

Supplementary Figure S1. Expression in ten melanoma cell lines of genes and gene families targeted by Decitabine/Guadecitabine (DNMT genes), Givinostat (HDAC genes), JQ1 or OTX-015 (BRD genes), GSK-126 (EZH2 gene, two different probes present for this gene in the Clariom S array), and Abemaciclib (CDK4/6 genes). Melanoma cells lines tested in this assay were: GML41, VRG100, BRM17, CST30, BNV13, CPN20, FRN39, GRD43, SLN91, MNT59.

Melanoma cell lines

Supplementary Figure S2. Melanoma differentiation profile of cell lines according to expression of seven subtype signatures and four main melanoma subsets as defined by Tsoi et al. [33]. Expression of all genes belonging to each of seven subtype signatures was evaluated by Clariom S arrays. For each cell line the pie charts indicate the % of genes within each subtype signature that have median centered expression >0.5 (in Log2 space). Red rectangles highlight the predominant differentiation profile of each cell line. MEL: melanocytic; NCL/TRANS: neural crest-like / transitory; TRANS/MEL: transitory / melanocytic; UND/NCL: undifferentiated / neural-crest-like. Cell lines were clustered by Cluster 3.0 according to the expression of genes in each subtype signature.

Supplementary Figure S3. Susceptibility of ten melanoma cell lines to the anti-proliferative effects of the indicated epigenetic drugs was evaluated at 96h by the MTT assays.

Figure S4. Methylation status of LINE-1, MAGE-A1 and NY-ESO-1 in 9 melanoma cell lines treated with guadecitabine. Genomic DNA was extracted from 9 melanoma cell lines (ARS2, BRB15, BRM17, CPN20, CST30, FRN39, GML41, SLN91, VRG100) either untreated or treated with guadecitabine as described in materials and methods and in Table S2. Real-time quantitative methylation-specific PCR analysis of LINE-1, MAGE-A1 and NY-ESO-1 promoters were performed on bisulfite modified genomic DNA using methylated- or unmethylated-specific primer pairs. Data are reported as % of LINE-1, MAGE-A1 and NY-ESO-1 methylation in guadecitabine-treated and untreated cells. Statistical analysis by paired T test.

Supplementary Figure S5. Volcano plot of differentially expressed genes in VRG100 and CST30 cell lines. Genes identified by circles and gene symbols highlight the divergent phenotypic profile of the two cell lines, with CST30 showing higher expression of several genes associated with a more differentiated state (e.g. *MITF, SOX10, PMEL, MLANA, TYR, DCT, ERBB3*) and VRG100 showing higher expression of genes associated with a more undifferentiated/mesenchymal state (e.g. *AXL, EGFR, ZEB1, TGFBI, SPOCK1, PVRL3, CTGF*).

Supplementary Figure S6. Whole genome gene modulation analysis by 4 epigenetic drugs (guadecitabine, givinostat, JQ1, GSK126) and by a control drug (abemaciclib) in two melanoma cell lines (top graphs: VRG100; bottom graphs: CST30). For each cell line and drug, quantitative data of gene modulation are shown as pie charts indicating the number of up-regulated (red), down-regulated (green) or not modulated (grey) genes and the % of genes passing the filter (FC |>1.2|, p<0.05). Scatter plots show extent of gene modulation by each drug (red: upregulated genes, green: downmodulated genes) in the two cell lines.

Supplementary Figure S7. Edwards-VENN diagram analysis of significantly modulated genes (upper panels, upregulated genes; lower panels, downregulated genes) in VRG100 (left hand panels) and CST30 (right hand panels) cell lines treated with guadecitabine (red rectangle), givinostat (blue rectangle), JQ1 (fuchsia peanut shape), GSK126 (green cogwheel) or abemaciclib (light blue circle). Numbers highlighted by a black frame represent genes modulated only by each of the drugs. All other numbers at the intersection of different colour-coded shapes represent genes co-modulated by more than one drug.

