SUPPLEMENTARY MATERIAL

Use of Real-World Data and Physiologically-Based Pharmacokinetic Modeling to Characterize Enoxaparin Disposition in Children with Obesity

Running title: Real-World Data and PBPK Modeling of Enoxaparin in Children with Obesity

Jacqueline G. Gerhart¹, Fernando O. Carreño¹, Matthew Shane Loop¹, Craig R. Lee¹, Andrea N. Edginton², Jaydeep Sinha^{1,3}, Karan R. Kumar^{4,5}, Carl M. Kirkpatrick⁶, Christoph P. Hornik^{4,5}, and Daniel Gonzalez¹; on behalf of the Best Pharmaceuticals for Children Act – Pediatric Trials Network Steering Committee

¹Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; ²School of Pharmacy, University of Waterloo, Waterloo, ON, Canada; School of Medicine,
³Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; ⁴Duke Clinical Research Institute, Durham, NC, USA;
⁵Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA; ⁶Centre for Medicine Use and Safety, Monash University, Victoria, Australia.

Address correspondence to: Daniel Gonzalez, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Campus Box #7569, Chapel Hill, NC 27599-7569, USA. Tel: +1-919-966-9984; Fax: +1-919-962-0644; E-mail: daniel.gonzalez@unc.edu.

TABLE OF CONTENTS

1	SUPPLEMENTARY FIGURES	3
	Figure S1. Anti-Xa observed concentrations from RWD	. 3
	Figure S2. Evaluation plots for mixed-effects model, treatment dosing	.4
	Figure S3. Evaluation plots for mixed-effects model, prophylaxis dosing	. 5
	Figure S4. Adult PBPK model evaluation simulations	.7
	Figure S5. Pediatric PBPK model AFE plots	. 8
	Figure S6. PBPK-simulated anti-Xa exposure, 6 to < 12 years	10
	Figure S7. PBPK-simulated anti-Xa exposure, 2 to < 6 years	12
2	SUPPLEMENTARY TABLES 1	4
	Table S1. Pediatric exclusion criteria for the RWD.	14
	Table S2. Baseline data for RWD children, treatment dosing	15
	Table S3. Baseline data for RWD children, prophylaxis dosing	18
	Table S4. Population demographics of simulated children	21
	Table S5. Mixed-effects model parameters, prophylaxis dosing	22
	Table S6. Adult enoxaparin study summary	23
	Table S7. Adult PBPK-simulated clearance vs. dose	28
R	EFERENCES	29

1 SUPPLEMENTARY FIGURES

Figure S1. Anti-Xa dose-normalized concentration versus time after last dose for children without (a) and with (b) obesity. Dashed lines represent the mean dose-normalized anti-Xa 4-hour concentration.

Conc, concentration; IU, international unit

Figure S2. Residual (a), individual predicted versus observed concentration (b), and quantilequantile (c) evaluation plots for a linear mixed-effects regression model of variables on anti-Xa 4-hour concentration for children receiving enoxaparin for treatment.

Figure S3. Residual (a), individual predicted versus observed concentration (b), and quantilequantile (c) evaluation plots for a linear mixed-effects regression model of variables on anti-Xa 4-hour concentration for children receiving enoxaparin for prophylaxis.

Figure S4. PBPK model population simulations (n = 500) of enoxaparin concentrations digitized from adult studies. Shaded regions represent the 90% model prediction interval, and points are digitized observed enoxaparin concentrations with corresponding standard deviation values when available.

IV, intravenous; PBPK, physiologically-based pharmacokinetic; SC, subcutaneous

Figure S5. PBPK model AFE for pediatric participants from the real-world dataset versus obesity status, indication, age group, sex, and race. Dashed lines represent 2-fold error for reference. AFE was calculated using median simulated concentration. Boxes represent the median and IQR, and whiskers extend to $1.5 \times IQR$ with further outlying values represented as points. For panel (b), children with underweight, normal weight, overweight, obesity, and severe

obesity were defined as having a BMI percentile of < 5%, $\ge 5\%$ to 85%, $\ge 85\%$ to 95%, $\ge 95\%$ to 99%, and $\ge 99\%$, respectively.

