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Decision Letter, initial version: 
 
5th Mar 2021 
 
 
Dear Charles, 
 
Your Article, "Interdependence between histone marks and steps in Pol II transcription" has now been 
seen by 3 referees. I apologize for the long review process. Despite our multiple chase emails, 
reviewer #4 has not submitted a timely report. We have now decided to proceed based on the other 
three reviews. 
 
You will see from the reviewers' comments copied below that while they find your work of potential 
interest, they have raised quite substantial concerns that must be thoroughly addressed. In light of 
these comments, we cannot accept the manuscript for publication, but would be interested in 
considering a revised version that addresses these serious concerns. 
 
Reviewer #1 seems positive about the work overall but notes several limitations, including data 
representation, performance metrics, and focus on heterochromatin/repressive marks. 
Reviewer #2 says that the method seems reasonably accurate but that you would need to more 
carefully acknowledge and investigate the limitations of the imputation. Also, the software needs to be 
made fully accessible, including instructions on how to use it. Please see 
https://www.nature.com/nature-research/editorial-policies/reporting-standards#availability-of-
computer-code 
Reviewer #3 likes the work but feels that you should focus more on specific examples and perhaps 
remove others that are too preliminary; go deeper instead of broader. Ideally, the reviewer would like 
to see further validation (functional assays) to support your claims. 
In sum, the reviewers feel that the approach seems promising but there are notable limitations in the 
analysis at this point. 
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We hope you will find the referees' comments useful as you decide how to proceed. If you wish to 
submit a substantially revised manuscript, please bear in mind that we will be reluctant to approach 
the referees again in the absence of major revisions. 
 
If you choose to revise your manuscript taking into account all reviewer and editor comments, please 
highlight all changes in the manuscript text file. At this stage we will need you to upload a copy of the 
manuscript in MS Word .docx or similar editable format. 
 
We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 
me if there are specific requests from the reviewers that you believe are technically impossible or 
unlikely to yield a meaningful outcome. 
 
If revising your manuscript: 
 
*1) Include a “Response to referees” document detailing, point-by-point, how you addressed each 
referee comment. If no action was taken to address a point, you must provide a compelling argument. 
This response will be sent back to the referees along with the revised manuscript. 
 
*2) If you have not done so already please begin to revise your manuscript so that it conforms to our 
Article format instructions, available <a 
href="http://www.nature.com/ng/authors/article_types/index.html">here</a>. 
Refer also to any guidelines provided in this letter. 
 
*3) Include a revised version of any required Reporting Summary: 
https://www.nature.com/documents/nr-reporting-summary.pdf 
It will be available to referees (and, potentially, statisticians) to aid in their evaluation if the 
manuscript goes back for peer review. 
A revised checklist is essential for re-review of the paper. 
 
Please be aware of our <a href="https://www.nature.com/nature-research/editorial-policies/image-
integrity">guidelines on digital image standards.</a> 
 
You may use the link below to submit your revised manuscript and related files: 
 
[REDACTED] 
 
<strong>Note:</strong> This URL links to your confidential home page and associated information 
about manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward 
this email to co-authors, please delete the link to your homepage. 
 
If you wish to submit a suitably revised manuscript we would hope to receive it within 6 months. If 
you cannot send it within this time, please let us know. We will be happy to consider your revision so 
long as nothing similar has been accepted for publication at Nature Genetics or published elsewhere. 
Should your manuscript be substantially delayed without notifying us in advance and your article is 
eventually published, the received date would be that of the revised, not the original, version. 
 
Please do not hesitate to contact me if you have any questions or would like to discuss the required 
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revisions further. 
 
Nature Genetics is committed to improving transparency in authorship. As part of our efforts in this 
direction, we are now requesting that all authors identified as ‘corresponding author’ on published 
papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 
the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community 
achieve unambiguous attribution of all scholarly contributions. You can create and link your ORCID 
from the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more 
information please visit please visit <a 
href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 
 
Thank you for the opportunity to review your work. 
 
Sincerely, 
 
Tiago 
 
 
Tiago Faial, PhD 
Senior Editor 
Nature Genetics 
https://orcid.org/0000-0003-0864-1200 
 
 
 
 
 
 
Reviewers' Comments: 
 
Reviewer #1: 
Remarks to the Author: 
Wang, Chivu, and colleagues present an integrated analysis of the relationships between high-
resolution transcription (as measured by PRO-seq) and various histone modifications. The main 
contribution is the demonstration that the distribution of many histone modifications can be imputed 
using machine learning models trained on PRO-seq data. The approach itself is quite straightforward; 
a support vector regression model is trained using vectors of PRO-seq read counts to predict histone 
modification read counts at the same location. But the work convincingly demonstrates that 
transcriptional data can be used to impute several active histone modifications, and can thereby be 
used to characterize chromatin state annotations. The approach is comprehensively evaluated and 
demonstrated to enable imputation across cell types and species. 
 
Major comments: 
 
1) While a large amount of evidence is presented to support the claim that dHIT can impute histone 
modification data, it is still difficult to get a sense of the approach's accuracy on various histone 
modifications and genomic locations. The favored assessments focus on correlations and visual 
representations (e.g., heatmaps). There are problems associated with both of these approaches. 
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Correlation is an imperfect metric of performance - it can be dominated by low-signal background 
regions and by outliers. And heatmaps can look convincing while obscuring incorrect predictions. 
Perhaps a more informative approach would be to calculate area under precision recall curves when 
predicting enriched domain/peak-level information in the various histone modification experiments. 
One could look at how imputation performance is measured in related work such as PREDICTD 
(Duham, et al. Nat Comms, 2018), ChromDragoNN (Nair, et al. Bioinformatics, 2019), or Avocado 
(Schreiber, et al. https://doi.org/10.1101/533273). I do understand that these other approaches have 
distinct motivations and training objectives, but their performance metrics are nonetheless relevant. 
 
2) It would be very informative if performance evaluations can be presented separately for TSS-
proximal regions and distal enhancers. Most presented heatmaps and metagenes focus on the TSS. 
 
3) Further related to performance metrics, Figure 2E shows the results of Jaccard distances between 
chromHMM states found from real data and dHIT-imputed data. I was confused by these plots, as they 
seem to show the worst performance for the quiescent state and the strong transcriptions states. I 
would have naively thought that such states should be amongst the easiest to predict from PRO-seq 
(quiescent due to no transcriptional signal, and transcription states from the PRO-seq signal directly). 
Why is performance poor here? 
 
4) It is clear from several figures that dHIT has poor performance in imputing histone modifications 
associated with repression or heterochromatin (i.e., H3K9me3, H3K27me3, H4K20me1, e.g., Fig 3C). 
This is not surprising, as such regions would contain little transcriptional activity. It is therefore 
perplexing that a substantial portion of the manuscript asks the reader to believe that H3K27me3 
signals can be successfully imputed from PRO-seq. In several places, the manuscript states that 
success has been achieved in predicting polycomb enriched regions or bivalent gene, even when the 
presented imputed H3K27me3 signal is extremely different from the actual H3K27me3 ChIP data 
(e.g., Fig 2A, Supp Fig 11). We are shown dHIT-derived predictions of polycomb domains in several 
GMBs, but there are no validation experiments to assess the predictions. 
 
5) Related to the previous point, the conclusion contains a section that relies on dHIT predictions to 
claim that H3K27me3 has a positive association with initiation. This is extremely speculative. Since 
dHIT has very poor performance in imputing H3K27me3, how can such sweeping biological 
conclusions be drawn from these analyses? 
 
6) The second half of the manuscript, beginning with the Triptolide treatment experiments, seems 
very disconnected from the first half. The results are interesting, but mostly recapitulate the known 
relationships between transcription and the deposition of histone modifications. The results do not rely 
on or relate to the dHIT method, as they are mostly derived by examining the actual histone 
modification ChIP-seq data post-Trp. In fact, when dHIT is invoked, it probably should not be. For 
example, in the section where dHIT is used to predict ChIP-seq data on systematically varied initiation 
and pause-release rates; these results could have been more clearly interpreted if pausing indices 
were calculated directly from the PRO-seq and compared with the various histone modification ChIP-
seq data directly. Similarly, in the section "chromatin accessibility is not sufficient for transcriptional 
initiation"; dHIT is not needed here - one could examine the PRO-seq data directly to see if PolII was 
at all DNaseI hypersensitive sites (and several others have already demonstrated that it is not). 
 
7) It would be good to discuss or compare with other somewhat related work modeling PRO-seq data, 
such as the manuscripts from Azofeifa and others in Robin Dowell's lab, and NRSA from Yu Shyr's 
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group. 
 
Minor comments: 
8) Why are only two histone modifications assessed for mES cells (Fig. 1E)? There are many more 
available from mouse ENCODE and other labs. 
 
9) Supp Fig 8d compares dHIT performance in a variety of cell types to a scheme that just directly 
transfers the training data from K562 cells. Have you tried comparing with the performance of a 
scheme that transfers the average histone modification signal from all other cell types (i.e., as 
described by Schreiber, et al. Genome Biology 2020)? 
 
10) Please put x-axis and y-axis labels and scales on Supp Fig 1 plots. There is a strange vertical 
drop-off in midrange ChIP-seq signal in many of the plots (x-axis), suggesting that the plots do not 
show read counts. 
 
 
 
Reviewer #2: 
Remarks to the Author: 
In the Wang et. al. manuscript, they train a support vector regression model that uses run-on 
sequencing as input and predicts the histone profile (marks, locations) genome wide. The predictions 
are reasonably accurate and dissection of how predictions change given distinct input transcription 
data (Figure 5) links particular marks to distinct stages of RNA polymerase activity. They further 
support the data by blocking transcription and assessing a number of marks acutely (<4 hours) 
afterwards. Overall this is a very thorough assessment of the relationship between transcription (using 
both simulated and experimental data) and histone marks. However, some concerns limited 
enthusiasm. 
 
Major issues: 
(*) The section on pause release, methylation and initiation (based on simulations) is really aimed at 
understanding what patterns the SVR is identifying. It should be couched as such and really it should 
precede the Trp experiment. It was disorienting for this section to follow the Trp experiment. Further, 
subsequently claiming that they have little idea what patterns are driving the model is an over-
statement, as this section begins to dissect it. Though, I do agree that this section alone falls short of 
fully understanding their black box model. 
 
(*) The experiment to block transcription is a nice, strong validation of directionality — i.e. that goes 
to causality rather than just correlation. That said, it is somewhat complicated by the half-life of these 
marks — which is only commented on for the one that looks unchanged. Additionally, what is the 
evidence that small molecule Trp has absolutely no impact on histone marks or accessibility. Plus, Trp 
is quite toxic — so are the 4 hour cells just quite sick/dying and that is responsible for the change in 
histone patterns? 
 
