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ABSTRACT Optical tweezers are a single-molecule technique that allows probing of intra- and intermolecular interactions that
govern complex biological processes involving molecular motors, protein-nucleic acid interactions, and protein/RNA folding.
Recent developments in instrumentation eased and accelerated optical tweezers data acquisition, but analysis of the data re-
mains challenging. Here, to enable high-throughput data analysis, we developed an automated python-based analysis pipeline
called POTATO (practical optical tweezers analysis tool). POTATO automatically processes the high-frequency raw data gener-
ated by force-ramp experiments and identifies (un)folding events using predefined parameters. After segmentation of the force-
distance trajectories at the identified (un)folding events, sections of the curve can be fitted independently to a worm-like chain
and freely jointed chain models, and the work applied on the molecule can be calculated by numerical integration. Furthermore,
the tool allows plotting of constant force data and fitting of the Gaussian distance distribution over time. All these features are
wrapped in a user-friendly graphical interface, which allows researchers without programming knowledge to perform sophisti-
cated data analysis.
SIGNIFICANCE Studying (un)folding of biopolymer structures with optical tweezers under different conditions generates
very large data sets for statistical data analysis. Recent technical improvements accelerated data acquisition by coupling
modern instruments with microfluidic systems, at the same time creating the need for a high-throughput and unbiased data
analysis. We developed practical optical tweezers analysis tool (POTATO), an open-source python-based tool that can
process data gathered by any optical tweezers force-ramp experiment in an automated fashion. POTATO is principally
designed for data preprocessing, identification of (un)folding events, and the fitting of force-distance curves. In addition, all
parameters for preprocessing, statistical analysis, and fitting of the curves can be adapted to suit the data set under
analysis in an easy-to-use graphical user interface.
INTRODUCTION

Arthur Ashkin received the Nobel Prize in 2018 for his
research on trapping dielectric particles with laser light in
optical tweezers (OTs) (1). OTs enable probing of structural
dynamics of individual molecules by monitoring internal
forces and short-lived intermediate states in real time (2–
5). This technique has been widely used to study structures
of nucleic acids and dynamics of RNA/protein folding (6–
10). In addition, OTs can also be used to probe the molecular
interactions between small molecules, proteins, and nucleic
acids (11–13). Recently, the combination of OTs with
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confocal microscopy enabled simultaneous measurements
of force and fluorescence that provided unprecedented in-
sights into molecular mechanisms such as timing and order
of events during transcription or translation (12,14–16).
Basically, in a typical OT experiment, a biopolymer, such
as a protein, DNA, or RNA molecule, is tethered between
two dielectric beads via labeled handles. The beads are
then trapped by focused laser beams, so-called optical traps.
Following this, several modes of operation are possible. In
force-ramp mode, the beads are precisely displaced in a
monotonous manner, which applies increasing forces onto
the biopolymer (Fig. 1 A). Since trapped beads behave as
if they were attached to mechanical springs, the applied
force can be calculated from the measured displacement
of the beads out of the trap focus according to Hooke’s
law (Fig. 1 B) (17). This mode is commonly used to deter-
mine the elastic properties of the molecule and/or to
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FIGURE 1 Schematic of the pipeline. (A) Dia-

gram illustrating the optical tweezers experiments.

RNA is hybridized to single-stranded DNA handles

and immobilized on beads. These are used to exert

a pulling force on the RNA with a focused laser

beam. In force-ramp operation mode, the force is

gradually increased until the structure in the middle

is unfolded (bottom). Release of the force allows

the structure to refold (top). (B and C) RAW data

files (B) are downsampled, the noise is filtered us-

ing a Butterworth signal filter, and the data are

trimmed at a minimum force threshold to yield

the trimmed filtered data (C). (D) Then, the time

derivative is calculated numerically to yield the de-

rivative data; a histogram of the derivative value

distribution (right) shows two populations—

normal-like distribution represents the experi-

mental noise, while the other population of outliers

represents the (un)folding steps. The derivative

data are then statistically analyzed—the standard

deviation and moving median are calculated. Peaks

in derivative data that exceed median (white line)

5 Z score (gray region) are classified as (un)

folding events. The beginning and end of each

event are derived. (E) The coordinates of the events

are then used to define the region for fitting,

yielding the fitted steps. Finally, the output data

files are exported according to the selected settings.

The FD curve shown here was simulated (see sup-

porting material). To see this figure in color, go on-

line.

POTATO
determine the rupture forces at which transitions in folding
and unfolding occur.