AFE, average fold error; BMI, body mass index; IQR, interquartile range; PBPK, physiologically-based pharmacokinetic; Wt, weight

Figure S6. PBPK model simulated anti-Xa 4-hour concentration following twice-daily subcutaneous dosing of 0.2-1.5 mg/kg using TBW (a–b) or FFM (c–d) for children ages 6 to < 12 years without (a, c) and with (b, d) obesity (n= 1,000 children per group). Boxes

represent the median and IQR, and whiskers extend to $1.5 \times IQR$. Red and black dashed lines represent the target ranges for treatment (0.6–1.0 IU/mL) and prophylaxis (0.1–0.3 IU/mL) dosing, respectively.^{1,2}

FFM, fat-free mass; PBPK, physiologically-based pharmacokinetic; TBW, total body weight

Figure S7. PBPK model simulated anti-Xa 4-hour concentration following twice-daily subcutaneous dosing of 0.2-1.5 mg/kg using TBW (a–b) or FFM (c–d) for children ages 2 to < 6 years without (a, c) and with (b, d) obesity (n = 1,000 children per group). Boxes

represent the median and IQR, and whiskers extend to $1.5 \times IQR$. Red and black dashed lines represent the target ranges for treatment (0.6–1.0 IU/mL) and prophylaxis (0.1–0.3 IU/mL) dosing, respectively.^{1,2}

FFM, fat-free mass; PBPK, physiologically-based pharmacokinetic; TBW, total body weight

2 SUPPLEMENTARY TABLES

Starting participant count = 1,540		
Exclusion Criteria	N, Excluded	
On VAD	4	
On ECMO	19	
On dialysis	23	
Neoplasm diagnosis	158	
No height recorded	286	
No anti-Xa concentration recorded	378	
Only baseline sample(s)	13	
Extended TALD samples (> 80 hours)	18	
Implausible height or BMI record	45	
Ending participant count = 596		

Table S1. Exclusion criteria applied to the real-world dataset of children receiving enoxaparin.

BMI, body mass index; ECMO, extracorporeal membrane oxygenation; TALD, time after last dose; VAD, ventricular assist device

Table S2. Comparison of site distribution, laboratory measures, and concomitant medications for children with versus without obesity receiving enoxaparin for treatment.

Donomoton à	Children <i>without</i> Obesity	Children with Obesity	D volue b
rarameter *	(<i>n</i> = 415)	(n = 104)	P-value ~
SITE			
Site 1	86 (20.7%)	24 (23.1%)	
Site 2	210 (50.6%)	47 (45.2%)	
Site 3	53 (12.8%)	19 (18.3%)	0.31
Site 4	13 (3.1%)	6 (5.8%)	0.51
Site 5	30 (7.2%)	4 (3.8%)	
Site 6	23 (5.5%)	4 (3.8%)	
LABORATORY MEASURES			
Hemoglobin (g/dL)	11.3 (2.0) (7.5%)	11.1 (2.0) (9.6%)	0.31
Hematocrit (%)	33.8 (5.8) (7.5%)	33.7 (5.5) (9.6%)	0.66
Platelets (thousands/µL)	281 (145) (7.7%)	274 (149) (9.6%)	0.997
INR	1.27 (0.32) (26.7%)	1.24 (0.25) (37.5%)	0.33
BUN (mg/dL)	13.5 (7.9) (10.6%)	14.4 (10.0) (37.5%)	0.57
Serum creatinine (mg/dL)	0.49 (0.36) (10.4%)	0.51 (0.28) (13.5%)	0.38
CL _{creatinine} (mL/minute/1.73m ²) ^c	138.1 (51.5) (10.1%)	123.2 (37.0) (12.5%)	0.001 *
Absolute CL _{creatinine} (mL/minute) ^d	84.0 (41.2) (10.1%)	90.8 (45.9) (12.5%)	0.07
Total bilirubin (mg/dL)	0.77 (0.96) (30.1%)	0.69 (0.0.53) (41.3%)	0.43
Direct bilirubin (mg/dL)	0.53 (1.00) (65.3%)	0.30 (0.31) (75.0%)	0.06

