
Response to reviewers 

We thank the reviewers for the careful reviews and constructive comments. Our answers are 
detailed in blue below. 

Reviewer #1:   

Roca-Martinez and coworkers have performed a computational analysis of RNA recognition 
motifs (RRMs) and RRM-RNA complexes in an effort to develop a scoring method for 
predicting and evaluating the probability of interaction between canonical RRMs and single-
stranded RNA. The authors use available sequence and structure information to obtain 
individual scoring matrices for commonly observed interacting positions in RRM and RNA 
sequences (identified through multiple-sequence alignments), describing the preference of 
different nucleobase types to interact with different residue types. While the question of 
understanding the physicochemical underpinnings of RNA-protein interactions and predicting 
and sculpting their sequence determinants is extremely timely and important, the comments 
below should be addressed in detail before the suitability of the manuscript for publication 
can be adequately assessed. 

Major comments: 

1. The description of the RRM-RNA scoring approach (p. 6), the very heart of the manuscript, 
is unclear and sloppy. Equation 2 is not consistent with the text and a proper explanation of 
the symbols and indices used is missing (denominator in the first term different from text, fn 
not explained, index i in denominator in the first term different from index J in the text etc.). 
Also, the explanations are given in an incomplete way e.g. the sentence “…is related to the 
number of times adenines interact with any other amino acid residue in position beta1-1” is 
missing the crucial qualifier “adenines at position 1”. This makes it hard to comprehend how 
the scores were actually calculated. 

The equation is now explained in a more detailed and precise manner, and the errors in the 
subscripts have been fixed. The example provided has also been rephrased (page 6). 

 
2. More importantly, the motivation and the physical foundation of the scoring function is not 
adequately explained. Centrally, the scores do not consider the frequency of amino-acid 
residues observed at a specific position (see e.g. the second term in Eq. 2), making it not 
symmetric when considering nucleotides and residues, respectively. In the example given on 
p. 6, the score should depend on the frequency of arginines interacting with adenines as well 
as with other nucleotides, but this is not included. 

The reason why the amino acid information is not part of the equation is because the GOR 
method, which we adapted for this work, employs an information difference equation (1). 
This information difference between the occurrence of two events, in our case the 
information of how often a specific nucleotide interacts with a specific residue (𝐼(𝑁𝑖 ; 𝑅𝐽)) and 
the information when that same nucleotide interacts with any other residue (𝐼(𝑛 − 𝑁𝑖 ; 𝑅𝐽)) is 
expressed by: 



𝐼(∆𝑁𝑖; 𝑅𝐽) = 𝐼(𝑁𝑖; 𝑅𝐽) − 𝐼(𝑛 − 𝑁𝑖; 𝑅𝐽) 

Where the individual terms based on the information function are: 
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As we use the difference between the two logarithms, the common terms that account for 

the number of specific residues in position j (𝑓𝑅𝑗
) and total number of residues in the dataset 

(R) disappear from the equation. After the simplification we therefore obtain the following 
equation. 
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The source of the equation is now carefully presented in the manuscript, explaining its 
adaptation from the GOR method in more detail. The above equations and explanatory text 
are also included in Supplementary Material (equations S1 to S4). 

 
3. Also, the scoring function shares resemblance with the standard quasi-chemical approach 
for defining knowledge-based potentials (Miyazawa, S. and Jernigan, R.L., Macromolecules, 
18, 534-552 (1985)), but with important differences. Namely, the authors here normalize the 
number of occurrences of a given event (e.g. presence of a nucleotide at a given site 
interacting with a given residue) by the number of all events other than that event (e.g the 
number of interactions of that nucleotide with all the other residues, except the one in 
question) and not the total number of all events (e.g. the number of interactions of that 
nucleotide with all residues). Why is this?  

This is also related with the underlying principle of the information equation we are using, 
where the occurrence of an event is divided by the non-occurrence of that event, so in our 
case when the nucleotide interacts with any other residue except for the one we are 
calculating the information difference for.  

The authors are motivated by the GOR method for analyzing secondary structural 
propensities, but it is not clear that the same formalism is applicable here – namely, in the 
GOR method one analyzes the linkage between an object (amino acid) and its property, while 
here one analyzes the propensity of two objects (amino acid and nucleotide) to co-occur in 
the same context (i.e. contact). This is related to the asymmetry discussed in point 1. 