On the other hand, a constant-force operation mode al-
lows tracking the molecule of interest in real time as it tran-
sitions between different conformational states, yielding
kinetic parameters of folding-unfolding of molecules or pro-
gressive movements of molecular motors (5). Accordingly,
OT experiments also allow precise calculation of the work
done on the system of interest (18,19). Previously, OT in-
struments were self-built by researchers, and thus applica-
tion required substantial physics and engineering
background. Furthermore, such experiments were highly
time demanding and labor intensive because a large amount
of data needed to be collected for a quantitative analysis.
Recently, commercial instruments became available on the
market. Another breakthrough was the integration of OT in-
struments with microfluidic systems, which accelerated
both experimental setup and data acquisition (14,15). Nowa-
days, high-frequency data acquisition allows the generation
of large data sets in a relatively short time. Subsequent data
analysis, however, still requires custom written scripts to
perform data preprocessing, identification of (un)folding
events or different folding states, mathematical modeling,
and statistical analysis. There are few algorithms developed
for the analysis of single-molecule force spectroscopy data,
which can perform alignment and pattern-recognition func-
tions (20–23). Such algorithms are mostly tailored for
atomic force spectroscopy data analysis and thus are not
directly applicable for OT data (20–25). In addition, device
manufacturers would provide basic solutions for the anal-
ysis of force spectroscopy data, yet processing of the data
still require bioinformatics and statistics skills, and this
therefore remains a major bottleneck.

Here, we present an automated python-based pipeline for
the analysis of OT force-ramp and constant-force data
(POTATO). Using statistical analysis of the time derivative
of force and distance data, both unfolding as well as refold-
ing steps are deduced automatically, and values such as (un)
folding force and step length are derived. These values are
then directly employed for fitting of force-distance (FD)
curves. Additionally, we provide a basic constant-force
analysis function. In order to allow the users to modify the
Biophysical Journal 121, 2830–2839, August 2, 2022 2831
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analysis parameters to suit their needs, we integrated an
easy-to-use graphical user interface (GUI) in POTATO.
Since the pipeline allows automated processing of multiple
raw data files, our tool reduces the analysis time substan-
tially, and the automated analysis ensures reproducibility
and eliminates inconsistencies of manual analysis (26).
Next, applicability of the tool is demonstrated on an artifi-
cially generated data set, which covers a broad range of
possible parameter combinations for force-ramp data, and
also on real experimental data (27,28). Finally, we also eval-
uated the performance of POTATO on a published data set
independently generated using a self-built OT system (29).
Our results indicate that POTATO exhibits a robust perfor-
mance in identifying (un)folding events with high accuracy,
precision, and recall.
MATERIALS AND METHODS

Algorithm implementation

The algorithm is written in python 3. We designed a GUI and wrapped the

code into a Windows standalone executable with pyinstaller to open this

tool to a broader audience without a bioinformatics background. The

code is freely available on GitHub (https://github.com/REMI-HIRI/

POTATO), and the architecture of the python files and GUI is further ex-

plained in the supporting material.
Artificial data generation

Artificial force spectroscopy data were generated using a custom-written

python script (supporting material). The fully folded part of FD curves

was modeled using an equation for extensible worm-like chain (WLC)

models (Eq. 4). The partially unfolded region was modeled using a combi-

nation of WLC and freely jointed chain (FJC) models (Eqs. 5 and 6). For a

more detailed description, see the supporting material.
Optical trapping system

OT experiments were performed using a C-Trap instrument (Lumicks, Am-

sterdam, the Netherlands). This device offers two laser traps combined with

a 5-channel laminar-flow microfluidics system and a confocal microscope.

Experiments were conducted as described in (27,28,30).
RESULTS AND DISCUSSION

Data preprocessing

Raw data (Fig. 1B) from various input file formats (.h5 or .csv
files containing force and distance information) can be loaded
and preprocessed before marking the (un)folding events (sup-
portingmaterial).Dependingon the data collection frequency,
downsampling can be performed, which accelerates the anal-
ysis and saves storage space. Downsampling is especially
crucial when data are collected at high frequencies. The in-
strument we used automatically collects data in the high-fre-
quency mode (78,000 Hz), and the raw data need to be
downsampled for ease of analysis. On the other hand, self-
built systems allow collecting the data at lower frequencies.
2832 Biophysical Journal 121, 2830–2839, August 2, 2022
In principle, if the data frequency is sufficiently high to detect
the molecule while transitioning from folded to unfolded
states, and vice versa, POTATO can perform the analysis.
Therefore, the downsampling rate should be defined by the
user empirically. We also note that data sets of very low
data-gathering frequency may not be suitable for direct anal-
ysis by POTATO. In that case, further preprocessing steps can
be implemented (see data augmentation in supporting mate-
rial). At the next step, a low pass Butterworth filter is em-
ployed to reduce the noise out of the signal (Eq. 1) (31).
This filter allows efficient noise removal while keeping the
actual (un)folding events intact and is therefore commonly
used (Fig. 1 C). The algorithm then trims the data at a mini-
mum force threshold set by the user (Table S1). Similar to
downsampling, the noise filtering can also be disabled in the
GUI if the loaded data is already preprocessed.