Indirect bilirubin (mg/dL)	0.41 (0.54) (75.9%)	0.33 (0.45) (85.6%)	0.42
CONCOMITANT MEDICATIONS			
Aspirin	96 (22.6%)	25 (21.0%)	0.39
Bivalirudin	5 (1.2%)	1 (0.8%)	1.00
Heparin	162 (38.1%)	27 (22.7%)	0.27
Rivaroxaban	2 (0.4%)	0 (0%)	1.00
Steroids	146 (34.4%)	50 (42.0%)	0.09
Warfarin	51 (12.0%)	10 (8.4%)	0.31

* Statistically significant at the $\alpha = 0.05$ level.

^a Summary statistics are reported as mean (standard deviation) (% missing) for continuous variables and as count (%) for categorical variables. Laboratory measure summary statistics were calculated using each participant's average value across all encounters. Concomitant medications were tallied if the participant experienced it during any encounter.

^b Continuous variables were compared using Welch's t-tests, while categorical variables were compared using Pearson's χ^2 tests. A p-value < 0.05 is considered statistically significant. The results were similar when using Mann-Whitney U/Wilcoxon rank-sum tests, after testing for normality using Shapiro-Wilk, Kolmogorov-Smirnov, and Levene's tests (results not shown).

^c Estimated by the Bedside Schwartz equation (creatinine clearance = $0.41 \times \text{height [cm]} / \text{serum creatinine [mg/dL]}$)

^d Estimated by multiplying the estimated creatinine clearance by the Bedside Schwartz equation by BSA, as calculated by the Haycock equation (BSA = weight [kg] $^{0.5378} \times$ height [cm] $^{0.3964} \times 0.024265$), then dividing by 1.73.

BUN, blood urea nitrogen; BSA, body surface area; CL_{creatinine}, creatinine clearance; INR, international normalized ratio; IQR, interquartile range

Table S3. Comparison of site distribution, laboratory measures, and concomitant medications for children with versus without obesity receiving enoxaparin for prophylaxis.

Deve meter à	Children without Obesity	Children with Obesity	Db
Parameter "	(n = 78)	(n = 41)	P-value ³
SITE			
Site 1	15 (19.2%)	15 (36.6%)	
Site 2	34 (43.6%)	12 (29.3%)	
Site 3	4 (5.1%)	6 (14.6%)	0.08
Site 4	3 (3.8%)	2 (4.9%)	0.08
Site 5	14 (17.9%)	3 (7.3%)	
Site 6	8 (10.3%)	3 (7.3%)	
LABORATORY MEASURES			
Hemoglobin (g/dL)	10.8 (2.0) (7.7%)	10.7 (1.7) (7.3%)	0.60
Hematocrit (%)	32.2 (5.6) (7.7%)	32.3 (5.9) (7.3%)	0.89
Platelets (thousands/µL)	268 (117) (7.7%)	277 (149) (7.3%)	0.76
INR	1.21 (0.16) (41.0%)	1.25 (0.29) (51.2%)	0.83
BUN (mg/dL)	13.6 (6.9) (6.4%)	18.1 (18.0) (7.3%)	0.09
Serum creatinine (mg/dL)	0.51 (0.41) (6.4%)	0.72 (0.51) (7.3%)	< 0.01 *
CL _{creatinine} (mL/minute/1.73m ²) ^c	153.5 (89.0) (6.4%)	113.7 (48.9) (7.3%)	< 0.001 *
Absolute CL _{creatinine} (mL/minute) ^d	106.8 (78.4) (6.4%)	113.1 (58.4) (7.3%)	0.40
Total bilirubin (mg/dL)	0.79 (0.92) (23.1%)	0.96 (2.15) (34.1%)	0.64
Direct bilirubin (mg/dL)	0.57 (1.20) (62.8%)	0.87 (1.62) (85.4%)	0.52

Indirect bilirubin (mg/dL)	0.31 (0.32) (74.4%)	0.67 (0.59) (92.7%)	0.16
CONCOMITANT MEDICATIONS			
Aspirin	21 (26.3%)	15 (31.9%)	0.29
Bivalirudin	0 (0%)	0 (0%)	
Heparin	19 (23.8%)	12 (25.5%)	0.99
Rivaroxaban	0 (0%)	0 (0%)	
Steroids	31 (38.8%)	21 (44.7%)	1.00
Warfarin	5 (6.3%)	4 (8.5%)	1.00

* Statistically significant at the $\alpha = 0.05$ level.