(*) The paper needs to more carefully look at the mistakes made by their imputation strategy. They 
clearly are aware some regions may be more difficult than others as evidenced by them removing 
regions of poor mappability, black list regions and the 2% of identified “spikes” as these are likely 
poorly predictable for technical regions. This makes sense, but have they examined the error 
characteristics of their imputed patterns for the remainder of the data? The focus on large windows for 
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their correlation coefficients (SFig4, SFig 8 use 10kb, Fig 1E 1kb) provide nice summaries but say little 
about whether the errors are randomly distributed, punctate, prone to particular regions, or what. For 
example — SFig 3 — some of the patterns (H3K27ac, H3K4me2 and H3K4me3) it looks like the 
imputed data tends to be wider and darker — are these the general trends of the errors made? 
 
Also I’m a little concerned about the fact that they claim that poorly performing windows are enriched 
for CTCF when they use CTCF sites in their MNase normalization strategy. Doesn’t the use of CTCF 
peaks to identify untranscribed regions make it impossible for them to then claim that that CTCF 
windows are the most poorly predicted? 
 
(*) Abstract argues that their accuracy is on par with replicates but they never explicitly look at 
replicate variability. 
 
(*) Their approach for training used a lot of heuristics (how they defined informative positions, how 
they pseudo-randomly select examples). Is this done merely to balance positive/negative regions, to 
reduce the overall burden of training data, because it worked, or what? Minimal justification is 
provided for what is actually a ton of heuristics. Leaves the reader wondering why a lot and whether 
these heuristics drastically influence the results. I’m fine (in general) with tuning a model as long as 
the methodology behind such tuning is conveyed with reasoning to the reader, especially in the 
scenario where the model isn’t being built to generalize but rather to prove a point. 
 
(*) Availability on the software isn’t specified. 
 
Minor issues: 
(*) The H3K27me3 discrepancy is quite interesting. They clearly identify distinct patterns, but do not 
clearly show that their approach could predict the more punctate pattern. So the “both of which 
appear linked to features of active transcription” is an over statement. Would be interesting to follow 
this mark through differentiation. May speak to roles of H3K27me3 in differentiation? 
 
(*) By reference they refer to a collection of K562 PRO and assorted ChIP marks from ENCODE, but 
this paper would be more cohesive if they included some assurance on the quality of these datasets. 
Alternatively it might be relevant to know whether quality of the data influences the ability of the 
model to identify these patterns? 
 
(*) Does the registry of the non-overlapping windows matter in their ChIP predictions? Windowing 
methods always have edge effects — which are admittedly minimized at smaller window sizes. But at 
the larger sizes (500, 5kb) does an offset in the window start size relabel any regions? Likewise I don’t 
recall them mentioning how they combine windows yet the evaluation windows are quite large (10kb 
and 1kb) compared to the 10 bp windows on which they impute/predict. 
 
(*) I have a general issue with saying PRO-seq throughout the paper when reality is this is applicable 
to several run-on /nascent assays. Perhaps a more general term is preferred? In methods section they 
say “PRO-seq, GRO-seq, or ChROseq; henceforth referred to simply as PRO-seq” — and this would be 
fine if this statement had been in the main text. 
 
(*) It is unclear why they are using hg19 when hg38 has been available since December of 2013. 
Justification of hg19 is warranted. However, it is unlikely that a shift to hg38 will alter any results, so 
this is perceived as a minor concern. 
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(*) The sentence, “Signal on the lower end was better spread out using data imputed from PRO-seq, 
possibly making use of the greater dynamic range of PRO-seq over ChIP-seq.” is completely opaque. 
What does “lower end” here refer to explicitly — ChIP or PRO? Are they trying to say that PRO 
predicted a broader dynamic range then ChIP? If so, it’s possibly true but somewhat dismissive of one 
of the error types seen by the model. 
 
(*) Text refers to SFig 1a-b but there are no a/b labels on SFig 1. 
 
(*) “As TRP does not affect engaged RNA polymerase, we observe a clearing wave of Pol II ~100kb 
from the TSSs on long genes at 1 h (Fig 4B)…” But this is not shown in Fig 4B. 
 
(*) Does “local environment” actually just mean TFs? “Our analysis supports a model in which both 
chromatin accessibility and the local environment are important factors to facilitate transcription 
initiation by Pol II” 
 
(*) On SFig 11 some of the labels were overlapping and hard to read. 
 
(*) Figure SFig 12 is completely uninterpretable other than to look impressive. Can these be 
systematically classified as wide and punctate? Can the two types be shown as distinct figures to 
make each tract more readable? Fewer tracts? Meta-genes across multiple cell lines? 
 
(*) Color schemes on many of the figures is pseudo-random. For example, H3K36me3 is shown in 
Figure 1 and SFig17 as a mid-tone green. But in Figure 3 and SFig 15 it’s a light green and H3K4me1 
is the mid-tone green. A similar green is used in the correlation grids to mean Pearson’s but then 
Spearman’s and the jsd values are both purple. So every figure panel required the reader to figure out 
what the color scheme was now. Admittedly, they are showing a tremendous amount of data across 
the figures and the bouncing around of colors is likely, to some extent, unavoidable — but every effort 
to make colors and symbols standardized throughout the paper would help the reader with the 
disorienting nature of having to figure out how to interpret every figure with its own unique color 
scheme. 
 
(*) Also — on these measures of correlation/similarity there is an alpha value being used to scale the 
“heat maps” but no key is given. 
 
 
 
Reviewer #3: 
Remarks to the Author: 
This article from Wang et al. describes a computational framework they call dHIT that uses machine 
learning to impute histone modification landscapes across the genome using nascent RNA data such as 
PRO-seq. The model was extensively trained and tested in a number of cell types and across species 
and appears to do a reasonable job of predicting the locations and levels of a number of histone marks 
that are often used to define chromatin state. In the cell type used for training, Pearson’s correlation 
between prediction and actual data range from mediocre (0.37 for H3K27me3) to quite good (~0.7 for 
H3K27ac, H3K36me3, H3K9ac, and H3K4me2/ me3). The imputed locations are considerably more 
‘smeary’ than real data and lack the positional information on nucleosomes gleaned from experimental 
data, but define general regions where histones are likely to bear a certain modification. Weaknesses 
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of the model are in predicting heterochromatin and repressed Polycomb regions, ZNF genes and 
repeat elements. 
 
Together, these findings indicate that nascent transcription data can be used to predict areas of 
activity in the genome, such as active promoters and enhancers, and the histone marks associated 
with activity (acetylation, H3 K4methylation, H3K36 methylation). Whereas this is probably not 
surprising, I appreciate the point being made here, which is that PRO-seq or a related nascent RNA 
assay is a much more efficient way to characterize a cell type than is 20 ChIP-seq assays. 
 
The ability of nascent transcription levels to predict active histone marks also supports the growing 
body of data showing that these histone marks reflect transcription, rather than dictating or regulating 
transcription. Previous work from the Spicuglia lab (numerous papers, should be cited) Lis lab (Core et 
al), Adelman lab (Henriques et al, 2018, should be cited) have shown correlation between levels of 
active histone marks like H3K4me3 and transcription activity at both promoters and enhancers. The 
current work extends these studies, going beyond correlation to determine causality, using 
transcription inhibition with Triptolide. As predicted based on prior work in yeast (Howe lab; Martin et 
al., cited), loss of transcription causes loss of active histone marks H3K27ac and H3K4me3. 
Interestingly, the H3K36me3 mark and H3K4me1 turnover more slowly and are not as temporally 
dependent on transcription. This is a nice set of experiments that will hopefully help drive home the 
point that histone modifications aren’t directive for activity, nor do they bookmark regions for future 
activity. 
 
Oddly, after providing some of the cleanest evidence yet that histone modifications, in particular 
H3K27ac and H3K4 methylation, reflect transcription rather than controlling it, the authors then delve 
into a section wherein they investigate “whether each histone modification facilitates either initiation 
or pause release”. This section of the manuscript is very weak, and I remain unconvinced by these 
simulations that histone modifications ‘facilitate’ either initiation or pause release. I strongly suggest 
that this section of the manuscript be dramatically strengthened or (preferably) removed. 
 
Finally, the authors work to demonstrate that not all accessible chromatin regions are sites of 
transcription initiation. This too has already been described in the literature, and it is known that 
DNase or ATAC-seq accessible sites include CTCF-bound loop anchors that are not transcriptionally 
active (Higgs, Buenrostro). However, this is probably the clearest description of this finding that I 
know of, and I appreciate the bigger commentary the authors are trying to make. However, Figure 6 
is currently such a jumble of small panels that the main point does not come across clearly. I 
recommend that Figure 5 be removed and the authors use this space to expand Figure 6. This would 
allow them to better document the absence of transcription initiation at accessible regions, showing 
heatmaps and larger figures that bring this point home more clearly. 
 
Overall, dHIT seems like a powerful tool and the take home message that histone modifications are 
not directive for transcription, but instead reflect transcription activity is important. However, the 
model does have weaknesses that should be acknowledged, and I have several specific concerns, as 
outlined below: 
 
Major concerns: 
1) dHIT doesn’t perform nearly as well at predicting regions of gene inactivity or repressed chromatin 
domains. This is perhaps not surprising, since it is based on nascent RNA sequencing. It would be 
helpful if the authors could comment on which histone ChIP-seq assays might complement PRO-seq 
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and dHIT to give this fuller picture of chromatin? Could one do PRO-seq/dHIT and H3K9me3 plus 
H3K27me3 ChIP-seq to achieve this? This manuscript would be stronger if the authors could provide 
some insights into which repressive marks one should investigate by ChIP-seq to get a comprehensive 
picture of the chromatin landscape. 
 
2) The authors observe a rapid loss of H3K27ac and H3K4me3 upon inhibition of transcription. Is this 
due to rapid deacetylation/ demethylation or histone turnover? They appear to argue for deacetylation 
rather than turnover, but this is not demonstrated. I suggest that the authors perform a simple assay 
to test this, using deacetylase inhibitors in Triptolide treated cells to confirm that acetylation is 
retained under these conditions. Whereas ChIP-seq would be optimal here, even western blots would 
help make this argument more compelling. This small experiment could go a long way to develop the 
model for how transcription stimulates deposition or retention of active chromatin marks. 
 