Nanostring cancer immune panel (731 immune-related genes)

Supplementary Figure S8. Original (manufacturer's classification) and revised gene classification of the NanoString nCounter PanCancer Immune Profiling panel. All genes in the Nanostring panel were re-classified for function by accessing the human gene database Genecards (at <u>http://Genecards.org</u>) and through literature search.

DNMT-i: Guadecitabine; HDAC-i: Givinostat; BET-i: JQ1; EZH2-i: GSK126; CDK4/6-i: Abemaciclib

Supplementary Figure S9. Quantitative analysis of Nanostring data in ten melanoma cell lines treated with the indicated drugs. DNMT-i: decitabine / guadecitabine; HDAC-i:Givinostat; BET-i: JQ1; EZH2-i: GSK-126; CDK4/6 i: Abemaciclib. Upper graphs: % of genes in the Nanostring panel upregulated (red histograms) or downmodulated (green histograms) with a treated/control expression ratio >|1.5|. Lower graphs: % of genes upregulated (red histograms) or downmodulated (green histograms) with a treated/control expression ratio >|2.0|. *: these two cell lines were treated with decitabine, the active metabolite of guadecitabine.

Supplementary Figure S10. Modulation of immune-related genes in melanoma cell lines by epigenetic drugs. Modulation of 731 genes in ten melanoma cell lines was assessed by the Nanostring Cancer Immune panel upon treatment with 4 epigenetic drugs and with the control drug Abemaciclib. Genes were clustered according to each of 21 functional classes. *: These two cell lines were treated with decitabine, the active metabolite of guadecitabine.

	Adhesion											
Cell lines \rightarrow	BRN	/17	VRG	100	GR	043	FRN	139	CPN	120	SLN	91
Genes	1Q1	OTX-015	101	OTX-015	1Q1	OTX-015	1Q1	OTX-015	JQ1	OTX-015	lQ1	OTX-015
CEACAM1		- 2										
CDH1	-			_								
ICAM3	~									-		
ICAM4						1 2						
ITGB4	G											
ITGAX												

GRD43	FRN39	CPN20	SLN91	Cell lines >	BRM17	VRG100
Apoptosis						
				IL7		
				IL12A		
				CSF1		
			-	IL12RB2		
				LIF		
				IL2RB		
				FLT3LG		
				IL16		

Chemokines and receptors

Cell lines \rightarrow	BRI	M17	VRG	5100	GR	D43	FR	N39	CP	N20	SL	N91
Genes	10r	OTX-015	īðr	OTX-015	1Dr	OTX-015	1Dr	OTX-015	1br	OTX-015	Ŋ	OTX-015
CCL2					_							
CCL17												
CCR1					_			(A)				
CXCL16	3					y - 2						
CCR2		-				-						-

Complement Cell lines → BRM17 VRG100 GRD43 FRN39 CPN20 SLN91 OTX-015 OTX-015 JQ1 OTX-015 OTX-015 OTX-015 OTX-015 enes 101 IQ1 101 IQ1 101 C1R C1S CFI Log2(Treated/Ctrl) -4 0 Δ

HLA/APM

Q1

OTX-015

1Q1

OTX-015

IQ1

Genes

CTSS

CD74

PSMB8 PSMB10

HLA-DMA PSMB9 NLRC5 HLA-DPA1 HLA-DPB1 MR1 TAPBP TAP2

GRD43

OTX-015

FRN39

JQ1 OTX-015

CPN20

Ŋ

OTX-015

SLN91

1Q1 OTX-

015

Supplementary Figure S11 NK/T-related

				TNF	/TNF	R fam	nily						
Cell lines \rightarrow	BRI	M17	VRG	5100	GR	D43	FR	N39	CP	N20	r	SLM	191
Genes	1DL	OTX-015	1DL	OTX-015	1Q1	OTX-015	1QL	OTX-015	1Q1	OTX-015		1Q1	OTX-015
TNFRSF10C													
TNFSF12													
TNFSF13													
TNFSF10													
TNFAIP3													1
TNFRSF14													