^a Summary statistics are reported as mean (standard deviation) (% missing) for continuous variables and as count (%) for categorical variables. Laboratory measure summary statistics were calculated using each participant's average value across all encounters. Concomitant medications were tallied if the participant experienced it during any encounter.

^b Continuous variables were compared using Welch's t-tests, while categorical variables were compared using Pearson's χ^2 tests. A p-value < 0.05 is considered statistically significant. The results were similar when using Mann-Whitney U/Wilcoxon rank-sum tests, after testing for normality using Shapiro-Wilk, Kolmogorov-Smirnov, and Levene's tests (results not shown).

^c Estimated by the Bedside Schwartz equation (creatinine clearance = $0.41 \times \text{height [cm]} / \text{serum creatinine [mg/dL]}$)

^d Estimated by multiplying the estimated creatinine clearance by the Bedside Schwartz equation by BSA, as calculated by the Haycock equation (BSA = weight [kg] $^{0.5378} \times$ height [cm] $^{0.3964} \times 0.024265$), then dividing by 1.73.

BUN, blood urea nitrogen; BSA, body surface area; CL_{creatinine}, creatinine clearance; INR, international normalized ratio; IQR, interquartile range

Table S4. Population demographics for simulated participants with and without obesity who were used in enoxaparin PBPK model dosing simulations.

Domographies	Children without	Children with
Demographics	Obesity	Obesity ^a
Age (years)	8.9 (2.0, 18.0)	9.0 (2.0, 18.0)
Age group		
≥ 2 and < 6 years	1,000 (33.3%)	1,000 (33.3%)
\geq 6 and < 12 years	1,000 (33.3%)	1,000 (33.3%)
\geq 12 years	1,000 (33.3%)	1,000 (33.3%)
Weight (kg)	32.1 (9.5, 102.5)	45.1 (10.6, 179.1)
Height (cm)	135.8 (76.8, 200.2)	135.6 (74.4, 200.1)
BMI (kg/m ²)	17.6 (11.5, 29.7)	24.9 (17.9, 65.8)
BMI percentile (%)	68.3 (0, < 95.0)	98.1 (95.0 100.0)
Extended BMI (%)	83.3 (53.0, <100.0)	110.5 (100.0, 236.4)
Male	1,500 (50.0%)	1,500 (50.0%)

Values are medians (range) for continuous variables and counts (%) for categorical variables. Extended BMI is calculated as the participant's BMI divided by the 95th BMI percentile for a participant's age and sex, where children with an extended BMI \geq 100% are considered obese.

^a Simulated children with obesity were generated using a virtual population with increased overall body weight as determined by updated BMI-for-age growth curves and increased lean body weight, organ volume, blood flow, and corresponding effects on clearance processes as previously described.³

BMI, body mass index; PBPK, physiologically-based pharmacokinetic

Parameter	Estimate ^b	95% CI
Intercept (IU/mL)	0.33	(0.22, 0.44) *
Age (years)	-0.11	(-0.16, -0.06) *
Absolute dose (mg)	0.25	(0.19, 0.30) *
Extended BMI (%)	-0.002	(-0.05. 0.05)
Ethnicity – Not Hispanic	0.07	(-0.04. 0.18)
CL _{creatinine} (mL/minute/1.73m ²)	-0.03	(-0.07, 0.01)
Absolute dose * Extended BMI	-0.06	(-0.090.02) *

Table S5. Parameters for a linear mixed-effects regression model regressing anti-Xa 4-hour concentration onto key variables for children receiving enoxaparin for prophylaxis.^a

* Statistically significant at the $\alpha = 0.05$ level.