3) Figure 5 shows a number of correlations between histone acetylation or methylation and 
simulations of initiation and pause release. These are nice correlations but don’t speak in a clear way 
to function, and thus the conclusions such as ‘methylation works at the stage of transcription initiation’ 
appear unfounded. To support these comments, the authors could treat cells with inhibitors of 
acetylation/ deacetylation or methylation/ demethylation, or work in cells with catalytically inactive 
methyltransferases. In these conditions, one could test the authors conjecture that methylation or 
acetylation directly ‘work’ at a specific step in the transcription cycle. Such concrete experiments 
testing the simulation would be required to support the authors conclusions about function. 
 
Minor comments: 
1) The jumbled and small nature of many figure panels makes this manuscript more difficult to read 
than optimal. 
2) Figure 4B. The butterfly D. iulia doesn’t look like the picture shown. That appears to be a monarch? 
 
 
 
Reviewer #4: 
None 
 

Author Rebuttal to Initial comments   
 
  



We have made substantial changes to our manuscript, incorporating comments and
suggestions from our three reviewers. We were happy to see that reviewers were unanimously
excited about the work presented in our original manuscript, saying, for example, that our “work
convincingly demonstrates that transcriptional data can be used to impute several active histone
modifications, and can thereby be used to characterize chromatin state annotations"; and that our
work “is a very thorough assessment of the relationship between transcription (using both simulated
and experimental data) and histone marks". We were also pleased to have a large number of
highly constructive comments that have contributed significantly to improving our revised
manuscript. We believe that we have fully addressed the reviewers’ thoughtful comments in the
accompanying revision.

Changes of particular note include:
1. We removed Figure 5 and used the remaining space to expand Figure 6, making the

panels easier for readers to digest.
2. We included alternative performance metrics for dHIT, including MSE quantification at

different subsets of genomic sites, as well as ROC and PRC curves for the recovery of
peak calls.

3. We performed experiments to demonstrate that the rapid removal of H3K27ac is
explained, at least in part, by removing the histone mark, rather than evicting histones
carrying the mark. This result implies a tight balance between the deposition and
removal of H3K27ac that follows active transcription.

Please find below a point-by-point breakdown addressing the reviewers’ comments.

Reviewer #1:

Remarks to the Author:
Wang, Chivu, and colleagues present an integrated analysis of the relationships between
high-resolution transcription (as measured by PRO-seq) and various histone modifications.
The main contribution is the demonstration that the distribution of many histone
modifications can be imputed using machine learning models trained on PRO-seq data. The
approach itself is quite straightforward; a support vector regression model is trained using
vectors of PRO-seq read counts to predict histone modification read counts at the same
location. But the work convincingly demonstrates that transcriptional data can be used to
impute several active histone modifications, and can thereby be used to characterize
chromatin state annotations. The approach is comprehensively evaluated and demonstrated
to enable imputation across cell types and species.

Response: We thank the reviewer for their constructive and thoughtful comments which have
contributed substantially to improving our revised manuscript.



Major comments:

1) While a large amount of evidence is presented to support the claim that dHIT can impute
histone modification data, it is still difficult to get a sense of the approach's accuracy on
various histone modifications and genomic locations. The favored assessments focus on
correlations and visual representations (e.g., heatmaps). There are problems associated
with both of these approaches. Correlation is an imperfect metric of performance - it can be
dominated by low-signal background regions and by outliers. And heatmaps can look
convincing while obscuring incorrect predictions. Perhaps a more informative approach
would be to calculate the area under precision-recall curves when predicting enriched
domain/peak-level information in the various histone modification experiments. One could
look at how imputation performance is measured in related work such as PREDICTD
(Duham, et al. Nat Comms, 2018), ChromDragoNN (Nair, et al. Bioinformatics, 2019), or
Avocado (Schreiber, et al.
https://doi.org/10.1101/533273). I do understand that these other approaches have distinct
motivations and training objectives, but their performance metrics are nonetheless relevant.

Response: We added precision recall curves (PRC) for active (H3K27ac, H3K4me1, H3K4me1,
H3K36me3) and repressive histone marks (H3K9me3, H3K27me3) to the revised manuscript.

We used a similar setup as Nair et. al. (Bioinformatics, 2019), in which we divided the
holdout chromosome into 500 bp non-overlapping windows from which we exacted
(presumptive) ground truth labels using cell type specific peak calls generated by ENCODE. We
generated PRCs by thresholding the imputed histone modification signal intensity to divide the
same windows into those predicted to be enriched/ not enriched for each histone mark.
Although we favor PRCs because of substantial class imbalance between true positive and true
negative windows, we also show ROC curves generated using the same strategy. Finally, to
provide additional context for the PRC (or ROC curves) that we expect to achieve when
applying this performance evaluation to experimental data, we have also included PRC/ ROC
curves for the same histone modifications using an experimental dataset. All analyses focus on
the holdout chromosome (chr21) in the holdout cell type (GM12878).

This new performance metric shows that we are able to predict histone modifications,
with the notable exception of H3K9me3, with nearly the same fidelity as experimental
measurements, consistent with our prior analysis. All of these ROC/ PRC curves, as well as the
area under the curve, are shown in the revised Sup Fig 2.

2) It would be very informative if performance evaluations can be presented separately for
TSS-proximal regions and distal enhancers. Most presented heatmaps and metagenes
focus on the TSS.

Response: In response to this comment, and a related comment by reviewer 2, we now present
performance metrics separately for specific genomic regions. We adopted performance metrics
similar to those presented by Durham et. al. (Nat. Com., 2018) and Schreiber et. al. (Nat. Com.,
2020), in which mean squared error is computed in different genomic regions, including the top

https://doi.org/10.1101/533273


1% of imputed windows (MSEimp); and the top 1% of experimental windows (MSEobs).
Additionally, we added two independent definitions of promoter and enhancer, using either
proximity to gene annotations (GENCODE) or the stability of the transcription unit produced by
each annotation (following the nomenclature detailed in Core and Martins et al., 2014). None of
these performance metrics appear to identify major discrepancies between different genomic
regions that are not present in previous work by Durham or Schreiber.

We note that Durham and Schreiber observed a substantially lower error for MSE global,
rather than the peak regions, reflecting the ease of imputing background signals using other
ChIP-seq datasets. For dHIT, we found that MSE global is within the same ballpark as the
various peak regions. Our intuition is that this reflects variation in the experimental ChIP-seq
background signal that is difficult to accurately measure using PRO-seq data. For a more
thorough discussion of the types of errors made by dHIT in background regions, please see our
comment to Reviewer #2 (comment #3) and the new Supplementary Note 1.

These new performance metrics are depicted in Sup Fig 5, which complement the
global correlations, Jaccard similarity, and mean absolute deviation values that we previously
included for each histone mark.

3) Further related to performance metrics, Figure 2E shows the results of Jaccard distances
between chromHMM states found from real data and dHIT-imputed data. I was confused by
these plots, as they seem to show the worst performance for the quiescent state and the
strong transcriptions states. I would have naively thought that such states should be
amongst the easiest to predict from PRO-seq (quiescent due to no transcriptional signal, and
transcription states from the PRO-seq signal directly). Why is performance poor here?

Response: Fig. 2e uses Jaccard as a similarity index, using the definition implemented by
BedTools (see: https://bedtools.readthedocs.io/en/latest/content/tools/jaccard.html). Based on
this definition, Jaccard will range between 0 and 1, with higher values indicating higher similarity
between two BED files. Therefore, as predicted by the reviewer, quiescent and strong
transcription states (along with active TSS and weak polycomb) are some of the states which
can be predicted most accurately using PRO-seq. More difficult states to predict include active
or weak enhancers - which often swap labels among other enhancer states in both experimental
and imputed data (as shown in Supplementary Fig 16) - and heterochromatin/ posed
enhancer, which are not predicted well using PRO-seq. Notably, these states also have the
weakest correspondence when ChromHMM is run between biological replicates.

We have clarified the writing and figure caption to more accurately explain how we use
the Jaccard metric. In particular, we believe the revier’s confusion was caused by the word
“difference” in the Results section. That sentence now reads as follows:

“The Jaccard similarity index between imputed and experimental data were highly correlated with
those observed between other ChIP-seq datasets (Pearson’s R = 0.92; Fig. 2E, Supplementary
Fig. 14).”

https://bedtools.readthedocs.io/en/latest/content/tools/jaccard.html


4) It is clear from several figures that dHIT has poor performance in imputing histone
modifications associated with repression or heterochromatin (i.e., H3K9me3, H3K27me3,
H4K20me1, e.g., Fig 3C). This is not surprising, as such regions would contain little
transcriptional activity. It is therefore perplexing that a substantial portion of the manuscript
asks the reader to believe that H3K27me3 signals can be successfully imputed from
PRO-seq. In several places, the manuscript states that success has been achieved in
predicting polycomb enriched regions or bivalent gene, even when the presented imputed
H3K27me3 signal is extremely different from the actual H3K27me3 ChIP data (e.g., Fig 2A,
Supp Fig 11). We are shown dHIT-derived predictions of polycomb domains in several
GMBs, but there are no validation experiments to assess the predictions.

Response: Our expectation when starting this project was that we would not be able to predict
repressive marks at all. As expected, dHIT has no predictive power at all for H3K9me3.
However, results for H3K27me3 are a bit more nuanced, and we have made several changes to
make sure this nuance comes across to the reader in the revised manuscript.

We do think our H3K27me3 model learns signals that are pretty close to the
experimental data in K562, GM12878, CD4+ T-cells and other somatic cell types. There are
several existing (and newly added!) pieces of evidence for this claim: First, correlations between
experimental and imputed H3K27me3 are largely within the range observed between
experimental datasets in K562 and GM12878 (see Pearson’s and Spearman’s correlations in
Supplementary Fig. 11). Second, peaks of H3K27me3 are predicted with an accuracy that is
only slightly lower than experimental data and much better than random guessing (see the
revised Supplementary Fig. 2). Third, examination of H3K27me3 on the genome browser, in
K562 cells (see Fig. 1B and Fig. 2A), shows that experimental data is broadly distributed across
large genomic regions that have low transcription levels. Boundaries of the broad H3K27me3
domains are predicted relatively well by the imputation. We do believe this represents a partial
success and we have clarified where our models work fairly well in the revised manuscript by
emphasizing the concordance in cell types where H3K27me3 imputation works well.

However, our capacity to predict K27me3 breaks down in certain cell types, particularly
stem cells (both IPS and ESCs). The reason for this breakdown in accuracy is that H3K27me3
is distributed in a very different way in (for example) mESCs than it is in K562: experimental
data shows a punctate pattern where peaks frequently occur near the promoter of genes with
low transcription levels. We believe this difference in distribution likely reflects a fundamental
difference in the biology of H3K27me3 between different cell types.