Transcriptional regulation Cell lines \rightarrow BRM17 VRG100 GRD43 FRN39 CPN20 SLN91 OTX-015 OTX-015 OTX-015 OTX-015 OTX-015 lQ1 IQ1 **1**01 **1**01 101 101

senes

PPARG

NFATC4

NFATC1

BATF

TFEB

OTX-015

Supplementary Figure S11. Comparison of immune-related gene modulation by BET inhibitors JQ1 and OTX-015. Modulation of selected genes within 11 functional classes by JQ1 and OTX-015 was assessed by the Nanostring Cancer Immune Panel.

GENE CLASS	GUADECITABINE	GIVINOSTAT	JQ1	GSK-126
Cancer testis	SSX1, MAGEB2, SSX4, CTCFL, CT45A1, CTAG1B, MAGEC2, DDX43, MAGEC1, MAGEA1, PASD1	TMEFF2, MAGEC2, CTCFL, MAGEC1, TTK, PBK	CT45A1, BAGE, PNMA1, PBK, CTCFL	SSX1, CT45A1
Class I/II Antigen Processing and Presentation	CD74, HLA-DMB, HLA-DPA1, HLA-DRB4	CD74, HLA-DRB3, HLA-DPA1, HLA-DMB, HLA- DPB1, HLA-DRB4, CD1D, HLA-DMA, HLA-DRA, MICB, HLA-B, HLA-DOB, PSMB10	CD1C, CD1D, TAPBP, HLA-DRA, NLRC5, HLA-DMA, PSMB9, HLA-DPA1, PSMB10, CD74, PSMB8, CTSS, TAP2, HLA-B, MR1, HLA-DRB4, TAP1	
Type I-II-III IFN system	IFI27, IFITM1, ISG20, IFNL2, IFITM2, IFNA7	IFITM1, IFNA7	IFITM1, MX1, OAS3, IFITM2, IFIT1, IFI27, ISG20, ISG15, IFIH1, IFI16, IFIT2	IFNG
Chemokines and receptors	CCL20, CXCL11, XCL2, CCR1, CXCL5, CCL2, CXCL2, CXCR6, CXCR4, CXCL14	CXCR4, CCL7, CCR6, CCL11, PPBP, CXCR3	CXCL3, CXCL2, CX3CR1, CCR2, CXCR3, CXCL13, XCR1, CXCL9, CXCL16, CCR1, CCL2, CCL17	PPBP, CCL11, CCR6
Cytokines,receptors and signaling	IL11, IL2RG, IL24, IL13RA2, IL1B, IL2RB, IL17B, Il18, Il10, IL17RB, IL1A, IL32, CSF2, IL22RA2, IL4R, IL23A, STAT4, IL8, LIF, IL15RA, IL6, IL22RA1, IRAK2, IL1R1, IL18R1, IL1R2	IL1B, SPP1, IL1A, II8, IL21R, IL7R, IL10RA, IL15, IL15RA, IL3RAIL12RB1, JAK3, IL16, IL1RL1, SIGIRR	IL12RA, IL8, IL17A, IL16, FLT3LG, IL12A, LIF, IL7, CSF1, IL12RB2, IL6, SIGIRR, JAK3, IL21R, IL1R1, IL24, IRAK1, OSM, IL4R, STAT6, IL6R, IL1RAP, IL13RA2, IL34, IL1RAPL2	IL2RB, SIGIRR, IL3RA, IL1RL1, IL32
TNF Super family	TNF, TNFRSF10C, TNFSF10, TNFSF11, TNFRSF1B, CD70, TNFRSF18, TNFSF15, TNFSF4, TNFSF13	CD70, TNFRSF11A, TNFSF10,TNFRSF1B, TNFRSF18, TNFSF15, TNFSF8	TNFRSF17, TNFRSF12A, TNFRSF8, TNFSF12, TNFRSF10C, TNFSF13, TNFSF10, TNFRSF14, TNFSF15, TNFSF13B, TNFAIP3, LTBR, TNFRSF11A, TRAF3, TNFSF11, TNFRSF13C	
POS-NEG costimulation	CTLA4, LAG3, ICOSLG, TIGIT, HAVCR2	CD274, CD40, HAVCR2, CD40LG	HAVCR2, PDCD1LG2, CD200, CD40, CD80, CD274, TIGIT	LAG3, CD40LG