The GOR method relies on the broadly used and well described information theory principles, 
applying the information difference equation. Therefore, our equation is also based on those 
principles, but we described it as an adaptation of the GOR equation as its usefulness was 



already proven for protein secondary structures in a time when few data were available. 
Despite the differences between the content, we think that the information difference 
equation is therefore applicable and useful in the RRM-RNA binding case, as illustrated in the 
different independent tests, and also given the limited amount of data available. 

4. The rather extensive literature on contact-based statistical potentials for nucleic-
acid/protein interactions should be adequately cited and discussed (see, for example Donald 
et al. Nucleic Acids Res., 2007, 35, 1039–1047. or Tuszynska et al. BMC Bioinformatics, 2011, 
12, 348 and other). 

The knowledge-based potentials are now introduced alongside the other protein/nucleic-acid 
prediction methods in the introduction. It is also briefly compared with our method along 
with reasoning why we opted for a simpler approach here. 

5. The authors refer to their randomized test set as a negative test set (p. 7). As there is no 
guarantee that many members of this set are not actual binders – the naming should be 
changed to something like “background set” or “randomized set”, but certainly not “negative 
set”. More critically, randomization was only done on the side of the RNA sequences (change 
of 1 nucleotide in the sequence) and not on the side of RRM sequences – this relates to the 
asymmetry of the whole approach as discussed above and must be properly defended. 

The negative set has been renamed to randomized set following the reviewer suggestion, as 
indeed, the randomly generated RNA sequence could still be a binder, a fact probably 
reflected by the overlap between the positive and randomized sets in Figure 6.  

The sequence randomization is only applied on the RNA sequence side because our focus is 
on predicting which single strand RNA fragments a particular RRM might bind. Changing the 
protein amino acids has two key problems: 

a) Our method focuses on a specific RNA binding mode, and big changes on the protein side 
might disrupt the RNA canonical binding. 

b) Changing (many) residues on the protein can lead to a non-functional protein that might 
not fold as an RRM, or might not fold at all. The amino acid residues are tightly 
interconnected, which is not the case for the RNA: even though the RNA might form 
secondary structure elements that are related to its function, we are here predicting binding 
for exposed single strand RNAs, enabling us to rationalise the randomisation of the sequence 
on the RNA end. 

 
6. Defining clusters as all complexes that have a certain similarity score with at least 25% of 
complexes in the cluster is quite low as a cutoff (p. 5). Of course, if one increases the cutoff, 
one risks not having sufficient samples for adequate statistics. The authors should defend the 
choice of their cutoff by providing quantitative evidence that it does not overly impact the 
scores i.e. the qualitative features of their method. 

We have included a more detailed explanation (page 5) and plots (Figure S3) to support the 
chosen cutoffs. The main goal was to keep as many entries as possible in the cluster while 



guaranteeing that the RNAs are still similar enough, keeping the balance between the 
variability and meaning of the clusters. Based on Figure S3, the selected cutoffs, 0.25 
minimum similarity score and 25% similar entries in the cluster, are on the interface between 
i) generating many very small clusters with few entries and ii) a few big clusters with many 
entries that are not related. Our choice was also complemented with the RMSD check 
between the RNAs raising the lowest similarity score in the studied cluster (Figure S2). 

7. For the validation of their scoring method the authors analyze two experimentally studied 
examples, while extensive data on RRM binding motifs obtained by different experimental 
methods exists and is not used. See for example the RNAcompete results (Ray, D., Kazan, H., 
Cook, K. et al, A compendium of RNA-binding motifs for decoding gene regulation, Nature, 
499, 172–177 (2013)) or the Attract database (PMID: 27055826). The authors should validate 
their results on an as extensive a set of experimental data as possible. 

We have now included a new validation section to the manuscript that uses all the 
RNAcompete data available for RRMs, consisting of 171 different proteins obtained from the 
CISBP-RNA Database. We have correlated the RNA experimental preferences with the 
RRMScorer predictions showing a clear correlation between both, particularly evident on 
single RRMs (Figure 11). The correlation for multiple RRMs and multiple RBPs is worse as there 
is only one RNA frequency matrix provided for each protein and in general different RRM 
domains (or other RBPs) contribute to the obtained nucleotide preferences. This is in fact a 
significant limitation when analysing biochemical binding data such as RNACompete and even 
more so when comparing binding data from CLIP experiments in cells where the presence of 
multiple domains and additional factors (including RNA binding proteins) is reflected in 
binding motifs identified and is often biased by the highest affinity interaction. 

Minor comments 

1. On p. 9, the authors state that “The unbiased number of observed contacts in the training 
set that is used to calculate the scores is also shown in the preference matrices (Figure 8 B,C), 
below each of the scores”. However, these numbers are not integers, so it is unclear what 
they actually refer to.   