Butterworth filter:

G2ðuÞ ¼ G2
0

1þ �u
u

�2n (1)

G is gain, u is frequency, uc is cut-off frequency, and n is
filter degree.
Force-ramp data analysis

For the identification of (un)folding events, we employed a
derivative-based approach, which has been previously
demonstrated to allow efficient step recognition (23). There
are also other algorithms available that are based on proba-
bilistic approaches, such as FEATHER (22). However, it
must be noted that these tools are mostly developed for
the analysis of atomic-force-microscopy-generated data
(20-25). Here, we aimed to combine step recognition with
downstream data fitting and determination of work, based
solely on recorded force and distance values. Furthermore,
we aimed to keep the pipeline intuitive and adjustable to
user requirements. Although this tool was initially devel-
oped for the analysis of Lumicks FD data in H5 format, in
principle, POTATO can be employed to analyze any data
set format independent of the type of OT instrument.
Statistical analysis

In force-ramp trajectories, an unfolding event is character-
ized by a simultaneous drop in force and a quick increase
in distance as the secondary structure of the polymer un-
dergoes a sudden transition from the folded to the unfolded
state (Fig. 1 C). Refolding events have opposite characteris-
tics, in which the distance decreases and the force increases
upon refolding. When flipped, the refolding data cannot be
distinguished from the unfolding data and the processing,
therefore step identification can be performed in an identical
manner. Ultimately, these (un)folding events can be identi-
fied as a local maximum in the derivative of the distance
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and a local minimum in the derivative of the force (Eq. 2).
When plotted, the numerical derivative data of both distance
and force show two populations of values. The first is a
normal-like distribution representing the measurement
noise, while outliers from the normal distribution represent
the second population—the actual (un)folding events. To
distinguish real (un)folding events from background noise,
we calculate the moving median and the standard deviation
(SD). These are then used to separate the normally distrib-
uted data from the extreme values outside a given Z score
(i.e., number of SDs ¼ 3 by default) (Fig. 1 D). This should
include 99.73% of the normally distributed data points. As
the initially calculated SD is affected by the outliers, a sec-
ond SD is calculated from the data points inside the
threshold, and the data are sorted again. The cycle is
repeated until the difference between initial and secondary
SD is<x (with x default¼ 5%). After the force and distance
derivatives are sorted, our algorithm finds the local extrema
of the derivatives, representing the saddle points of the (un)
folding events in the FD curve. Then, it finds the adjacent
crossing points of the derivative with the moving median,
representing the start or end of the corresponding unfolding
events.

Numerical approximation of the derivatives:

dF
dt

¼ FðtþdtÞ �FðtÞ
dt

z lim
Dt/0

FðtþdtÞ�FðtÞ
dt

¼ Fðxþstep dÞ�FðxÞ
step d

dD ¼ DðtþdtÞ�DðtÞz lim DðtþdtÞ �DðtÞ ¼ Dðxþstep dÞ�DðxÞ
(2)
dt dt Dt/0 dt step d

F is force, D is distance, t is time, x is position, and step d is
a change in position.
Data fitting

Once the respective (un)folding steps are identified, this in-
formation is employed for data fitting. Data fitting is per-
formed on the untrimmed data to model the trajectories
more precisely. For the characterization of the mechanical
properties of the (bio)polymer under tension, the extensible
WLC model is commonly used, relating the applied force
and molecular extension (Eq. 3) (32). For that, the FD curve
is split into multiple parts. The fully folded part (until the
first detectable unfolding step) is fitted with a WLC (32)
to calculate the persistence length (dsLP) of the tethered
molecule, while the contour length (dsLC) is fixed. In addi-
tion, baseline and offsets in both force and distance are
included in the model to compensate for the experimental
variability in the FD curves.

The partially and fully unfolded parts of the FD curves are
subsequently fitted using a combined model comprising
WLC (describing the folded double-stranded handles) and
FJC (Eqs. 4 and 5) or another WLC model (representing
the unfolded single-stranded parts) (Eq. 6) (Fig. 1 E)
(32,33). To mathematically fit the models, we applied model
polymer stretching functions from the free python package
pylake (Lumicks).

Extensible WLC model:

xWLC ¼ LC

"
1 � 1

2

 
kBT�

F � Foffset

�
, LP

!1⁄ 2

þ
�
F � Foffset

�
K0

#

� doffset

(3)

X is an extension, LC is contour length, F is force, LP is
persistence length, kB is Boltzmann constant, T is thermody-
namic temperature, K0 is stretch modulus, Foffset is force
offset, and doffset is distance offset.

FJC:

xFJC ¼ LC

�
coth

�
2F , LP

kBT

�
� kBT

2F , LP

��
1þ F

K0

�
(4)

WLCþ FJC :

xtotal ¼ xds þ xss ¼ xWLC þ xFJC (5)

WLCþWLC :

xtotal ¼ xds þ xss ¼ xWLC1 þ xWLC2 (6)

Work calculations

Unfolding and refolding FD trajectories also yield crucial
information on the thermodynamic properties of the mole-
cule under study. Accordingly, the work applied by the
OT instrument onto the system can be calculated from the
area under the FD curve (AUC), here using composite Simp-
son’s rule (Eq. 7). First, we determine the work applied to
the whole construct, including the handles (Fig. 2 A). The
total work on the construct is the sum of the AUC of the
folded model until the starting point of the step (Wds) and
work performed during the step transition (Wstep), repre-
sented by the rectangular area of the step length times force
average ((Fstart þ Fend)/2) (Fig. 2 A). In order to extract the
amount of work applied only to the structure of interest
(Wstructure; Fig. 2 C), the work applied to the handles, repre-
sented by the AUC of the combined model (Wss), is sub-
tracted from the sum of the work on the whole construct
(Eq. 8; Fig. 2 B and C). It shall be noted that the work
derived from these calculations equals the Gibbs free energy
of the studied structure provided the system is in thermody-
namic equilibrium. However, if the (un)folding trajectories
do not coincide, it indicates that the molecule is out of equi-
librium. In non-equilibrium scenario, Gibbs free energy can
be extracted from the work values (5,18,19,29,34-36)
(Fig. S3). It should be noted that while POTATO performs
Biophysical Journal 121, 2830–2839, August 2, 2022 2833



FIGURE 2 Work determination of a simple hairpin. (A–C) FD curve ob-

tained during force-ramp experiment of a short stem loop of 30 nucleotides.