Adhesion	PECAM1, ITGB4, SELPLG, ITGB2, ITGB3, ICAM2, ITGA2B, ITGAX,THBS1, EPCAM	ITGAX, SELL, ITGA2B, ALCAM, NCAM1, FN1, ITGB3, THBS1, TH1, ITGB4	CLEC5A, ITGB3, ALCAM, ITGA6, CD97, ITGAX, THY1, EPCAM, ICAM3, CDH1, CEACAM1	ITGA2B, SELPLG, AMICA1
Complement system	CFI, CFB, C4B, C8G, C6, MBL2, SERPING1, MASP1	CFD, CFI, C3, SERPING1, C1R	C8B, C1R, C1S, SERPING1, CFD, C2, CFI, CD55, CFB	MASP1, C6
TLR system	TLR4, TLR9, TLR2	TLR5	TLR10, TLR8, TLR9, TLR5, TLR3, TLR1, TLR6, LY96, MYD88, TLR4, TICAM2	
Intracellular signaling and RTKs	PIK3CG, INPP5D, ZAP70, AXL, SERPINB2, SOCS1, SH2D1B, TXK, LCK	SERPINB2, HCK, TXK, SH2D1B, INPP5D, LCK	SOCS1, HCK, MERTK, INPP5D, BTK, MAPK3, MAP3K5, SH2D1B, ITK, MAPK11, PIK3CD, AXL, LCK, MAP3K1	HCK, SH2D1B, SERPINB2
Transcriptional regulation	RORC, POU2F2, FOXJ1, EGR2, IRF7, PAX5, MNX1	EGR1, EGR2, MAF, IRF5, CREB5, TCF7, FOXP3, PAX5	MAF, EGR2, AIRE, IRF7, IRF4, PPARG, NFATC4, BATF, NFATC1, EOMES, TFEB, NFATC2, CEBPB, TP53, CREBBP, ATF1, PAX5, FOXP3	FOXJ1, TBX21, PAX5, AIRE
Inflammation regulation	SAA1, F2RL1, S100A7, NOS2A, PTGS2, CAMP, SPINK5, ANXA1, TXNIP, NOD2, ADORA2A, NLRP3, MEFV	S100A7, NOD2, F2RL1, APOE, PTGS2, TXNIP, NOS2A, PLA2G1B, MEFV, PYCARD	TXNIP, S100B, S100A7, SPINK5, IKBKE, PYCARD, CAMP, APOE, LRP1, ANP32B, ANXA1	MEFV, PLA2G1B, ADORA2A
Cell survival and apoptosis regulation	ATM, BCL6, CLU	ATM, CYFIP2, BCL6, CARD11, FAS, BIRC5, CLU	ATM, ATG12, CDKN1A, BID, BCL2L1, CASP8, BIRC5, FAS, CASP1	
T or NK receptors, markers and cytolytic factors	DPP4, CTSW, CD96, PRF1, SPN, CD4, KLRC2, GZMM, CD244, CD38, LCP1	KLRK1, KLRC2, GZMB, CD96, LCP1, KIR_Inhibiting_Subgroup_1, CD244, KLRD1	ENTPD1, CD8B, CD244, CD4, PTGDR2, DPP4, CD96, KLRK1, KLRC2	KIR3DL2, KIR_Inhibiting_Subgroup_1, GZMH, CD8B
Immune cells lineage/function/differ. markers	FCER1G, LY9, SLAMF1, SLAMF7, BST2, CD22, CD34, CD5, SH2D1A, SLAMF6, FCGR3A, CD79B, PTPRC, MS4A2	CD24, RAG1, CD36, PTPRC, PRG2, CD22, LTF, FCERIG, MS4A2, FCER2	BST2, SLAMF7, FCER1G, CD36, LTF, ADA, FCGR2A, BST1, RAG1, CD22, LILRB2, MME, FCER2, CD83, PLA2G6, MS4A2, FCER1A	CD5, FCER2, FCER1G, IGLL1, FCGR3A, FCER1A
Myeloid cell function and DC markers	CD14, TREM2, MST1R, THBD, NRP1, SLC11A1, CD207, CHIT1	CD14, TREM2, NRP1, CHIT1	CHIT1, NRP1, TREM2	MST1R, NCF4
NOT classified	LCN2, LAMP3, LRRN3, DMBT1, TPSAB1, PMCH, PLAU, PLAUR, SMPD3, HSD11B1, FPR2,FUT7, MUC1	NEFL, ABCB1, LAMP3, FEZ1, DMBT1, PLAUR, F12, MUC1	FPR2, NEFL, ABCB1, LAMP2, MUC1, F12, CTSH, CTSG, CTSL, SYT17, TPSAB1, PLAUR, DMBT1	F13A1