To explore this biological difference in more detail, we have added new analyses to the
revised manuscript and made several changes to the text in order to clarify when H3K27me3
imputation works well and where it does not. First, we have included an additional main figure
panel to show that imputation does, to a large degree, predict H3K27me3 domains in K562 and
GM12878. Second, we have added a new analysis that systematically characterizes the degree
to which 86 ENCODE or Roadmap datasets in different cell lines reproduce the “dispursed” or
“focal” pattern. Our analysis (see the revised Supplementary Fig. 14) shows that ESCs and
IPSs tend to have a focal pattern, whereas somatic cell types are dispersed.



5) Related to the previous point, the conclusion contains a section that relies on dHIT
predictions to claim that H3K27me3 has a positive association with initiation. This is
extremely speculative. Since dHIT has very poor performance in imputing H3K27me3, how
can such sweeping biological conclusions be drawn from these analyses?

Response: We agree with the reviewer’s comment that our data suggesting that H3K27me3
has a positive association with Pol II initiation rates is highly speculative at this point. Based on
this comment, and following useful suggestions from Reviewer 3, we have removed this section
of the manuscript and the associated figure from the revised paper.

6) The second half of the manuscript, beginning with the Triptolide treatment experiments,
seems very disconnected from the first half. The results are interesting, but mostly
recapitulate the known relationships between transcription and the deposition of histone
modifications. The results do not rely on or relate to the dHIT method, as they are mostly
derived by examining the actual histone modification ChIP-seq data post-Trp.

Response: We have refined the connection between dHIT and the triptolide experiments in the
revised manuscript by rearranging the order in which sections are presented, removing the
simulation studies (as noted above and below), and refining the transition text that connects
them.

Briefly, we think dHIT and the triptolide experiments are conceptually related enough that
they are stronger when presented together in the same paper. Our analysis of dHIT shows
clearly just how strong the correspondence between histone modifications and transcription
actually is. The strength of this correlation serves as a useful backdrop to motivate exploring
what the nature of any causal link might be. This motivates the experiments in which we ask
whether transcription is necessary for histone modifications.

Specific changes to the manuscript include changes to the transition between dHIT and
the tryptolide experiments (see the section “Transcription is required for promoter-associated
histone modification”) as well as the discussion (see section “Active histone modifications as
essential cogs, rather than causes, of transcription”).

In fact, when dHIT is invoked, it probably should not be. For example, in the section where
dHIT is used to predict ChIP-seq data on systematically varied initiation and pause-release
rates; these results could have been more clearly interpreted if pausing indices were
calculated directly from the PRO-seq and compared with the various histone modification
ChIP-seq data directly.

Response: In response to this comment (and a related comment by Reviewer #3, comment
#3), we removed the section in which we simulate transcription initiation and pause release
rates from the revised manuscript. We used the additional space that this change freed up to
expand our analysis of primary PRO-seq and ChIP-seq data after blocking transcription using



triptolide and improve the transition between different sections of the manuscript. We believe
that these changes make the revised manuscript feel like a more cohesive, self-contained story.

Similarly, in the section "chromatin accessibility is not sufficient for transcriptional initiation";
dHIT is not needed here - one could examine the PRO-seq data directly to see if PolII was at
all DNaseI hypersensitive sites (and several others have already demonstrated that it is not).

Response: In response to this comment we have tried to better articulate the advantages of
using the imputation in this task.

We absolutely agree with the reviewer that simple approaches examining whether Pol II
was found at all DNase-I hypersensitive sites (HS) have (mostly) supported the conclusion that
not all DNase-I HS are transcribed. We have added citations to additional prior studies in our
revision. However, we know of at least one recent paper that has arrived at the opposite
conclusion, namely that transcription is found at all DNase-I HS (see Young et. al. (Genome
Biology, 2017). While we do believe this paper was flawed, it nevertheless received quite a bit of
attention when it came out. Therefore, we believe that revisiting this question with an additional
lens (i.e., imputation) provides some benefit in convincing the community, especially those who
do not follow this discussion all that closely, that not all DNase-I HS are transcribed.

We also believe that there are some unique advantages to using dHIT to address this
question. Previous work has largely relied on either comparing peak calls between DNase-I HS
and transcribed regions or taking subsets of DNase-I HS and examining the amount of
transcription. Both of these strategies are potentially problematic in several ways: either false
negatives or false positives in peak calling could result in an incorrect answer without careful
filtering; likewise, aligning PRO-seq signal on a subset of DNase-I HS that are candidates for
being not transcribed is potentially fraught with circular logic, or could artificially reveal
transcription at a small subset of the DNase-I HS included in the analysis. Our view is that
inappropriate use of heuristics in defining regions to analyze is what has led to the observations
by other groups that all DNase-I HS are transcribed and the confusion that has followed.

We believe that the primary benefit of using dHIT is that we can identify regions where
there is a huge mismatch between transcription and DNase-I hypersensitivity in a relatively
unbiased way. By selecting windows in which we observe that DNase-I HS experimental signal
is strong, but for which we find no evidence of imputed accessibility, provides an alternative (and
arguably more principled) way to identify DNase-I HS that are not transcribed. This strategy
allows us to work around some of the limitations of the alternative approaches noted above.

In the revised manuscript, we have clarified the rationale for revisiting this problem by
more clearly articulating the discrepancy between previous papers. We have also provided a
more articulate motivation for the use of imputation in this task. See, for instance, the discussion
(section titled “Chromatin accessibility: Necessary, but not sufficient, for transcription”):

Unlike previous work, which relied on arbitrary heuristics to select sites with or without
evidence for transcription, dHIT allowed us to directly identify candidate DNase-I
accessible regions with a typically large imbalance between experimental and predicted
transcription.



7) It would be good to discuss or compare with other somewhat related work modeling
PRO-seq data, such as the manuscripts from Azofeifa and others in Robin Dowell's lab, and
NRSA from Yu Shyr's group.

Response: We fully agree with this point. The excellent work from the Dowell and Shyr labs are
now cited and discussed in the discussion section. See in the discussion (section titled “dHIT: A
powerful tool for genome annotation”):

Tools such as NRSA and Tfit leverage similar information, such as the shape or density
distribution of nascent transcription, to annotate functional elements in eukaryotic genomes.

Minor comments:

8) Why are only two histone modifications assessed for mES cells (Fig. 1E)? There are
many more available from mouse ENCODE and other labs.

Response: We have
imputed five additional
histone modifications
in mESCs (H3K27ac,
H3K36me3, H3K9ac,
H3K4me2, and
H3K4me1). Imputation
was compared to data
obtained by the mouse
ENCODE project.
Correlations and other
QC for these additional
histone modifications
are now shown in the
revised Fig. 1e and
Supplementary Fig.
10A,C,D, copied for
the convenience of the
reviewer below.

9) Supp Fig 8d compares dHIT performance in a variety of cell types to a scheme that just
directly transfers the training data from K562 cells. Have you tried comparing with the
performance of a scheme that transfers the average histone modification signal from all
other cell types (i.e., as described by Schreiber, et al. Genome Biology 2020)?



Response: We have added an additional ‘straw-man’ benchmark that uses the average histone
modification signal from all other cell types, as suggested by the reviewer. We believe our
changes in the revision emphasize that dHIT excels at picking out cell-type specific differences
in histone modification signals that are important for characterizing the biology of new cell types.

(Schreiber et al. 2020) argues, very convincingly in our opinion, that machine learning
models trained on genomic data can effectively learn the average signal intensity across cell
types in the training data for a specific locus. While this is, to some extent, what machine
learning models are designed to do, models that learn the average signal intensity are arguably
not particularly useful in a biological setting for a number of reasons described in detail by the
original authors.

We don’t think this particular pitfall affects dHIT. Our rationale for this includes several
observations we made in the original manuscript: (1) We only used one cell type for training,
which prevents the model from memorizing the average signal across multiple cell types in a
particular locus, (2) Comparing to training data copied from K562 (as described in the original
manuscript) will let us determine whether we are simply copying the training data, and (3) We
evaluated models using data held out from both a different holdout chromosome and a holdout
cell type. (Full credit to Schreiber et. al. (2020): many of our decisions in designing the
benchmarks in our manuscript were made based in part on hearing about their work before it
was posted to bioRxiv).

In the revised manuscript, we have also added an additional benchmark designed to
further make a case that dHIT is learning features that allow it to generalize across cell types.
Schreiber et. al. (2020) suggests a performance metric that examines genomic loci that have a
high degree of variability across cell types. In the revised manuscript, we compared the average
signal to the imputation in regions on the holdout chromosome that have GM12878-specific
signal for each histone modification. In general, dHIT performs well in this task, achieving
correlations that are not significantly different from its global performance. By contrast, the
average signal across cell types has a correlation of ~0 for most histone marks at these loci, as
expected. We think this benchmark is a useful addition to the revised manuscript because it
demonstrates that dHIT is useful for characterizing the regulatory features that separate
different cell types.

These points have been added to the revised manuscript. See especially the revised
section on the generalization across cell-types (results, section titled: “Active histone
modifications have a similar relationship to transcription across mammalian cells ”):

Finally, cell-type specific signal differences were predicted with reasonably high accuracy
(Pearson’s R = 0.44-0.70 for active marks; Supplementary Fig. 10f), providing additional
confidence that dHIT was not simply learning the average signal intensity of histone modification.

10) Please put x-axis and y-axis labels and scales on Supp Fig 1 plots. There is a strange
vertical drop-off in midrange ChIP-seq signal in many of the plots (x-axis), suggesting that
the plots do not show read counts.

https://paperpile.com/c/FNxCKS/IC6r


Response: We have added axes labels to the scatterplots in the revised Supplementary Fig.
1. All values represent normalized read counts.

Our intuition is that the vertical drop-off reflects differences in the way that background
signal is distributed between PRO-seq and ChIP-seq assays. In ChIP-seq, there is substantial
background pulldown of DNA due to non-specific binding of DNA to beads, tubes, tips or other
sources of contamination. This background signal can vary due to a variety of technical and
biological factors (e.g., mappability; copy number alterations in some cell lines; etc.).

In PRO-seq, the background is generally much lower and distributed in a very different
way than ChIP-seq. This is both because the signal is derived from RNA, rather than DNA, and
also because background tends to be much lower thanks in large part to more affinity
purification steps. We think this difference in the background distribution between assays makes
it more difficult to predict the precise number of reads using PRO-seq in regions that do not
have signal. We have commented on this point in the revised Supplementary Note 1.