Inlets: the optical tweezers construct stretched between the beads with gray

regions indicating to what parts of the construct the calculated work relates.

(A) Marked region (gray) corresponding to the work necessary for stretch-

ing of the whole construct including the structure of interest. (B) Marked

region (gray) corresponding to the work necessary for stretching of the han-

dles and the unfolded single-stranded RNA. (C) Marked region (gray) cor-

responding to the work necessary for stretching of the RNA structure of

interest. See the subsequent analysis in Fig. S3. To see this figure in color,

go online.
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work calculations, the estimations of free-energy values
have to be derived by the user separately.

Numerical integration using composite Simpson’s rule:
2834 Biophysical Journal 121, 2830–2839, August 2, 2022
Z b

a

f ðxÞdxzh

3

Xn=2

j ¼ 1

�
f
�
x2j� 2

�þ 4f
�
x2j� 1

�þ f
�
x2j
�	
; (7)

where xj¼ aþ jh for j¼ 0, 1,., n-1with h¼(b-a)/n; x0¼ a
and xn ¼ b.

Non-equilibrium work calculation:

Wstructure ¼ Wds þWstep � Wss (8)

Wstructure is work needed to unfold the structure of interest.
Wds is numerical integration of the fully folded model, Wss

is numerical integration of the unfolded model, and Wstep

is numerical integration of the step region between the
two models.
Constant-force data analysis

In addition to force-ramp experiments, the algorithm we
provide can also analyze constant-force data (Fig. S1). In
this way, the dynamics of the structure at a given force
can be investigated. This way, the equilibrium force at
which the chance of the structure to be folded or unfolded
are equal can be derived.

The constant-force analysis accepts the same input for-
mats as the force-ramp batch analysis, and data preprocess-
ing is performed similarly by downsampling and filtering of
the data without trimming. First, it is necessary to display
the constant-force data in order to optimize the preprocess-
ing parameters and the plot’s axis (Fig. S1 B). At this step,
two plots are generated for visualization. In the first plot,
distance is plotted against time. Here, the difference in dis-
tance corresponds to the change in the contour length of the
tethered molecule. The second plot is a histogram of the dis-
tance distribution (Fig. S1 C). From this histogram, the
number of different folding states can be deduced. After-
ward, the histogram is fitted with multiple Gaussian func-
tions. According to the position distribution histograms,
the user can interactively provide initial estimates for
various parameters including the number, localization,
width (SD, Z score), and amplitude of the fits. After the opti-
mization, the model parameters are exported together with
the percentage of each folding state as a table in csv format
(comma separated values).
Artificial data sets to test the limits of detection

To test the limits of (un)folding events detectable by the
POTATO pipeline, an artificial data set was generated (sup-
porting material). In this data set, some curves can show a
negative step length that would not be observed in real un-
folding events. We considered these steps as non-identifi-
able and used them as negative controls. The phenomenon
of negative steps can mainly be observed for small con-
tour-length changes (DLC) between the models, combined
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with high force drop (DF) values. To test the performance of
the algorithm, we defined identifiable steps as events with a
drop in force and a simultaneous increase in distance (sup-
porting material). To evaluate if a specific parameter combi-
nation results in an identifiable curve, Eq. 9 with x ¼ 0 was
solved for all sets of parameters. Each time two parameters
were fixed, and the third parameter was optimized.

Minimal step calculation:

x ¼ WLCssðstependÞ þWLCdsðstependÞ
� WLCdsðstepstartÞ; (9)
where WLC corresponds to expression from Eq. 3, ss refers
to the model corresponding to single-strand values, and ds
describes the double-stranded region.

A hyperplane showing the interface of theoretically iden-
tifiable and non-identifiable steps was generated from these
optimized values (Fig. 3 A). This allowed us to classify the
generated data set based on a combination of parameters:
one with curves where POTATO is expected to find an un-
folding step (x > 0) and the other one where POTATO
should not identify the steps (x % 0). After analyzing the
artificial data set (comprising 2520 curves) with different
Z scores, the expected results, based on the input parameters
when the data were generated, were compared with the steps
identified by POTATO. For the default Z score of 3, the ex-
pected parameters were then plotted into the three-dimen-
sional plot and colored based on the identification by
POTATO (Fig. 3 A). For an unfolding force of 25 pN, the
DF and DLC values are shown in a two-dimensional plot,
making it easier to identify and compare single unfolding
events analyzed with different Z scores. It can be seen that
all identified steps at this specific unfolding force are above
the theoretical threshold and that more unfolding events are
identified at Z score 2.5 than at 3 (Fig. 3 B). Accordingly, the
effect of the Z score on the derivative of force (Fig. 3 C) and
distance (Fig. 3 D) can be investigated for an individual FD
trajectory. In the representative trajectory, the local
maximum in the derivatives of distance is above the Z score
threshold for both cases. In the derivative of force, the local
minimum at the same position is only detected for the lower
Z score (Fig. 3 C and D).