Supplementary Figure S12. **Immune-related signature of epigenetic drugs in melanoma**. The table shows the genes observed upregulated (red) or downmodulated (green) with the same direction of change in at least 6/10 cell lines and showing a Treated/Ctrl ratio >|1.5|.

Supplementary Figure S13. Outline of the strategy for quantitative analysis and visualization of western blot data. A. Normalized treated/control ratios were computed on the basis of background-adjusted density values. B,C. Treated/control ratio values were then converted to a color-coded strip allowing direct visualization of the effect of each drug on markers of interest. CTRL. Untreated cells; GUA: guadecitabine; GIV: givinostat; GSK GSK 126; ABEMA: abemaciclib; OTX:OTX-015.

Supplementary Figure S14. Quantitative western blot analysis and visualization of the modulation of LMP7 by epigenetic drugs in 11 melanoma cell lines. **A**. Original western blot images. **B**. Color-coded normalized treated/control ratios as defined in Suppl. Fig. S13.

Supplementary Figure S15. Pipeline of data analysis based on Upstream Regulators (UR) identified by IPA. A. In this schematic, squares represent genes, while circles represent URs. Circle color denotes predicted UR status (red: activation; green: inhibition). Square color denotes observed gene expression change (red: upregulation; green: downmodulation). An UR is any molecule that can have a downstream effect on gene expression. The IPA knowledge base, built into the application, identifies the relationships between any set of genes being observed as significantly modulated in the dataset and the UR that controls them (relationship measured through a P value of overlap between a set of genes and any given upstream regulator). **B**. Depending on the type of relationship between the set of genes and an UR, and on the observed changes in gene expression, IPA computes a Z score statistics whose meaning is to infer the activation status ("activated" or "inhibited") of the UR. Only Z scores greater than 2 or less than -2 were considered significant. **C**. For each drug, the overall UR profile can be identified in terms of identity of the molecules (UR1, UR2...URn) and of their predicted activation status. Different URs can then be clustered together based on the common biological pathways they belong. Finally, an inference can be made on the biological processes being modulated by each drug based on known relationships between the identified pathways.