^a The regression model was developed using the R packages "lme4", "mice", and "broom.mixed".^{4–6}

^b Variables were centered on the median value and scaled by the standard deviation. A random slope was fitted for each participant and site. Missing CL_{creatinine} values were imputed using a predictive mean matching multiple imputation method.

BMI, body mass index; CI, confidence interval; CL_{creatinine}, creatinine clearance

Demographics	Value
Bara <i>et al</i> (1985) ⁷	
Patient population	Healthy volunteers
N	8
Age (years)	(21–29)
Weight (kg)	70.7 ± 4
Male	8 (100%)
Dose	40 mg IV bolus
Anti-Xa assay	Amidolytic
PK parameters,	
Reported; Observed (% error)	
$t_{1/2}$ (hours)	4.6; 2.3 (50.0%)
Cl (mL/minute)	24.2; 25.6 (5.8%)
AUC (mg*minute/mL)	1.16; 1.53 (31.9%)
C_{max} (µg/mL)	5.5; 9.2 (67.3%)
Bioavailability (%)	91; 98 (7.7%)
AFE	0.89
Collignon et al (1995) ⁸	
Patient population	Healthy volunteers
N	20
Age (years)	(18–30)
Weight (kg)	(65–92.4)
Male	20 (100%)
Dese	20 mg SC
Dose	40 mg SC
Anti-Xa assay	Amidolytic
PK parameters,	
Reported; Observed (% error)	

Table S6. Population demographics and PBPK model simulation results for digitized adult enoxaparin studies.

$t_{1/2}$ (hours)	
20 mg	3.95; 2.34 (40.8%)
40 mg	4.37; 2.33 (46.7%)
Cl/F (mL/minute)	
20 mg	16.67; 25.0 (50.0%)
40 mg	13.83; 25.2 (82.2%)
AUC (mg*minute/mL)	
20 mg	1.18; 0.80 (32.2%)
40 mg	2.74; 1.59 (42.0%)
t _{max} (hours)	
20 mg	2.35; 2.50 (6.4%)
40 mg	2.91; 2.50 (14.1%)
V _d /F (L)	
20 mg	5.50; 4.60 (16.4%)
40 mg	5.24; 4.64 (11.5%)
AFE	
20 mg	0.58
40 mg	0.52
Falkon <i>et al</i> (1995) ⁹	
Falkon et al (1995) 9 Health status	Healthy volunteers
Falkon et al (1995) 9 Health status N	Healthy volunteers 12
Falkon et al (1995) 9Health statusNAge (years)	Healthy volunteers 12 28.4 ± 2.4
Falkon et al (1995) 9Health statusNAge (years)Weight (kg)	Healthy volunteers 12 28.4 ± 2.4 76.3 ± 8.9
Falkon et al (1995) 9Health statusNAge (years)Weight (kg)Male	Healthy volunteers 12 28.4 ± 2.4 76.3 ± 8.9 12 (100%)
Falkon et al (1995) 9Health statusNAge (years)Weight (kg)Male	Healthy volunteers 12 28.4 ± 2.4 76.3 ± 8.9 12 (100%) 60 mg IV bolus
Falkon et al (1995) 9 Health status N Age (years) Weight (kg) Male Dose	Healthy volunteers 12 28.4 ± 2.4 76.3 ± 8.9 12 (100%) 60 mg IV bolus 30 mg SC
Falkon et al (1995) 9Health statusNAge (years)Weight (kg)MaleDose	Healthy volunteers 12 28.4 ± 2.4 76.3 ± 8.9 12 (100%) 60 mg IV bolus 30 mg SC 60 mg SC
Falkon et al (1995) 9Health statusNAge (years)Weight (kg)MaleDoseAnti-Xa assay	Healthy volunteers12 28.4 ± 2.4 76.3 ± 8.9 12 (100%)60 mg IV bolus30 mg SC60 mg SC60 mg SCAmidolytic
Falkon et al (1995) 9Health statusNAge (years)Weight (kg)MaleDoseAnti-Xa assayPK parameters,	Healthy volunteers 12 28.4 ± 2.4 76.3 ± 8.9 12 (100%) 60 mg IV bolus 30 mg SC 60 mg SC Amidolytic
Falkon et al (1995) 9Health statusNAge (years)Weight (kg)MaleDoseAnti-Xa assayPK parameters, Reported; Observed (% error)	Healthy volunteers 12 28.4 ± 2.4 76.3 ± 8.9 12 (100%) 60 mg IV bolus 30 mg SC 60 mg SC Amidolytic