Next, we calculated performance measures such as accu-
racy, precision, sensitivity, specificity, and F1 score to vali-
date the performance of POTATO. For a Z score of 3.2, a
precision score of 0.974 indicates that most of the positive
classified steps were actual steps, and even for a Z score
of 2.5, the precision was still above 0.944 (Table S2). As ex-
pected, higher precision comes with the trade-off to miss
certain positive events (recall 0.870–0.939), and the optimal
Z score has to be chosen depending on the application. For
smaller unfolding events that are difficult to detect, lower Z
score should be employed, as for distinct unfolding events,
the Z score can be set to higher values. This way, the number
of false-positive events detected can be minimized. Since
the present data set was generated using artificial parameter
combinations, those might not be found in actual OT mea-
surements. Therefore, it is important to keep in mind that
we were exploring the limits of the tool by using these strict
parameter constraints. Performance measures would also
vary depending on where a specific data set is located in
the parameter space and which Z scores were employed.

Furthermore, we investigated how accurately POTATO
estimates step parameters (FU, DLC, DF). For that, we
compared the expected and measured values of these param-
eters for all curves analyzed (Fig. 4). We then calculated the
linear regression of the true positive values to estimate
possible biases of POTATO-estimated FU and DLC values.
Our analysis shows that in the case of FU (Fig. 4 A), the
values determined by POTATO are in perfect agreement
with the expected values (slope of the linear regression ¼
0.9912). For DLC (Fig. 4 B), the comparison shows a
broader distribution of the measured values, with an overall
trend suggesting a minor overestimation (slope of the linear
regression¼ 1.0282) of around 3%. Lastly, in the case of DF
(Fig. 4 C), the trend shows a slight underestimation of the
measured values (slope of the linear regression ¼ 0.8517),
resulting in a bias of 12%–15%. Taken together, our perfor-
mance-measures analysis suggests that the presented tool
successfully identifies most (un)folding events correctly
with only few false classifications (false positives/false neg-
atives). Accordingly, in most of the cases, performance mea-
sures were above 0.9 (Table S2). Moreover, we show that
POTATO can precisely estimate the parameter values
describing the (un)folding events (FU, DLC, DF; Fig. 4).
Overall, the performance measures and the accuracy of
the estimates show that POTATO represents a reliable tool
for optical tweezer data analysis.
Applicability of POTATO on real experimental
data

Next, we employed POTATO to test its performance on real
experimental data generated from FD measurements of the
programmed ribosomal frameshifting element of the
encephalomyocarditis virus and severe acute respiratory
syndrome coronavirus 2 (27,28). We compared the
POTATO results with manually annotated steps of a subset
of our data set. The results obtained with manual step iden-
tification and data fitting were in good agreement with the
automated analysis using the pipeline (Fig. S2 A). Harness-
ing POTATO in the data processing allowed us to speed up
the analysis significantly compared with previous manual
analysis. Furthermore, we saw that POTATO is not only
suitable for curves with a single (un)folding event like in
the artificial data set, but we successfully fit FD curves
with as many as five unfolding steps, and we were able to
identify even short-lived intermediate states of the unfolding
process (Fig. S2 B and C). In addition to the contour-length
Biophysical Journal 121, 2830–2839, August 2, 2022 2835



FIGURE 3 Testing the limits of POTATO. For

each combination of the parameters unfolding

force (FU), force drop (DF), and contour-length

change (LC), two parameters were fixed, and the

third one was optimized so that the Eq. 9 (support-

ing material) evaluates to zero. (A) A hyperplane

was generated from the optimized values that sepa-

rate the resolvable space above the hyperplane

(parameter combinations that result in identifiable

steps) from the unresolvable space below the hy-

perplane (parameter combinations that result in un-

identifiable steps). Each analyzed curve is plotted

in blue if its step was identified by POTATO or in

gray if it was not recognized. (B) Slices of the

three-dimensional plot at FU ¼ 25 pN were

analyzed with different Z scores. The black line

corresponds to the theoretical limit of resolvable/

unresolvable parameter combinations. The black

dots represent curves with identified steps, whereas

the gray dots represent curves where POTATO

could not identify the step. (C and D) The deriva-

tives of force (C) and distance (D) of the curve

that is marked with a red arrow in (B) are displayed

at different Z scores.

Buck et al.
change obtained by curve fitting, the Gibbs free energy is
also an important variable to conclude on the nature of the
(un)folded structure as it is dependent on the base pairing
of the RNA. We were able to use the work calculated by
the POTATO to estimate the Gibbs free energy of the struc-
tures and thereby distinguish between different secondary
structures (27). Here, to demonstrate the energy calculation,
we used a stem-loop mRNA of 30 nucleotides in length
(Fig. S3) (28). First, we used mfold (37) to predict the sec-
ondary structure and its Gibbs free energy (Fig. S3 A). Then,
we plotted the unfolding as well as refolding work distribu-
tions calculated by POTATO (Fig. S3 B). We then employed
the results of POTATO analysis to estimate the Gibbs free
2836 Biophysical Journal 121, 2830–2839, August 2, 2022
energies by applying 1) Crooks fluctuation theorem and 2)
Jarzynski equality with bias correction (Fig. S3 C) as
described in (18,34–36).