4. Coagulation

U.R.	GUA	SIS	ß	GSK	ABE
F2					
F2R					

5. Colestherol synthesis, transport U.R. 5 8 8 8 4 INSIG2 INSIG1 SREBF2

SCAP

NPC2

ESR1

PTHLH PTGER2 INSR

racel ansd	lula uct	ar : ior	sig 1	nal		16. TGF	βfa	am	ily	
	GUA	GI<	Ŋ	GSK	ABE	U.R.	GUA	GIV	Ŋ	GSK
						TGFB1				
						TGFB3	\vdash			
						Tgf beta	\vdash			
						TGFB2	\vdash			
lex)						BMP6	\vdash			
()						BMP4	\square			
							-			_
						17. Trans regul	crip ati	otic on	ona	al
						U.R.	GUA	Si	Ŋ	GSK
						GLI1				
						PLAG1				
						TFDP1				
						SRF				
						HAND2				
						MYOCD				
						MRTFB				
						EGR1				
						KLF4				
						SPDEF				
						MEOX2				
						NEUROG1				
						CEBPB				
						OTX2				
Aitor	ho	nd	ria	ł		TBX2				
,				•		FOXM1				
func	tio	n				SAFB				
	٩ſ	≥	17	X	Ж	MYC				
	5	σ	<u> </u>	Ğ	A	MYCN				
						TWIST1				
						TRIM24				
						E2F3				
ress	Re	spo	ons	se		PPARGC1A				
	GUA	SI	ŋ	GSK	ABE	18. Unc	las	sifi	ed	
						U.R.	GUA	≥	Ŋ	GSK
						TGM2				
						ELAVL1				
						CYBA				
						CG				
						BSG				
						ALDH2				
						POR				
						Ige				
				-		ATP7B				
_				2		HBA1/HBA2				

ABE

ABE

ABE

Supplementary Figure S16. Classification of URs significantly modulated by at least two different drugs in melanoma cell line VRG100. URs significantly modulated by at least two different drugs were grouped into 18 functional classes. Each UR was selected based on a significant Z score (>|2| and a significant p value for association with specific sets of modulated genes by each drug. Z score values of each UR are shown by a color code indicating prediction of UR inhibition (blue) or prediction of UR activation (red). GUA: guadecitabine, GIV: givinostat, GSK: GSK-126; ABE: abemaciclib.

1. Angiogenesis,

F2 F2R

F3

C4BP

CR1L

MITF SOX4

КДМЗА

EP300

ACTL6A

BRD4

BRD7

EP400

KDM1A

KDM5A

KDM5B

RUVBL1

SIRT2

FN1

POSTN

SPARC

TP53

TP63

BRCA1

U.R.

12. Growth factors, RTK

receptors/ligands

SUA

GIV JQ1 GSK

UCP1

FHIT

FGF2

IGF1R

IGF2

EGFR

ERBB2 HGF PDGF BB

2. Apoptosis regulation

4. Cell cycle regulation

.

22. Unclassified

U.R.

GUV GSK GSK

21. Transcriptional regulation A ≥ E X H II P

Supplementary Figure S17

	0.111	G	G	5	0	<
Τ.	CREBBP					
	SP1					
	GLI1					
•	MEF2D					
-	XBP1					
	PML					
	TCF3					
-	E2F6					
	TCF4					
	ELF3					
	YAP1					
	TRIM24					
t.	DAXX					
1	KLF3					
	TWIST2					
-	EGR1					
	TCF7L2					
	PPARG					
-	TWIST1					
	MYBL2					
	SAFB					
	E2F2					
t	TFDP1					
t	TAL1					
1	E2F1	-				
t .	NCOA3	-				
t	FOXO1	-				
1	SPDEF					
4	E2E3	_	-			
-	FOXM1	_				
	E2f	+				
	IKZF1					
-	IKZF3					
	NEUROG1					
	TBX2					
	MYCN					
ł	MYC					
	114110					

Supplementary Figure S17. Classification of URs significantly modulated by at least two different drugs in melanoma cell line CST30. URs significantly modulated by at least two different drugs were grouped into 18 functional classes. Each UR was selected based on a significant Z score (>|2| and a significant p value for association with specific sets of modulated genes by each drug. Z score values are shown by a color code indicating prediction of UR inhibition (blue) or prediction of UR activation (red). GUA: guadecitabine, GIV: givinostat, GSK: GSK-126; ABE: abemaciclib.