Due to the large variability in the available structures for different UniProt entries, those 
numbers reflect the conservation of those contacts for each UniProt ID, which are then 
summed. For example, an arginine-uracil contact is observed in 2 different UniProt IDs. For 
one of the UniProt entries there is only one available structure, so the contact contributes 
with 1 to the count, as this is the only contact observed. For the other UniProt entry there are 
10 structures available but the contact is only observed in 8 out of the 10 structures, therefore 
the contribution of this UniProt ID is 0.8. The unbiased number of observed contacts for that 
interaction would be 1.8. With this procedure we avoid the bias towards the most studied 
proteins that are overrepresented in our dataset. The text has been updated to make this 
point clearer (page 9). 

 



2. Numbers in Figure 2 are not fully consistent with the text (1263 instead of 1259, 20 instead 
of 19; p. 3 and p. 4). 

The figure was updated, 1259 and 19 were indeed the right numbers for the total number of 
RRM domains and representative RRMs, respectively. 

3. It is stated that the "alignment for the RRM-RNA structures" is available in Dataset S6 (p. 
4). However, Dataset S6 contains the RRM-RNA similarity matrix. 

Fixed, RRM-RNA alignment uploaded and supplementary dataset names updated. 

4. In the caption of Table 1 (p. 28), the authors state that “The symbols reflect the score 
change after the E87N mutation”, however there are no symbols. 

Fixed, the missing symbols have been added. 

Reviewer #2:  

The paper describes construction of statistical based potential for scoring rrm domain 
interactions with specific RNA sequence. They use structural model of binding to identify 
contacting residues and then create sequence based interaction statistics. The authors 
acknowledge that the method is limited to already known binding modes of rna to RRM 
domains or very close to those. The authors validate the approach on leave out training set 
as well as few novel cases. The problem is still open - but there is a progress. I think the paper 
can be published. Would be interesting to compare the approach with AF like approach for 
modeling protein RNA interactions (see the link below). Also can protein rna models from this 
approach can be used to create alignment? 

https://www.biorxiv.org/content/10.1101/2022.09.09.507333v1.full.pdf 

RoseTTAFoldNA provides high accuracy models with atomic resolution for nucleic-acid 
complexes, which is of course extremely useful for proteins where it is clear which RNA the 
protein binds. However, in the case of RRMs, and probably other RBPs, it still remains a 
question, which RNA sequence a specific protein binds in the first place, and this is where our 
method can help, especially at the genome scale and for computational screening in protein 
design. Moreover, for many RNA binding domains, there is substantial variability in the 
recognition of specific nucleotides at a given position, which is captured by our analysis.  

It would be possible to calculate RoseTTAFoldNA models and cluster them to create larger 
RRM-RNA datasets, but we prefer to use only experimental structures as ground truth for our 
predictor given the inevitable uncertainty of predicted models. We agree though that follow-
up study to explore this would certainly be interesting. RoseTTAFoldNA is now also introduced 
and discussed in the manuscript. 

 

 

https://www.biorxiv.org/content/10.1101/2022.09.09.507333v1.full.pdf


Reviewer #3: 

The manuscript by Roca-Martinez RNA-recognition motifs discusses a scoring method to 
estimate binding between an RRM and a single stranded RNA, and the method aims to predict 
RRM binding RNA sequence motifs based on RRM protein sequence. The authors adopt a 
simpler statistical approach over deep learning method employed in several existing methods 
or better interpretability. Interesting results on discriminating of high affinity RNAs with the 
UAG core motif from lower affinity RNAs are reported. While the reported method serves a 
useful purpose towards the overall task of solving the problem of deciphering RNA 
recognition code of RRMs, there are a number of significant issues:  

1. The score described by Equation 2 is not explained and the physical underpinning cannot 
be found. The two log terms summed are the same as product of two ratio. But it is not clear 
what does it mean, and why does this make sense? Does it model some eperical binding? 
Conservation? Not clear. 

The manuscript text has been updated to provide further details on the source and meaning 
of the equation (page 6) with more information available on the equation development in 
supplementary materials (equations S1 to S4). This point is discussed in detail in comment #2 
to reviewer #1. 

Furthermore, why the denominator in the first term comes to be f_n - N_i,R_J ? This is not 
understandable.  