Reviewer #2:

Remarks to the Author:
In the Wang et. al. manuscript, they train a support vector regression model that uses run-on
sequencing as input and predicts the histone profile (marks, locations) genome wide. The
predictions are reasonably accurate and dissection of how predictions change given distinct
input transcription data (Figure 5) links particular marks to distinct stages of RNA
polymerase activity. They further support the data by blocking transcription and assessing a
number of marks acutely (<4 hours) afterwards. Overall this is a very thorough assessment
of the relationship between transcription (using both simulated and experimental data) and
histone marks. However, some concerns limited enthusiasm.

Response: We thank this reviewer for their constructive comments. This reviewer’s comments
motivated us to reorganize the manuscript in a more logical fashion, add additional control
experiments to rule out cell viability as an explanation for histone modification loss following
triptolide treatment, and add additional performance metrics to our evaluation of dHIT. We
believe these changes have significantly improved the revised manuscript.

Major issues:
(*) The section on pause release, methylation and initiation (based on simulations) is really
aimed at understanding what patterns the SVR is identifying. It should be couched as such
and really it should precede the Trp experiment. It was disorienting for this section to follow
the Trp experiment. Further, subsequently claiming that they have little idea what patterns
are driving the model is an over-statement, as this section begins to dissect it. Though, I do
agree that this section alone falls short of fully understanding their black box model.

Response: We agree with this comment. Additionally, we also agree with a related comment
made by Reviewer #3, who suggested that we remove this section from the manuscript entirely.
In response to these constructive suggestions, we have removed the section which describes
the Pol II simulation studies as well as the accompanying Figure (previously Fig. 5) from the
revised manuscript.

(*) The experiment to block transcription is a nice, strong validation of directionality — i.e.
that goes to causality rather than just correlation. That said, it is somewhat complicated by
the half-life of these marks — which is only commented on for the one that looks unchanged.

Response: In the revised manuscript, we now directly test the hypothesis that changes in
H3K27ac reflect the rapid turnover of histone marks by eraser enzymes, rather than histone
depletion near the transcription start site (see also our response to Reviewer #3, point 2). These
new findings implicate the rapid half-life of H3K27ac in the depletion of histone modifications
following Trp. We comment on this in the revised manuscript (see especially the Results section
“Transcription is required for promoter-associated histone modification”).



Additionally, what is the evidence that small molecule Trp has absolutely no impact on
histone marks or accessibility. Plus, Trp is quite toxic — so are the 4 hour cells just quite
sick/dying and that is responsible for the change in histone patterns?

Response: We have conducted several experiments designed to evaluate the effects of
triptolide on cell viability or aspects of promoter/ enhancer molecular biology:

● Analysis of chromatin accessibility following triptolide treatment. We performed
ATAC-seq following a time course of triptolide treatment in K562 cells. We observed only
modest changes in chromatin accessibility genome-wide (a modest increase). This data is
presented in the revised Figures 5 and 6.

● Experiments to evaluate the effects of triptolide on cell viability. We also examined
whether cytotoxic effects of triptolide impact cell viability in the 1-4 hour time window
examined in our experiments. We found that triptolide, as well as a dual treatment of
Triptolide and Trichostatin A
(included in response to
comments by Reviewer #3,
point #2), did not affect cell
viability at 4 hour time points.
In contrast, high
concentrations of DMSO, a
positive control, had a large
impact on cell viability. This
data can be found in
Supplementary Figure 24,
and is depicted below for the
convenience of the reviewer.
We conclude that the effect of
triptolide on histone
modifications can not be
explained simply by cell death.

Finally, we also wish to add that triptolide is widely used in the literature to block transcription.
Our application, including the concentrations and time points that we have used, are consistent
with previous papers from multiple groups, including work by Jonkers et al., 2011 (Lis), Tettey et
al, 2019 (Conaway), and others.

(*) The paper needs to more carefully look at the mistakes made by their imputation strategy.
They clearly are aware some regions may be more difficult than others as evidenced by
them removing regions of poor mappability, black list regions and the 2% of identified



“spikes” as these are likely poorly predictable for technical regions. This makes sense, but
have they examined the error characteristics of their imputed patterns for the remainder of
the data? The focus on large windows for their correlation coefficients (SFig4, SFig 8 use
10kb, Fig 1E 1kb) provide nice summaries but say little about whether the errors are
randomly distributed, punctate, prone to particular regions, or what. For example — SFig 3
— some of the patterns (H3K27ac, H3K4me2 and H3K4me3) it looks like the imputed data
tends to be wider and darker — are these the general trends of the errors made?

Response: We have added Supplementary Note 1 to the revised manuscript which lists and
provides discussion on systematic differences that we have noticed between experimental and
dHIT imputed ChIP-seq data. Several of the more important points are listed here for the benefit
of the reviewer:

● Poor prediction in background regions: Several quality control metrics show evidence of
a weak correlation between dHIT and ChIP-seq signal in background windows. Errors in the
background signal reflect small differences in the predicted and experimental read counts at
individual genomic positions in background regions, which add up when summed over large
window sizes. We think the most likely explanation is that these errors reflect differences in
the way ChIP-seq and PRO-seq assays capture background. In ChIP-seq, there is
substantial background pulldown of DNA due to non-specific binding of DNA to beads,
tubes, tips or other sources of contamination. This background signal varies across the
genome due to a variety of technical and biological factors (e.g., mappability; copy number
alterations in some cell lines; etc.). In PRO-seq, the background is generally much lower and
distributed in a very different way than ChIP-seq. Differences in the background distribution
reflect fundamental differences in the assays: PRO-seq signal is derived from RNA
(ChIP-seq is DNA), and PRO-seq has less background signal because the assay has three
affinity purification steps (ChIP-seq has one). Differences in the background distribution
between assays make it more difficult for dHIT to predict the number of ChIP-seq reads in
regions that do not have much signal, and this is especially notable in larger window sizes
where small differences add up to a larger aggregate signal.

● Regions of focal amplification: We have noted systematic error arising from regions with
very high copy number in cells with abnormal karyotypes (e.g., K562). We attribute this
difference to increased DNA content causing a large increase in ChIP-seq background and
signal, but is more difficult to detect using PRO-seq. A great example of this error type is the
first part of chromosome 21 in K562 cells: this region is amplified in K562 (based on the
amount of background signal in ChIP-seq data), but the increased signal is not identified in
the imputation. This error type has a fairly large effect on many of the quality control metrics
in cell types with abnormal karyotypes.

● Differences in the distribution of ChIP-seq signal within peaks: Although dHIT captured
most of the variation within experimental ChIP-seq peaks, the imputed signal was often
spread over larger regions than experimental signal, as noted by the reviewer (see
especially Fig. 1C, Supplementary Fig. 4, Supplementary Fig. 7). This may indicate either



systematic biological variation in the distance between Pol II and marked nucleosomes or it
may reflect uncertainty in the model due to noise in either PRO-seq or ChIP-seq assays.

● Clear disagreement between imputed and experimental data: We identified a handful of
cases where there are clearly defined peaks in the imputed histone modification data, but
not the experimental data (or vice versa). Many of these examples are located in intergenic
regions, and cannot be explained by signal in gene bodies or other adjacent regulatory
elements. An outstanding example of this type of error at the CERK promoter is shown in
Supplementary Fig. 12.

We were initially very excited about manipulations we could perform on these
candidate differences. However, when we used ChIP-seq to examine H3K27ac in our own
cell stocks (which were more closely matched to those used for PRO-seq), we found that
nearly all of the aberrant/ missing peaks in the imputation were found in our own ChIP-seq
data. This finding indicates that systematic biological differences in expression between
different stocks of K562 cells, environmental differences, or other biological factors explain
most cases where there is a clear disagreement between the imputation and experimental
signal.

Also I’m a little concerned about the fact that they claim that poorly performing windows are
enriched for CTCF when they use CTCF sites in their MNase normalization strategy. Doesn’t
the use of CTCF peaks to identify untranscribed regions make it impossible for them to then
claim that that CTCF windows are the most poorly predicted?

Response: We have clarified in the revised manuscript that we only use CTCF sites to
normalize new experimental MNase ChIP-seq data in the triptolide time course.

We do not use CTCF to normalize ChIP-seq signal prior to training or benchmarking
dHIT for either chromatin accessibility or histone modifications. In all cases, imputation models
were trained using library depth normalized read counts provided by ENCODE. To clarify this
point in the revised manuscript, we have changed the section titles throughout the Methods
section. For example, see Methods, section titled “Data processing for newly collected MNase
ChIP-seq, CUT&RUN, ATAC-seq, and PRO-seq”, which emphasizes that the section applies to
newly collected data only.

Additionally, we have added new language to the Methods section which describes
training dHIT (see the subsection titled Training dataset) to clarify that we used counts
normalized only for sequencing depth for all dHIT training and evaluation tasks:

“All training and validation analyses used sequencing depth normalized read counts, where
possible using bigWig or bedGraph files provided by the original authors as input.”

(*) Abstract argues that their accuracy is on par with replicates but they never explicitly look at
replicate variability.



Response: We show a comparison of the accuracy of biological replicates and dHIT imputation
in the revised Supplementary Fig. 2 and Supplementary Fig. 11. These plots show that dHIT
imputation is frequently within the range of values observed between pairs of experimental
datasets for multiple performance metrics (Pearson and Spearman’s correlation, mean absolute
deviation, and peak identification). For some marks that we can impute with particularly high
accuracy, dHIT estimates are on the high end of the range of correlations produced from
experimental datasets, especially for small window sizes (10-100 bp). We have emphasized this
analysis in the revised methods section of the manuscript.

(*) Their approach for training used a lot of heuristics (how they defined informative
positions, how they pseudo-randomly select examples). Is this done merely to balance
positive/negative regions, to reduce the overall burden of training data, because it worked, or
what? Minimal justification is provided for what is actually a ton of heuristics. Leaves the
reader wondering why a lot and whether these heuristics drastically influence the results. I’m
fine (in general) with tuning a model as long as the methodology behind such tuning is
conveyed with reasoning to the reader, especially in the scenario where the model isn’t
being built to generalize but rather to prove a point.

Response: In response to this comment, we have expanded our description of the selection of
heuristics in the revised methods section. Briefly, most of the heuristics used in our present
manuscript were systematically optimized for the classification of transcription initiation regions
(TIRs) with dREG (Danko et. al. (2015), Nature Methods; Wang et. al. (2019) Genome
Research). Since the imputation of histone modifications relies on signals in the PRO-seq data
that are similar to those used by dREG, we used the values that were optimal for dREG without
modification. Below we include a brief description for the benefit of the reviewer:

● The number of windows, window sizes, and the data transformation strategy were optimized
for the classification of TIRs using dREG over a grid of reasonable values (See especially:
Supplementary Table 2 of Danko et. al. (2015) Nature Methods). These values were not
changed in the present manuscript.