JAK1

TEAD1

CTN

PTF1A

OTX2

Cytoplasn

Nucleus

TEAD2

Supplementary Figure S18. Summary of the major functional networks linking relevant upstream regulators emerging from IPA Core Analysis of genes modulated by four epigenetic drugs in the melanoma cell line VRG100. The graphical abstract algorithm selects and connects the most significant Upstream Regulators (UR) emerging from the IPA Core analysis. URs are shown according to subcellular localization. URs have a color code reflecting the activation Z-score value: URs predicted to be activated have a positive z-score (Z>2, p<0.05) and are colored blue. Relationships among URs are shown by color coded arrows as indicated in the legend.

А		Shared upstream regulators a in-vivo and	activated by Guadecitabine I in-vitro	Cond	nical nathway "Into	rforon signaling"
		In vivo	In vitro	Canc	fincal pathway linte	
Pathway	Upstream Regulator	Z score values, tumor nodules from treated vs control mice, cell line 195	Average Z score values, treated vs untreated melanoma cell lines	B Extracellular space	IFNY IFNYIFNYIFNYIFNY RO RB RG RB	IFN αβ IFNA FNA PD 1 PD
	IFNG	7.05	4.20	Cytoplasm		
	IFNA2	6.83	3.24		JAK1-WAK2" JAK1-WAK2"	TYK2 JAKA
	IFNL1	6.28	3.14		TC-PTP STATP SOCSI	TC-PTP
	IRF1	5.26	2.78			STAT2 STAT1
	lfnar	5.06	3.05			Y
	STAT1	4.97	3.68			
	EIF2AK2	4.88	2.85		STAT	STAT2
	SMARCA4	4.70	2.75		STATI	STAT
	IRF3	4.40	2.85			
	TGM2	4.08	2.89			
	DOCK8	3.30	3.03			
	TNF	3.26	4.60	Nucleus		
	TICAM1	3.19	3.56		PIAST TC-PTP	
	IL1B	3.15	4.06		STATE	STAT1
	SASH1	3.13	3.07	NF-KB	STAT	DRIP150 STAT2 IRF9
	SAMSN1	2.84	3.15	BCL-2	GAS	ISRE
	RELA	2.56	3.37	BAX		
_	ІКВКВ	2.53	3.30	BAK		TTA GASI IFITMIIFITM2 MX1 G1P2 G1P3 IFIT3 IRF9 IFI35 RSMB8
	DDX58	2.53	2.51			
	TLR7	2.50	3.71			
	TLR3	2.30	3.84			
	CD40LG	2.23	3.00			
	ARHGAP21	2.11	2.59			

Code	Pathway	
	Type-I/III IFN	
	NF-kB	
	TLR	

Supplementary Figure S19. Comparison of URs activated by guadecitabine in-vitro and in-vivo. A. Table of top URs activated by guadecitabine in tumor nodules from mice bearing a human melanoma xenograft (cell line 195) and treated with this drug. Z score values computed from gene expression data of treated mice vs control mice (first column) are compared, for each UR, to the average Z score value observed in vitro in melanoma cell lines treated with guadecitabine. B. Canonical pathway analysis of IFN- γ and IFN- α/β pathways modulated by guadecitabine in vivo in tumor nodules from treated vs control mice. Genes highlighted in red were observed as significantly upregulated by Guadecitabine.

Supplementary Figure S20. Comparison of Upstream Regulators activated by guadecitabine in melanoma cell line VRG100 vs a mesothelioma cell line and in melanoma cell line VRG100 vs hepatocarcinoma cell lines HEPG2 and SNU398. A, B. Scatter plot of URs activated by guadecitabine in melanoma vs mesothelioma (A) and in melanoma vs hepatocarcinoma cell lines (B, according to gene expression data retrieved from ref. 36). Guadecitabine UR signature molecules shown in this figure are highlighted with the same color code used in Fig. 5 to mark the biological function/pathway. *: identity of URs shown in the square in panel A.

Supplementary Figure S21. Prognostic significance of selected genes in the guadecitabine signatures in 41 TCGA tumor types. Negative Z-score values (coded in blue) indicate decreased risk. Positive Z-score values (coded in red) indicate increased risk.