30 mg SC	1.2; 0.6 (50.0%)
60 mg SC	0.63; 0.60 (0%)
t _{1/2} (hours)	
60 mg IV bolus	2.5; 2.1 (16.0%)
30 mg SC	5.3; 2.3 (56.6%)
60 mg SC	5.29; 2.34 (55.8%)
AUC (mg*minute/mL)	
60 mg IV bolus	3.01; 2.30 (23.6%)
30 mg SC	1.21; 1.20 (0.8%)
60 mg SC	2.82; 2.35 (16.7%)
C _{max} (µg/mL)	
60 mg IV bolus	13.0; 12.9 (0.8%)
30 mg SC	3.4; 3.3 (2.9%)
60 mg SC	5.4; 6.5 (20.4%)
t _{max} (hours)	
60 mg IV bolus	0.05; 0.15 (200.0%)
30 mg SC	2–3; 2.5
60 mg SC	3-4; 2.3
V _d (L)	
60 mg IV bolus	5.1; 4.7 (7.8%)
Bioavailability (%)	
30 mg	81.1; 98.0 (20.8%)
60 mg	95.6; 99.0 (1.0%)
AFE	
60 mg IV bolus	0.67
30 mg SC	1.11
60 mg SC	0.87
Frydman <i>et al</i> (1996) ¹⁰	
Patient population	Healthy volunteers
Ν	41
Age (years)	NR

Weight (kg)	NR
Male	NR
Dose	40 mg SC
Anti-Xa assay	NR
PK parameters	
Reported; Observed (% error)	
$t_{1/2}$ (hours)	5.2; 2.3 (55.8%)
AFE	0.72
Handeland <i>et al</i> (1990) ¹¹	
Patient population	Deep venous thromboembolism patients
N	15
Age (years)	(20–90)
Weight (kg)	(48–90)
Male	6 (40%)
Dose	1.0 mg/kg SC
Anti-Xa assay	Chromogenic
PK parameters,	
Reported; Observed (% error)	
t _{1/2} (hours)	3.0; 2.3 (23.3%)
AFE	0.95
Kuczka <i>et al</i> (2008) ¹²	
Patient population	Healthy volunteers
N	20
Age (years)	(27–37)
Weight (kg)	(66–90)
Male	10 (50%)
Dose	40 mg SC
Anti-Xa assay	Chromogenic
PK parameters,	
Reported; Observed (% error)	

AUC (mg*minute/mL)	1.60; 1.59 (0.6%)		
C _{max} (µg/mL)	3.9; 4.4 (12.8%)		
t _{max} (hours)	3.1; 2.5 (19.4%)		
AFE	0.91		
Sanderink <i>et al</i> (2002) ¹³			
Patient population	Healthy volunteers		
N	24		
Age (years)	(18–50)		
Weight (kg)	(50.3-82.1)		
Male	12 (50%)		
Dose	1.5 mg/kg SC		
Anti-Xa assay	Chromogenic		
PK parameters,			
Reported; Observed (% error)			
$t_{1/2}$ (hours)	4.85; 2.33 (52.0%)		
AUC (mg*minute/mL)	8.92; 5.02 (43.7%)		
C _{max} (µg/mL)	13.44; 8.63 (35.8%)		
t _{max} (hours)	3.5; 2.3 (34.3%)		
AFE	0.30		

Values shown as mean \pm standard deviation (range).