● Heuristics to identify “informative positions”, which can intuitively be thought of as genomic
positions with evidence of transcription nearby, were chosen by Danko et. al. (2015). In this
analysis, Danko et. al. (2015) selected informative positions as a way to optimize the
tradeoff between the number of positions analyzed and the fraction of real TIRs that were
scored. We (previously) reasoned that the optimal heuristics would minimize the number of
sites that we would have to score (to improve run time), but would score at least one site
near every TIRs. We defined the sensitivity for TIRs as the fraction of all GRO-cap peaks
(extended by 500 bp and merged) that we recovered. We optimized these values using a
K562 dataset with ~40M mapped reads (a subsampled version of the deeply sequenced
K562 dataset, G1, see Supplemental Table 1), because this is a reasonably standard
sequencing depth for a PRO-seq library for which we would like to achieve a high sensitivity



for TIR discovery. As above, we used the heuristic values selected for dREG without
modification in dHIT.

● The main modifications we made to heuristics in the new manuscript were related to the
composition of the training dataset. Unlike dREG, we trained dHIT to impute every 10 bp
regardless of whether there was evidence of PRO-seq data in the surrounding region or not
(i.e., whether that 10bp window is an ‘informative position’). This change required dHIT to
estimate the signal density in background regions, and therefore we included
non-informative positions into our training dataset. Since we assume that the background
does not have much signal (and therefore, not much variation in the PRO-seq data), these
can be a small portion of our training sample. We selected 2% of training data to be in this
group. We selected 5% to be near GRO-cap transcription start sites and left the remaining
93% of training examples to be informative positions that have PRO-seq signal nearby, but
are not found in peaks. Notably, these values were selected in large part because we have
previously noticed that using an unbalanced set of positive and negative sites performed
best for dREG (see: Wang et. al. (2019) Genome Research). We did analyze different
compositions of the training dataset in preliminary testing, but did not notice much difference
in performance unless the training dataset wildly underrepresented informative positions.

Finally, we wish to emphasize that all of the heuristics noted above were optimized and fixed
using an analysis of K562 cells before examining the holdout test datasets in GM12878 and
other cell types. Thus, we believe the performance in GM12878 and other cell types represents
a bona-fide out-of-sample test.

We have clarified all of this information in the Methods section, especially Methods,
under the section SVR feature vector:

We have previously optimized the number of window sizes and the window sizes for optimal
classification of TIRs using dREG 53,87. Since the imputation of histone modifications uses signals
in the PRO-seq data that are similar to dREG, we used the values that were optimal for dREG
without modification. Like for dREG, we passed data from windows at multiple size scales,
including 10, 25, 50, 500, and 5,000 bp windows (n = 10, 10, 30, 20, and 20 windows,
respectively), representing read data as far as 100 KB from the genomic region in question.
PRO-seq data was standardized across each length scale in a similar fashion as we use for
dREG 87, using a logistic function, F(t), to transform raw read counts using two free parameters, α
and β.

And Methods, under the section Selecting training positions:

We defined regions of potential PRO-seq signal, which we call “informative positions” using the
same heuristics we described previously for dREG87. Each window was defined as an
“informative position” when the window had more than 3 reads within 100 bp on the single strand
or at least one read within 1000 bp on both the positive and negative strands. These heuristics
were selected as a way to optimize the tradeoff between the number of positions analyzed and
the fraction of real TIRs that were scored based on the overlap with GRO-cap peaks.

(*) Availability on the software isn’t specified.

https://paperpile.com/c/n4QK7r/ifPa+cbZU
https://paperpile.com/c/n4QK7r/ifPa
https://paperpile.com/c/n4QK7r/ifPa


Response: We have specified where to obtain dHIT software and the pre-trained models in the
revised manuscript (see Methods, Training dHIT SVRs to predict histone marks using PRO-seq,
GRO-seq or ChRO-seq data, Overview).

The software and analysis scripts are all publicly available on GitHub, under this
repository: https://github.com/Danko-Lab/histone-mark-imputation. We have implemented
relatively simple R commands to either use the models we trained, or to use the basic
framework that we developed to train a new model. Basic documentation for using the dHIT R
package is provided on that GitHub page as well.

Minor issues:

(*) The H3K27me3 discrepancy is quite interesting. They clearly identify distinct patterns, but
do not clearly show that their approach could predict the more punctate pattern. So the “both
of which appear linked to features of active transcription” is an over statement. Would be
interesting to follow this mark through differentiation. May speak to roles of H3K27me3 in
differentiation?

Response: We agree that we do not show the punctate pattern can be predicted using
transcription. In the revised manuscript we have removed the sentence indicated by the
reviewer.

We also agree that it would be interesting to follow the mark through differentiation. We
have added new analyses to confirm that the punctate pattern is found primarily in ESCs and
IPS cells, while the dispersed pattern is found in somatic, fully differentiated cell types and adult
tissues. Partially differentiated cell types appear to have an intermediate pattern that lies
somewhere between the punctate and broad patterns. The new analysis, shown in the revised
Supplementary Figure 14, further supports the reviewer’s proposal that H3K27me3 distribution
may have a role during differentiation.

(*) By reference they refer to a collection of K562 PRO and assorted ChIP marks from
ENCODE, but this paper would be more cohesive if they included some assurance on the
quality of these datasets. Alternatively it might be relevant to know whether quality of the
data influences the ability of the model to identify these patterns?

Response: We have examined the quality metrics of both PRO-seq and ChIP-seq data in
additional detail in the revised manuscript. For PRO-seq data, we used PEPPRO, a QC pipeline
by the Gurtin and Sheffield labs (Smith et. al. (2021) Genome Biology) to obtain several quality
control parameters for each dataset. These are presented in the revised Supplementary Table
3. For ChIP-seq data, all of our main analyses in ENCODE cell lines use datasets that passed
ENCODE 2 data quality standards (Landt et. al. (2012) Genome Research). We have updated
the Methods section to state how our quality control measurements were completed. Finally, we

https://github.com/Danko-Lab/histone-mark-imputation


comment in the results section that we do indeed find, as expected, that poor quality data tends
to have lower correspondence between imputed and experimental data (see the Results
section, titled “Active histone modifications have a similar relationship to transcription across
mammalian cells”):

Lower correlations were generally observed when the experimental ChIP-seq data (certain CD4+
T-cell datasets) or the PRO-seq data (e.g., HeLa) had fewer sequenced reads or lower values in
other data quality metrics (Supplementary Table 3).

(*) Does the registry of the non-overlapping windows matter in their ChIP predictions?
Windowing methods always have edge effects — which are admittedly minimized at smaller
window sizes. But at the larger sizes (500, 5kb) does an offset in the window start size
relabel any regions? Likewise I don’t recall them mentioning how they combine windows yet
the evaluation windows are quite large (10kb and 1kb) compared to the 10 bp windows on
which they impute/predict.

Response: In most cases, our metrics comparing experimental and imputed data use
continuous error values, rather than picking thresholds to make peak calls. We think this
strategy focusing on continuous error values is likely to be slightly more robust to edge effects
than alternatives that use peaks. Additionally, to provide context on the best accuracy that we
could theoretically achieve, we compare dHIT accuracy metrics to those observed between
experimental datasets. In these analyses we always use the same windows, in the same
register, and therefore any edge effects will affect both the imputation and experimental
comparisons.

Finally, during the revision we added new analyses designed to estimate the accuracy of
peak calling at the suggestion of Reviewer #1 (see comment #1). We do think it is likely that
edge effects decrease the perceived performance in this task. In an effort to avoid the influence
of edge effects in this analysis, we have excluded windows which lie on the edge of a peak from
analysis. Likewise, we also compare the performance of dHIT with experimental data using the
same windows.

Thus, although we do agree with the reviewer that edge effects could affect our
performance metrics, especially when we are using larger windows, we think the revised
manuscript provides enough information for readers to draw conclusions about accuracy.

(*) I have a general issue with saying PRO-seq throughout the paper when reality is this is
applicable to several run-on /nascent assays. Perhaps a more general term is preferred? In
methods section they say “PRO-seq, GRO-seq, or ChROseq; henceforth referred to simply
as PRO-seq” — and this would be fine if this statement had been in the main text.

Response: To avoid confusion, we included a statement in the main text suggested by the
reviewer. See especially the results section:



“dHIT uses the distribution of RNA polymerase, measured using either of the related
methodologies PRO-seq, GRO-seq, or ChRO-seq data (henceforth referred to simply as
PRO-seq), to impute the level of histone modifications genome-wide. “

(*) It is unclear why they are using hg19 when hg38 has been available since December of
2013. Justification of hg19 is warranted. However, it is unlikely that a shift to hg38 will alter
any results, so this is perceived as a minor concern.

Response: We have added a justification for using hg19 in the Methods section.
Like so many others, our choice to work in hg19 coordinates was one of convenience.

When we began this project ~4 years ago, all of the ENCODE data used in training and
evaluating models was available in hg19, but not hg38, coordinates. Switching to hg38 at that
time would have required that we re-analyze the ENCODE data ourselves (which would have
been a huge effort), or use liftOver to convert across assemblies (which we do not believe to be
an ideal solution). Likewise, we also had all of the PRO-seq data mapped in hg19 coordinates
already. Finally, as the reviewer notes, we did not believe that updating to hg38 would affect the
results in any meaningful way. Therefore, we made the decision to work in hg19 because we did
not believe the amount of time it would take to update the coordinate system would result in any
real benefit.

(*) The sentence, “Signal on the lower end was better spread out using data imputed from
PRO-seq, possibly making use of the greater dynamic range of PRO-seq over ChIP-seq.” is
completely opaque. What does “lower end” here refer to explicitly — ChIP or PRO? Are they
trying to say that PRO predicted a broader dynamic range then ChIP? If so, it’s possibly true
but somewhat dismissive of one of the error types seen by the model.

Response: We agree with the reviewer and have revised the indicated sentence.

(*) Text refers to SFig 1a-b but there are no a/b labels on SFig 1.

Response: We have fixed the caption to Supplementary Fig. 1.

(*) “As TRP does not affect engaged RNA polymerase, we observe a clearing wave of Pol II
~100kb from the TSSs on long genes at 1 h (Fig 4B)…” But this is not shown in Fig 4B.

Response: We thank the reviewer for catching this! We fixed the figure labels in the main text.