To evaluate the performance of POTATO on other pub-
lished data sets generated using a self-built OT instrument,
we analyzed the severe acute respiratory syndrome corona-
virus 2 pseudoknot RNA FD data by Neupane et al. (29).
Since the data set provided had a lower data frequency, re-
sulting in less than 250 data points per FD curve, we first
had to artificially augment the datapoints (see supporting
material). Despite that, we could still successfully assign
the steps and reproduce the unfolding force distribution
(Fig S2) as well as the contour-length estimate (Table S3).



FIGURE 4 Evaluation of the performance of POTATO. The parameters

used for the generation of the data set compared with the parameters iden-

tified by POTATO are plotted against each other. All three parameters used

for the data generation are evaluated with a Z score of 3. (A–C) The values

of the true positive steps (black) and the values of the false-positive steps

(gray) are visualized for (A) the unfolding force (FU), (B) the contour length

change (DLC), and (C) the force drop (DF). A dashed line represents the

theoretical perfect correlation between measured and expected value.

POTATO
We were also able to detect the refolding steps’ force distri-
bution and detected steps as low as 6 pN (Fig. S2). In
conclusion, regardless of the system used, we demonstrate
that the pipeline output matched well with manual data anal-
ysis on real-experiment data sets and that POTATO per-
formed analysis of FD trajectories with multiple steps or
even short-live intermediates in a reliable way. Therefore,
POTATO represents a versatile tool for high-throughput
OT data analysis for many upcoming studies.
Limitations of the study

Processing automation comes with trade-offs (38,39). First,
the statistical analysis applied in the pipeline might be prone
to false-positive event discoveries due to external causes,
such as vibration that might induce step-like events in the
FD profile of gathered data. We split the FD data and
analyze the derivatives of force and distance separately to
minimize this effect. Only the events found by both ap-
proaches are considered real (un)folding events. Therefore,
the robustness of the analysis is increased.

Second, the pipeline output strongly depends on parame-
ters and threshold values that are applied throughout the
analysis. The default values were set empirically to suit
our needs. Therefore, it might require optimization to fit
specific needs and reach an analysis output consistent with
the manual data analysis. User input is required despite
the user-friendly GUI environment, and an understanding
of the analysis workflow is necessary to adjust the parame-
ters rationally.

The current algorithm does not annotate the repeated
folding and unfolding of a structure during force-ramp mea-
surements and identifies this oscillation as independent
steps. Nevertheless, this mainly occurs at slow loading rates
and does not affect the contour-length estimates. To over-
come any unexpected issues with the automated analysis,
POTATO also includes a tab that allows full manual analysis
of the force-ram data files. This should help to eliminate bias
caused by omission of certain files from the analysis during
the automated analysis.
Summary

Here, we present a publicly available pipeline for batch
analysis of OT data. Our pipeline allows OT raw or prepro-
cessed data processing from force-ramp or equilibrium mea-
surements (constant force/position). These are widely
employed experimental approaches in the OT field, applied
to nucleic acid structure probing, protein folding, RNA-pro-
tein interactions, or even to analyze events as complex as
translation. Here, by wrapping our algorithm in a standalone
application and designing an intuitive GUI, we aim to open
the data analysis to a broader audience without the need for
a bioinformatics background. The user can adjust all param-
eters directly in the GUI without diving into the code to
tailor the pipeline to their exact needs. With the parameters
optimized for the here-presented data sets, POTATO showed
high precision and accuracy in the identification of (un)
Biophysical Journal 121, 2830–2839, August 2, 2022 2837
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folding events. Moreover, compared with manual data anal-
ysis, the pipeline is faster and, most importantly, consistent
throughout the analysis, thus yielding reproducible results.
SUPPORTING CITATIONS
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Script structure 

The script is written in Python 3 and split into multiple parts for clarity. The first part, "POTATO_GUI", 

defines the GUI with all necessary functions and input variables. When the GUI is started, the default 

values of the input variables are loaded from the "POTATO_config" file. The GUI was created and 

structured using the standard Tkinter python package. A parallel subprocess initiates from this main 

process when a folder is selected for force ramp analysis to perform computationally demanding data-

processing. This way the GUI remains responsive during computation. All the functions used for data 

preprocessing and step recognition are defined in the "POTATO_preprocessing” and the 

“POTATO_find_steps" files respectively. The functions used for curve fitting are defined in another 

file, "POTATO_fitting". For computation, we mainly use matplotlib and NumPy packages, as well as 

the lumicks.pylake package for fitting (Table S4). The subprocess is a daemon process spawned by 

the main process and therefore stops as soon as the GUI terminates the main process. The last part, 

"POTATO_constantF", is executed by the main thread as it only analyzes one constant force file at a 

time. The results are exported in different CSV files or as PNG images. 
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Graphical user interface 