AFE, average fold error; AUC, area under the concentration-versus-time curve; Cl, clearance; Cl/F, apparent subcutaneous clearance; C_{max} , maximum concentration; IV, intravenous; k_a , absorption rate constant; NR, not reported; PBPK, physiologically-based pharmacokinetic; PK, pharmacokinetic; SC, subcutaneous; $t_{1/2}$, half-life; t_{max} , time of maximum concentration; V_d , volume of distribution; V_d/F , apparent subcutaneous volume of distribution

Table S7. Mean simulated clearance in virtual adults receiving SC and IV administration of enoxaparin is dose linear.

Dose (mg)	Simulated Clearance following SC Administration (mL/minute)	Simulated Clearance following IV Administration (mL/minute)	Bioavailability (%)
20	23.4	22.9	97.6
30	23.6	23.1	97.9
40	23.7	23.3	98.1
60	23.9	23.6	98.8
≈ 80 (1 mg/kg)	24.2	24.0	99.4
≈ 120 (1.5 mg/kg)	24.7	24.8	100.0

Note that the FDA label reported clearance in adults following SC and IV administration is 15 and 26 mL/minute, respectively.¹⁴

IV, intravenous; SC, subcutaneous

REFERENCES

- Garcia, D. A., Baglin, T. P., Weitz, J. I. & Samama, M. M. Parenteral anticoagulants -Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. *Chest* 141, e24S-e43S (2012).
- Geerts, W. H. *et al.* Prevention of venous thromboembolism: American College of Chest Physicians evidence-based clinical practice guidelines (8th edition). *Chest* 133, 381S-453S (2008).
- Gerhart, J. G. *et al.* Development and evaluation of a virtual population of children with obesity for physiologically based pharmacokinetic modeling. *Clin. Pharmacokinet.* 61, 307–320 (2022).
- 4. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. *J. Stat. Softw.* **67**, (2015).
- 5. van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. *J. Stat. Softw.* **45**, 1–67 (2011).
- Bolker, B. & Robinson, D. broom.mixed: Tidying methods for mixed models. https://CRAN.R-project.org/package=broom.mixed>(2021).
- Bara, L., Billaud, E., Gramond, G., Kher, A. & Samama, M. Comparative pharmacokinetics of a low molecular weight heparin (PK 10 169) and unfractionated heparin after intravenous and subcutaneous administration. *Thromb. Res.* 39, 631–636 (1985).
- Collignon, F. *et al.* Comparison of the pharmacokinetic profiles of three low molecular mass heparins - dalteparin, enoxaparin and nadroparin - administered subcutaneously in healthy volunteers (doses for prevention of thromboembolism). *Thromb. Haemost.* 73, 630–640 (1995).
- Falkon, L. *et al.* Bioavailability and pharmacokinetics of a new low molecular weight heparin (RO-11) - A three way cross-over study in healthy volunteers. *Thromb. Res.* 78, 77–86 (1995).

- Frydman, A. Low-molecular-weight heparins: An overview of their pharmacodynamics, pharmacokinetics and metabolism in humans. *Haemostasis* 26, 24–38 (1996).
- Handeland, G. F., Abildgaard, U., Holm, H. A. & Arnesen, K.-E. Subcutaneous heparin treatment of deep venous thrombosis: A comparison of unfractionated and low molecular weight heparin. *Eur. J. Clin. Pharmacol.* **39**, 107–112 (1990).
- Kuczka, K. *et al.* Biomarkers and coagulation tests for assessing the biosimilarity of a generic low-molecular-weight heparin: Results of a study in healthy subjects with enoxaparin. *J. Clin. Pharmacol.* 48, 1189–1196 (2008).
- 13. Sanderink, G. J. *et al.* The pharmacokinetics and pharmacodynamics of enoxaparin in obese volunteers. *Clin. Pharmacol. Ther.* **72**, 308–318 (2002).
- 14. LOVENOX[®] (Enoxaparin sodium solution for injection, manufacturer's standard). <https://pdf.hres.ca/dpd_pm/00047708.PDF> (2018). Accessed 27 May 2020.