(*) Does “local environment” actually just mean TFs? “Our analysis supports a model in
which both chromatin accessibility and the local environment are important factors to
facilitate transcription initiation by Pol II”

Response: We have changed the term “local environment”, which we agree was unnecessarily
vague, to explicitly name transcription factors, PIC machinery, and chromatin remodelers as
important determinants of transcription initiation by Pol II. The revised sentence reads:

“Our analysis supports a model in which both chromatin accessibility and other aspects of the
local chromatin environment, including transcription factors, pre-initiation complex machinery,
chromatin remodelers, and other transcription related proteins, are all necessary to facilitate
transcription initiation by Pol II. “

(*) On SFig 11 some of the labels were overlapping and hard to read.

Response: We enlarged and reorganized the labels on this (and other) figures to make them
easier to read.

(*) Figure SFig 12 is completely uninterpretable other than to look impressive. Can these be
systematically classified as wide and punctate? Can the two types be shown as distinct
figures to make each tract more readable? Fewer tracts? Meta-genes across multiple cell
lines?

Response: We agree with the reviewer that a systematic characterization of punctate and
broad H3K27me3 patterns would improve the paper. In response, we have replaced the old
Supplementary Figure 12 with a new figure depicting the systematic classification and analysis
of ENCODE and Roadmap datasets.

We obtained data from 86 H3K27me3 datasets from the Roadmap Epigenome Project
(Data sources listed in Supplementary Table 4). We classified these datasets as focused or
dispersed using a principal component analysis, designed to separate samples based on their
focal enrichment on principle component 1 (PC1) (Supplementary Figure 14A). To examine
our hypothesis that undifferentiated cell types tend to have the focal pattern of H3K27me3, we
classified the 86 cell types into five classes based on the cell or tissue of origin used in the
H3K27me3 ChIP-seq experiment: Primary/Adult, Fetal tissue, Multipotent, Pluripotent, and
Other cell types. We asked whether there were significant differences in PC1 score between cell
types using a two-sided Wilcoxon rank sum test: Pluripotent (punctate H3K27me3) versus
Primary/Adult (dispersed H3K27me3) (Supplementary Figure 14C). The revised manuscript
describes these analyses in the results and methods sections.

(*) Color schemes on many of the figures is pseudo-random. For example, H3K36me3 is
shown in Figure 1 and SFig17 as a mid-tone green. But in Figure 3 and SFig 15 it’s a light
green and H3K4me1 is the mid-tone green. A similar green is used in the correlation grids to



mean Pearson’s but then Spearman’s and the jsd values are both purple. So every figure
panel required the reader to figure out what the color scheme was now. Admittedly, they are
showing a tremendous amount of data across the figures and the bouncing around of colors
is likely, to some extent, unavoidable — but every effort to make colors and symbols
standardized throughout the paper would help the reader with the disorienting nature of
having to figure out how to interpret every figure with its own unique color scheme.

Response: We have changed colors in the revised figures throughout the manuscript. We think
our revisions do a better job of matching colors across the paper.

(*) Also — on these measures of correlation/similarity there is an alpha value being used to
scale the “heat maps” but no key is given.

Response: We have added a color key to the figures that include heat maps.



Reviewer #3:

Remarks to the Author:
This article from Wang et al. describes a computational framework they call dHIT that uses
machine learning to impute histone modification landscapes across the genome using
nascent RNA data such as PRO-seq. The model was extensively trained and tested in a
number of cell types and across species and appears to do a reasonable job of predicting
the locations and levels of a number of histone marks that are often used to define
chromatin state. In the cell type used for training, Pearson’s correlation between prediction
and actual data range from mediocre (0.37 for H3K27me3) to quite good (~0.7 for H3K27ac,
H3K36me3, H3K9ac, and H3K4me2/ me3). The imputed locations are considerably more
‘smeary’ than real data and lack the positional information on nucleosomes gleaned from
experimental data, but define general regions where histones are likely to bear a certain
modification. Weaknesses of the model are in predicting heterochromatin and repressed
Polycomb regions, ZNF genes and repeat elements.

Together, these findings indicate that nascent transcription data can be used to predict areas
of activity in the genome, such as active promoters and enhancers, and the histone marks
associated with activity (acetylation, H3 K4methylation, H3K36 methylation). Whereas this is
probably not surprising, I appreciate the point being made here, which is that PRO-seq or a
related nascent RNA assay is a much more efficient way to characterize a cell type than is
20 ChIP-seq assays.

The ability of nascent transcription levels to predict active histone marks also supports the
growing body of data showing that these histone marks reflect transcription, rather than
dictating or regulating transcription. Previous work from the Spicuglia lab (numerous papers,
should be cited) Lis lab (Core et al), Adelman lab (Henriques et al, 2018, should be cited)
have shown correlation between levels of active histone marks like H3K4me3 and
transcription activity at both promoters and enhancers. The current work extends these
studies, going beyond correlation to determine causality, using transcription inhibition with
Triptolide. As predicted based on prior work in yeast (Howe lab; Martin et al., cited), loss of
transcription causes loss of active histone marks H3K27ac and H3K4me3. Interestingly, the
H3K36me3 mark and H3K4me1 turnover more slowly and are not as temporally dependent
on transcription. This is a nice set of experiments that will hopefully help drive home the
point that histone modifications aren’t directive for activity, nor do they bookmark regions for
future activity.

Response: We appreciate the reviewer’s supportive and highly constructive summary of our
manuscript. We have added additional citations to the work described by the reviewer,
especially work from Spicuglia and Adleman labs (as well as additional references by Dowell).

Oddly, after providing some of the cleanest evidence yet that histone modifications, in
particular H3K27ac and H3K4 methylation, reflect transcription rather than controlling it, the
authors then delve into a section wherein they investigate “whether each histone



modification facilitates either initiation or pause release”. This section of the manuscript is
very weak, and I remain unconvinced by these simulations that histone modifications
‘facilitate’ either initiation or pause release. I strongly suggest that this section of the
manuscript be dramatically strengthened or (preferably) removed.

Response: We agree with the reviewer’s points - we have removed the aforementioned
section, and the accompanying figure, from the revised manuscript.

Finally, the authors work to demonstrate that not all accessible chromatin regions are sites of
transcription initiation. This too has already been described in the literature, and it is known
that DNase or ATAC-seq accessible sites include CTCF-bound loop anchors that are not
transcriptionally active (Higgs, Buenrostro). However, this is probably the clearest
description of this finding that I know of, and I appreciate the bigger commentary the authors
are trying to make. However, Figure 6 is currently such a jumble of small panels that the
main point does not come across clearly. I recommend that Figure 5 be removed and the
authors use this space to expand Figure 6. This would allow them to better document the
absence of transcription initiation at accessible regions, showing heatmaps and larger
figures that bring this point home more clearly.

Overall, dHIT seems like a powerful tool and the take home message that histone
modifications are not directive for transcription, but instead reflect transcription activity is
important. However, the model does have weaknesses that should be acknowledged, and I
have several specific concerns, as outlined below:

Response: We want to thank the reviewer for their thoughtful comments. Comments left by this
reviewer were essential in the reorganization of our paper and our figures. Moreover, they
helped us design experiments to understand the relationship between remodelers and the
removal of active histone modifications from chromatin after Triptolide treatments.

Major concerns:

1) dHIT doesn’t perform nearly as well at predicting regions of gene inactivity or repressed
chromatin domains. This is perhaps not surprising, since it is based on nascent RNA
sequencing. It would be helpful if the authors could comment on which histone ChIP-seq
assays might complement PRO-seq and dHIT to give this fuller picture of chromatin? Could
one do PRO-seq/dHIT and H3K9me3 plus H3K27me3 ChIP-seq to achieve this? This
manuscript would be stronger if the authors could provide some insights into which
repressive marks one should investigate by ChIP-seq to get a comprehensive picture of the
chromatin landscape.

Response: We have added text to the discussion section about which additional molecular
assays would provide a complementary view on genome function.



Briefly, we think that the most important mark to add is probably H3K9me3, because
there are no circumstances in which that mark is accurately predicted using transcription. For
H3K27me3, the importance of measuring this mark depends on the quality of information about
cell state: Fully differentiated, somatic cell types can be predicted with surprisingly high
accuracy using dHIT (see our response to reviewer #1 comment #4 for a summary of the
evidence on this point). For instance, we achieve reasonably good predictions for horse liver,
K562, GM12878, CD4+ T-cells, and others. However, because H3K27me3 is distributed in two
very distinct patterns in different cell types, and additionally because we cannot currently predict
the patterns of H3K27me3 in embryonic or partially differentiated cell types, experimental
measurements of K27me3 provide new information in many projects. Finally, in our view, it is
also useful to measure chromatin accessibility, because not all open chromatin regions are
actively transcribed.

This information was added to the discussion (see section titled dHIT: A powerful tool for
genome annotation), which reads as follows:

Chromatin state annotations made using PRO-seq data could provide an efficient path to genome
annotation, especially when complemented by experimental data for which dHIT provides
incomplete or inaccurate information (e.g., H3K9me3, H3K27me3, and open chromatin). Our view
is that, depending on the problem at hand, dHIT/ PRO-seq would be complemented best by the
addition of experimental H3K9me3 (which we are not able to predict at all), followed by ATAC-seq
(which adds the position of candidate insulators) and H3K27me3.

2) The authors observe a rapid loss of H3K27ac and H3K4me3 upon inhibition of
transcription. Is this due to rapid deacetylation/ demethylation or histone turnover? They
appear to argue for deacetylation rather than turnover, but this is not demonstrated. I
suggest that the authors perform a simple assay to test this, using deacetylase inhibitors in
Triptolide treated cells to confirm that acetylation is retained under these conditions.
Whereas ChIP-seq would be optimal here, even western blots would help make this
argument more compelling. This small experiment could go a long way to develop the model
for how transcription stimulates deposition or retention of active chromatin marks.

Response: We performed the experiment suggested by the reviewer to test whether rapid
deacetylation or histone turnover best explains the rapid loss of H3K27ac.

We treated cells with a mixture of 500nM triptolide and 250nM trichostatin A (TSA), a
deacetylase inhibitor, or (to reproduce our earlier findings) 500nM triptolide alone. First, to
alleviate concerns raised by reviewer #2, we confirmed that neither drug (or their combination)
was cytotoxic at the concentration and time points used in these experiments (Supplementary
Figure 24).

We then measured the loss in H3K27ac after 1h and 4h of treatment by Western
blotting. In the presence of triptolide alone, we found that H3K27ac was depleted from
chromatin after both 1 and 4 hours of treatment, providing additional replication for the
observations made in our original manuscript. In cells that were treated with both triptolide and
TSA, H3K27ac was not removed - if anything the amount of H3K27ac on chromatin increased
following 1-4 hours of triptolide + TSA (Supplementary Figure 23). The increase in H3K27ac
likely reflects histone acetyltransferases continuing to modify histones in a manner that is



independent of Pol II (perhaps directed by transcription factors, as observed for HSF1 by
(Vihervaara et al. 2017) and other authors). In contrast, H3K27me3, a negative control, showed
no evidence of changes across the time course (Supplementary Figure 23).