We designed a graphical user interface (GUI) that allows users to easily adjust the analysis steps and 

parameters according to their needs and select between three different input data formats. This 

enables the GUI to load data from every OT instrument. The GUI is separated into multiple tabs, 

resulting in easy and intuitive navigation without overloading the individual windows. The 

"POTATO_config" file, included in the POTATO repository, contains the default parameters, which 

are loaded into the GUI. The most commonly changed parameters can be found in the first tab, “Folder 

Analysis”, so a basic analysis can be performed right away (press enter to confirm changed 

parameters). Alternatively, before each analysis, all parameters can be adjusted in the 'Advanced 

Settings' tab to suit the data set. In addition, we implemented the possibility to selectively export 

results. Each analysis creates a new folder with a timestamp directly in the analyzed directory. The 

used parameters are exported as well so that parameters can be optimized later. The second tab, 

“Show Single File”, provides a control mechanism for data preprocessing. A single file can be loaded, 

and the unfiltered data are plotted together with the filtered data, which streamlines troubleshooting. 

Finally, there is a third tab for “Constant Force Analysis”.  

 

Input data  

The presented pipeline accepts three different input data formats. Two of them are based on the 

default hdf5 output format of Lumicks C-Trap – one is predefined for high-frequency data (using the 

piezo-tracking function of the instrument), and the second is for low-frequency data (using video 

recognition). The third data format is a basic CSV file format with force and distance values in the first 

and second columns. Force data need to be in [pN], whereas the unit of distance data can be specified 

either as [µm] or [nm] in the GUI. Thus, our pipeline can process force-distance data from virtually 

any optical tweezers machine. In addition, entire directories containing force-ramp data files can be 

selected and processed simultaneously. 

 

Data output 

Depending on individual analysis requirements, different export settings can be selected. The down 

sampled and filtered data are exported in CSV format (smooth) for each file by default. The identified 

(un)folding steps by derivatives of force and distance are exported together with the steps identified 

by both strategies (common steps) into a single CSV file. All identified steps of all curves in the 

analyzed folder are gathered into a single results file for quantitative analysis. The respective 

summary figure containing the plot of preprocessed data, trimmed data, and both derivatives with 
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marked steps is exported. The plots of fitted data, together with the fitting parameters and model data, 

are exported as PNG and CSV files, respectively.  

 

Artificial data generation 

To test the limits of the algorithm, artificial data with a single step per curve were generated. The fully 

folded part of force-distance curves was modeled using an equation for extensible WLC models 

(Eq. 4). The partially unfolded region was modeled using a combination of WLC and FJC models (Eq. 

5 and 6). The force value at which the step occurs, the contour length change between the unfolded 

and folded region, and the drop in force during the step, are the parameters for data generation. The 

first parameter was set to occur between 10-40 pN with a 5 pN resolution. The curves were generated 

with a contour length change from 1-40 nm with a 1 nm resolution and a force drop of 1-5 pN with a 

0.5 pN resolution. To mimic the (Gaussian) noise affecting the raw data, we employed the NumPy 

random normal distribution function (1). 

Since the (un)folding step is generally defined as a drop in force (one of the parameters) and a sudden 

increase in distance (not a parameter), the data generated by this script also contained combinations 

that did not increase distance. We used these curves showing no increase in the distance as negative 

controls.  

 

Augmentation of low-frequency data 

During analysis of the freely available data from Neupane and Zhao et al., 2021, we had to employ 

the data augmentation approach to increase the precision of the analysis. For the best output, ideally 

raw data should be directly curated in POTATO and at least >2000 data points are available. The 

augmentation was performed as follows. For each two consecutive data points in the original data, 

we divided the linear space between them by factor of 100 to get positions for new data points. Starting 

from the first original data point, we consecutively added 99 new data values always increasing by 

the previously calculated increment +/- randomly assigned noise in force and distance dimensions 

using random gauss function with the parameters mu=0 and sigma=0.5. The newly created files 

where then analyzed as csv files by POTATO. 
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Manual data analysis 

POTATO GUI also contains a tab that provides the user with the option to manually mark steps, fit 

models and calculate the work for FD curves (Manual Analysis – TOMATO). Manual analysis is 

particularly useful to evaluate the precision of the automated analysis and perform parameter 

optimization. Furthermore, manual analysis is a convenient option for the analysis of FD curves which 

cannot be analyzed properly by the batch analysis. To speed up the manual analysis we implemented 

several keyboard shortcuts, which allow switching between FD curves under a given directory and 

marking steps with save, delete functions among others. For the manual analysis, the initial step is to 

mark the beginning and end of each (un)folding event. Afterward, similar to the batch analysis, 

different parts of the curves will be fitted automatically based on the parameters entered at the GUI. 

In addition, the work corresponding to each (un)folding event is calculated based on the fitting (Eq. 

