 2017). Statistical significance was determined by K–S test.
- C Quantification of UPF1_{LL} isoform expression in control and puromycin-treated HEK-293 cells from rMATS analyses (n = 3 biological replicates) (Shen et al, 2014).
- D RT–qPCR analysis of indicated transcripts following treatment of HEK-293 cells with indicated concentrations of puromycin for 4 h. Relative fold changes are in reference to vehicle-treated control. Significance of puromycin treatment on relative transcript abundance was compared to the vehicle-treated control. Asterisk (*) indicates P < 0.05, as determined by two-way ANOVA. Black dots represent individual data points, and error bars indicate mean \pm SD (n = 3 biological replicates). Dashed lines indicate log₂ (fold change) of \pm 0.5. PTC⁺ indicates the use of primers specific to the transcript isoform with a validated poison exon (Lareau *et al*, 2007; Ni *et al*, 2007). See also Dataset EV3 for *P*-values associated with each statistical comparison.
- E Density plot of relative mRNA abundance as determined by RNA-seq following treatment of HEK-293 cells with 25 μg/ml or 100 μg/ml puromycin. mRNAs were binned according to sensitivity to 50 μg/ml puromycin and UPF1_{LL} knockdown. Statistical significance was determined by K–S test.
- F Density plot of relative mRNA stability as determined by REMBRANDTS analysis of RNA-seq following treatment of HEK-293 cells with 50 µg/ml puromycin for 4 h (Alkallas *et al*, 2017). mRNAs were binned by changes in relative mRNA abundance in puromycin. Statistical significance was determined by K–S test.
- G Density plot of relative mRNA stability as determined by REMBRANDTS analysis of RNA-seq following UPF1_{LL} knockdown in HEK-293 cells and treatment with 50 µg/ ml puromycin for 4 h (Alkallas *et al*, 2017). mRNAs were binned by changes in relative mRNA abundance in puromycin with UPF1_{LL} knockdown. Statistical significance was determined by K–W test, with Dunn's correction for multiple comparisons.

Figure EV5.