These results support a model in which histone deacetylation is responsible for the rapid
loss in H3K27ac observed after the addition of triptolide. We have added this information into
the main text and supplement. The main Supplementary Figure supporting these findings is
reproduced below:

https://paperpile.com/c/FNxCKS/eUef


3) Figure 5 shows a number of correlations between histone acetylation or methylation and
simulations of initiation and pause release. These are nice correlations but don’t speak in a
clear way to function, and thus the conclusions such as ‘methylation works at the stage of
transcription initiation’ appear unfounded. To support these comments, the authors could
treat cells with inhibitors of acetylation/ deacetylation or methylation/ demethylation, or work
in cells with catalytically inactive methyltransferases. In these conditions, one could test the
authors conjecture that methylation or acetylation directly ‘work’ at a specific step in the
transcription cycle. Such concrete experiments testing the simulation would be required to
support the authors conclusions about function.

Response: We agree with the reviewer that the evidence that methylation/ acetylation
contributes to either initiation or elongation is not very strong at this point. Following this
reviewer’s earlier suggestion, we removed the figure which shows the simulation studies
(originally Figure 5) from the revised manuscript. Instead, we used the additional space to break
Fig. 6 into separate figures which more clearly depict the relationship between transcription,
chromatin accessibility, and histone H3 deposition.

Minor comments:

1) The jumbled and small nature of many figure panels makes this manuscript more difficult
to read than optimal.

Response: To address the reviewer’s comment, we expanded some of the main figures and
moved multiple panels to the supplement. We have also increased the font size on many of the
main and supplementary panels.

2) Figure 4B. The butterfly D. iulia doesn’t look like the picture shown. That appears to be a
monarch?

Response: We updated the butterfly picture in Fig. 4 to D. iulia.
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Decision Letter, first revision: 
 
 Our ref: NG-A56764R 
 
27th Oct 2021 
 
 
Dear Charles, 
 
Thank you for submitting your revised manuscript "Interdependence between histone marks and steps 
in Pol II transcription" (NG-A56764R). It has now been seen by the original referees and their 
comments are below. The reviewers find that the paper has improved in revision, and therefore we'll 
be happy in principle to publish it in Nature Genetics, pending minor revisions to comply with our 
editorial and formatting guidelines. 
 
Since the current version of your manuscript is in a PDF format, please email us 
(genetics@us.nature.com) a copy of the file in an editable format (Microsoft Word) - we cannot 
proceed with PDFs at this stage. 
 
We will then be performing detailed checks on your paper and will send you a checklist detailing our 
editorial and formatting requirements soon afterwards. Please do not upload the final materials and 
make any revisions until you receive this additional information from us. 
 
Thank you again for your interest in Nature Genetics. Please do not hesitate to contact me if you have 
any questions. 
 
Congratulations! 
 
Sincerely, 
 
Tiago 
 
 
Tiago Faial, PhD 
Senior Editor 
Nature Genetics 
https://orcid.org/0000-0003-0864-1200 
 
 
 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have addressed all of my previous comments, and the manuscript is substantially 
improved. I apologize for having incorrectly assumed that Jaccard was being used as a distance metric 
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(rather than similarity) in my previous review. 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have addressed my concerns. The revised manuscript is clear, concise, and tells a 
cohesive story around the relationship between RNA pol II and histone marks. The inclusion of 
Supplementary Note on the typical errors of dHIT is particularly appreciated. 
 
Minor issues: 
(*) The section "Chromatin accessibility at transcription start sites does not depend on transcription" 
refers to Figure 6K-L whereas Figure 6 only has panels A-E. 
(*) Figure 5 H&I are somewhat redundant with Figure 6 A&B. Perhaps the Figure 5 panels could be 
moved to the supplement in order to enlarge the remainder of Figure 5. 
(*) I would hope that Tables 1-3 would be provided in a computer-readable (i.e. parse-able) format 
such as a tab-delimited file or similar. Printed tables (as presented in the supplement) are far less 
useful. 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
The authors have done a great job addressing my concerns. I fully support publication. 
This manuscript has a take-home message that is timely and important to the field. I will start 
teaching this paper in my graduate course as soon as it is published! 
 

Author Rebuttal, first revision: 
 
  
  



Responses to reviewers:

Minor issues:
(*) The section "Chromatin accessibility at transcription start sites does not depend
on transcription" refers to Figure 6K-L whereas Figure 6 only has panels A-E.

Response: Fixed!

(*) Figure 5 H&I are somewhat redundant with Figure 6 A&B. Perhaps the Figure 5
panels could be moved to the supplement in order to enlarge the remainder of Figure
5.

Response: To address this comment, we have enlarged the font in Fig. 5 so that it
can be read and interpreted more easily.

We agree with the reviewer that it would be very nice to enlarge the remainder of
Figure 5. However, the revised supplement is packed with large numbers of figure
panels, and we are not sure that it is the best solution to move panels there.

We also believe that the content of Fig. 5 H&I is important to show readers. The
primary goal of Fig. 5 H&I is to show that changes in chromatin accessibility and H3
composition following Trp (which are also shown in Fig. 6) occur specifically at
promoter and enhancer regions, but not at CTCF-bound DNase-I accessible sites.
We feel that there is value in showing that changes are specific to transcribed
regions.

With all of this said, if the editorial staff have suggestions on where to show these
panels, or other suggestions on figure panel arrangement, we are very happy to
make additional changes!

(*) I would hope that Tables 1-3 would be provided in a computer-readable (i.e.
parse-able) format such as a tab-delimited file or similar. Printed tables (as
presented in the supplement) are far less useful.

Response: We agree. Supplementary Tables 1-3 are provided in Excel format in our
final submission. Both Excel and  CSV files can also be found in our GitHub repo,
here: https://github.com/alexachivu/dHITpaper_2021
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Final Decision Letter: 
 
In reply please quote: NG-A56764R1 Danko 
 
24th Jan 2022 
 
 
Dear Charles, 
 
I am delighted to say that your manuscript, entitled "Prediction of histone post-translational 
modification patterns based on nascent transcription data", has been accepted for publication in an 
upcoming issue of Nature Genetics. 
 
Over the next few weeks, your paper will be copy-edited to ensure that it conforms to Nature Genetics 
style. Once your paper is typeset, you will receive an email with a link to choose the appropriate 
publishing options for your paper and our Author Services team will be in touch regarding any 
additional information that may be required. 
 
After the grant of rights is completed, you will receive a link to your electronic proof via email with a 
request to make any corrections within 48 hours. If, when you receive your proof, you cannot meet 
this deadline, please inform us at rjsproduction@springernature.com immediately. 
 
You will not receive your proofs until the publishing agreement has been received through our system. 
 
Due to the importance of these deadlines, we ask that you please let us know now whether you will be 
difficult to contact over the next month. If this is the case, we ask you provide us with the contact 
information (email, phone and fax) of someone who will be able to check the proofs on your behalf, 
and who will be available to address any last-minute problems. 
 
Your paper will be published online after we receive your corrections and will appear in print in the 
next available issue. You can find out your date of online publication by contacting the Nature Press 
Office (press@nature.com) after sending your e-proof corrections. Now is the time to inform your 
Public Relations or Press Office about your paper, as they might be interested in promoting its 
publication. This will allow them time to prepare an accurate and satisfactory press release. Include 
your manuscript tracking number (NG-A56764R1) and the name of the journal, which they will need 
when they contact our Press Office. 
 
Before your paper is published online, we shall be distributing a press release to news organizations 
worldwide, which may very well include details of your work. We are happy for your institution or 
funding agency to prepare its own press release, but it must mention the embargo date and Nature 
Genetics. Our Press Office may contact you closer to the time of publication, but if you or your Press 
Office have any inquiries in the meantime, please contact press@nature.com. 
 
Acceptance is conditional on the data in the manuscript not being published elsewhere, or announced 
in the print or electronic media, until the embargo/publication date. These restrictions are not 
intended to deter you from presenting your data at academic meetings and conferences, but any 
enquiries from the media about papers not yet scheduled for publication should be referred to us. 
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Please note that <i>Nature Genetics</i> is a Transformative Journal (TJ). Authors may publish their 
research with us through the traditional subscription access route or make their paper immediately 
open access through payment of an article-processing charge (APC). Authors will not be required to 
make a final decision about access to their article until it has been accepted. <a 
href="https://www.springernature.com/gp/open-research/transformative-journals"> Find out more 
about Transformative Journals</a> 
 
<B>Authors may need to take specific actions to achieve <a 
href="https://www.springernature.com/gp/open-research/funding/policy-compliance-faqs"> 
compliance</a> with funder and institutional open access mandates.</b> For submissions from 
January 2021, if your research is supported by a funder that requires immediate open access (e.g. 
according to <a href="https://www.springernature.com/gp/open-research/plan-s-compliance">Plan S 
principles</a>) then you should select the gold OA route, and we will direct you to the compliant 
route where possible. For authors selecting the subscription publication route our standard licensing 
terms will need to be accepted, including our <a href="https://www.springernature.com/gp/open-
research/policies/journal-policies">self-archiving policies</a>. Those standard licensing terms will 
supersede any other terms that the author or any third party may assert apply to any version of the 
manuscript. 
 
Please note that Nature Research offers an immediate open access option only for papers that were 
first submitted after 1 January, 2021. 
 
If you have any questions about our publishing options, costs, Open Access requirements, or our legal 
forms, please contact ASJournals@springernature.com 
 
If you have posted a preprint on any preprint server, please ensure that the preprint details are 
updated with a publication reference, including the DOI and a URL to the published version of the 
article on the journal website. 
 
To assist our authors in disseminating their research to the broader community, our SharedIt initiative 
provides you with a unique shareable link that will allow anyone (with or without a subscription) to 
read the published article. Recipients of the link with a subscription will also be able to download and 
print the PDF. 
 
As soon as your article is published, you will receive an automated email with your shareable link. 
 
You can now use a single sign-on for all your accounts, view the status of all your manuscript 
submissions and reviews, access usage statistics for your published articles and download a record of 
your refereeing activity for the Nature journals. 
 
An online order form for reprints of your paper is available at <a 
href="https://www.nature.com/reprints/author-
reprints.html">https://www.nature.com/reprints/author-reprints.html</a>. Please let your coauthors 
and your institutions' public affairs office know that they are also welcome to order reprints by this 
method. 
 
Sincerely, 
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Senior Editor 
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