8). During manual analysis, certain parameter constraints and fitting parameters such as contour 

length, persistence length, stiffness, distance and force offsets can be defined. A detailed set of 

parameter constraints can also be found under the ‘Advanced Settings’ tab. For further description, 

we suggest the reader to refer to the readme file on Github (https://github.com/REMI-HIRI/POTATO).  
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FIGURE S1: Constant force data analysis in POTATO: (A) GUI tab containing the constant force 

analysis features, (B) Display constant force data output; (left) distance over time plot, (right) 

histogram of the distance over time values. (C) Fit constant force data output showing the histogram 

of distance values distributions and the two gaussian functions fitted. 
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FIGURE S2: Analysis of experimental data by POTATO.  (A) Comparison of unfolding events 

marked in a subset of the data analysed manually (black) or with POTATO (grey). (B) Example FD 

curve (black, solid) with five unfolding steps fitted by POTATO (colored, dashed). (C) Example 

analysis output from POTATO showing the trimmed FD curve (up), force derivative data (middle), and 

distance derivative data (bottom). An intermediate conformer is detected by POTATO during the 

unfolding. Other FD curves confirmed the presence of an even more stable and distinct intermediate 

step. (D-G) Analysis of experimental data published in Neupane and Zhao et al., 2021 (subset with 

6nt spacer) using POTATO; (D) Comparison of raw data (black), data after augmentation (see also 

supplementary methods, grey), and data processed by POTATO (pink). (E) Example unfolding (pink) 

and refolding (blue) FD curves (n=4). (F) Distribution of unfolding forces for unfolding curves with 

single unfolding step (N=1378). (G) Refolding force distribution for all refolding curves (N=1861) 

shows a single peak around 12 pN with refolding steps detected at forces as low as 6 pN. (Un)folding 

distributions were overall similar to the analysis performed by Neupane and Zhao et al., 2021. 
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FIGURE S3: Extracting energy information from the experimental data. (A) Mfold predicted 

secondary structure of a simple hairpin of 30 nucleotides in lenght. (B) Distributions of measured work 

values for the unfolding (red) and refolding (blue) FD curves. (C) Energy and work values as predicted 

by Mfold (∆Gmfold), measured (Wforw and Wrev) or calculated using Crooks Theorem (∆GCrooks) and 

Jarzynski equality (∆GJarzynski). * 5% standard error, **standard deviation. 
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TABLE S1: Parameters used throughout the pipeline and a short description. 

Parameter Description 

Preprocessing  

Downsampling rate Only every nth value is taken for analysis, speeds up 
subsequent processing. 

Butterworth filter degree Defines the stringency of the filter. 

Cut-off frequency Signals with a frequency above this threshold are 
suppressed. 

Force threshold, pN Values lower than the threshold are excluded from the 
analysis. 

Derivative  

Step d  Characterizes the interval between two values used for 
numerical derivative calculation. 

Data frequency, Hz The frequency at which data is recorded. 

Statistics  

z-score The number of standard deviation used to determine 
whether a given value is part of a normal distribution. 

Moving median window 
size 

The number of values considered for each median 
calculation. 

SD difference threshold Statistical analysis and data sorting are iterated until the 
difference between two consecutive SDs is below this value. 

Fitting  

dsLp, nm Persistence length of the double-stranded (folded) part of the 
tethered construct. 

dsLc, nm Contour length of double-stranded (folded) part of the 
tethered construct.  

dsK0, pN Stretch modulus of double-stranded (folded) part of the 
tethered construct. 

Force offset, pN Force offset of a given dataset; compensates for a shift in the 
dataset. 

Distance offset, nm Distance offset of a given dataset; compensates for a shift in 
the dataset. 

ssLp, nm Persistence length of the single-stranded (unfolded) part of 
the tethered construct. 

ssLc, nm Contour length of single-stranded (unfolded) part of the 
tethered construct. 

ssK0, pN Stretch modulus of single-stranded (unfolded) part of the 
tethered construct. 
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TABLE S2: Dependence of the performance measures on the z-score. Analysis of 2520 simulated 

data curves with steps occurring between 10-40 pN with different z-score values. 

             z-score 

 

Parameter 

3.2 3 2.7 2.5 

True positives 1206 1267 1280 1303 

True negatives 1101 1076 1073 1056 

False positives 32 57 60 77 

False negatives 181 120 107 84 

Accuracy 0.915 0.930 0.934 0.936 

Precision 0.974 0.957 0.955 0.944 

Recall 0.870 0.913 0.923 0.939 

Specificity 0.972 0.950 0.947 0.932 

F1-Score 0.919 0.935 0.939 0.942 
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TABLE S3: Application of POTATO on experimental data generated from a simple hairpin and 

SARS-CoV-2 pseudoknot. 

 Expected ΔLc,  

nm 

Observed ΔLc, 

nm 

Observed ΔLc, nm 

(Neupane et al. 2021) 

Simple hairpin (30 nt) 17.7 16.4±2.8 - 

SARS-CoV-2 frameshift 

pseudoknot 

(6 nt spacer) 

34.7-36.3 34.8±2.0 35.6±0.4 

 

 

 

 

TABLE S4: Python packages used in POTATO. Standard packages are not included in the table. 

Package name Link 

h5py https://www.h5py.org (2)  

Pandas https://pandas.pydata.org (3) 

Scipy https://www.scipy.org (4) 

Matplotlib https://matplotlib.org (5) 

Lumicks.pylake https://lumicks-pylake.readthedocs.io  
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