There was an error in the denominator in the first term as all the elements should have been 
in the subindex, 𝑓𝑛−𝑁𝑖,𝑅𝑗, representing any other contacts between Ni and Ri that is not the 

one under study. The proposed example to explain this term has also been improved to clarify 
it.  

2. There are numerous places where the method development depends on visual inspection. 
This raises serious issue of reproducibility. 

There are several parts in the text where visual inspection was mentioned, which we think 
served as a qualitative validation of the results rather than a quantitative approach on which 
we would base decisions - that would indeed represent a reproducibility problem. We 
enumerate the parts of the text where visual inspection plays a role to justify our decision: 

• It is used to verify the selected RRM families from PFAM. RRMs have a very conserved 
fold and instead of blindly using all the PFAM families listed under the RRM clan, we 
checked that the structures within were really RRMs with the correct fold. 

• To check that in the binding mode cluster definition, the pair of entries with the lowest 
similarity score were still similar in the orientation of the RNA with respect to the RRM. 
Aside from the visual inspection the RNAs were also aligned to each other (Figure S2) 
and the RMSD was computed for further evidence. 

• In two different parts of the text the term “visual inspections” was an over-
simplification of the actual procedure, in both cases referring to the alignment quality 
checks. Those parts have been rephrased accordingly in pages 8 and 9. 



3. The model appears to be rather restrictive and works only for cluster 0 and no binding 
mode change can occur. 

Indeed, we focus on our ‘cluster 0’, which captures what has been broadly described as the 
canonical RRM-RNA binding mode (2). We think that a better understanding of this binding 
mode is still needed and relevant, and despite this limitation, RRMs that fall in this binding 
mode can still bind a wide range of RNA sequences. We would have liked to study other 
clusters but the data scarcity did not allow us to develop an accurate method. 

 

4. The negative test should be strengthened and should include other entries 
if possible.  

This issue has also been similarly raised by reviewer #1 in comment #7. We have included a 
new validation section using all the RNAcompete data available for RRMs, consisting of 171 
different proteins obtained from the CISBP-RNA Database. Using this data, we reconstruct 
RNA sequences that show very little preference for the RRM under study, which can be 
considered as negatives, and show that RRMScorer is able to distinguish between better and 
worse binders. 

Other issues:  

1. p.4. "the number of unique positions between both nucleotides" It is not clear if the authors 
meant positions only in A, only in B, or both?  

It means the total number of different positions bound by A and B together. This is now 
clarified in the manuscript (page 5). 

2. Will the results sensitive to the specific threshold of 5A? 

The 5 angstrom threshold is a broadly used threshold for atomic interactions (3). Considering 
that we are using residue-nucleotide level connections, and are not trying to predict atom 
interactions, which could be more dependent on such a threshold, we do not expect 
significant changes in our scoring if this threshold changes. It is in this respect also important 
to not make the threshold too large, as this would start to pick up interactions with 
nucleotides neighbouring the closest (binding) one, and would so dilute the data.  

Minor issues 

1. Figures seems to be jumping around in order, and it makes it difficult to go back and forth. 

Figure 1 and 8 have 2 and 3 different subparts, respectively, that we indeed refer to in 
different parts of the text. We have changed Figure 8  and references to it accordingly, but 
have left Figure 1 as is, because we think it is useful to have a representative RRM-RNA 
complex (figure 1A) next to the RRM schematic representation (figure 1B), even if we refer to 
Figure 1B later in the text. 



 

List of the main changes made on the manuscript (all reviewers): 

• New discussion on the knowledge-based potentials in the introduction, comparing 
them with our method (page 2) 

• Introduction and discussion of RoseTTAFoldNA and how it could be coupled with 
RRMScorer (Introduction, page 2; Discussion, page 13) 

• Addition of a missing dataset with the RRM-RNA complexes aligned (Dataset S6) and 
renaming of the following datasets (Datasets S7 to S10) 

• New discussion on the cutoff effect for the RNA binding mode clustering. A new figure 
has been added on supplementary materials (Figure S2) and discussed to justify the 
cutoffs selection. 

• Much deeper discussion on the RRMScorer equation, how it is adapted from the 
information difference equation and its relationship with the GOR method (page 6). 
The development from the information difference equation to the final RRMScorer 
equation has also been added as supplementary materials (equations S1 to S4). 

• The error in the subscript of the RRMScorer equation has been fixed. 

• The negative set has been appropriately renamed to randomized set. 

• A new validation set has been added using RNAcompete data, the data processing is 
mentioned in the materials and methods section (page 7), and then the results are 
presented and discussed in the results and discussion sections respectively (page 11 
and page 13). 
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