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Abstract

Over the past 2 decades, functional imaging techniques have become commonplace in the study of 

brain disease. Nevertheless, very few validated analytical methods have been developed 

specifically to identify and measure systems-level abnormalities in living patients. Network 

approaches are particularly relevant for translational research in the neurodegenerative disorders, 

which often involve stereotyped abnormalities in brain organization. In recent years, spatial 

covariance mapping, a multivariate analytical tool applied mainly to metabolic images acquired in 

the resting state, has provided a useful means of objectively assessing brain disorders at the 

network level. By quantifying network activity in individual subjects on a scan-by-scan basis, this 

technique makes it possible to objectively assess disease progression and the response to treatment 

on a system-wide basis. To illustrate the utility of network imaging in neurological research, we 

review recent applications of this approach in the study of Parkinson disease and related 

movement disorders. Novel uses of the technique are discussed, including the prediction of 

cognitive responses to dopaminergic therapy, evaluation of the effects of placebo treatment on 

network activity, assessment of preclinical disease progression, and the use of automated pattern-

based algorithms to enhance diagnostic accuracy.

Metabolic Network Mapping in Brain Disease

Functional imaging techniques to measure regional cerebral blood flow (CBF) and 

metabolism, as well as other indices of energy consumption, have been used for many years 

to map changes in local neural activity associated with brain disease. Regional abnormalities 

have typically been detected by whole brain voxel-by-voxel searches to identify significant 

signal differences in comparisons of patients and healthy subjects. However, this mass-

univariate strategy is not designed to capture disease-related changes that occur at the 

systems level. This is especially relevant in the study of neurodegenerative disorders, which 

have been found to exhibit stereotyped connectivity changes involving discrete sets of brain 

regions.1 A number of multivariate strategies have been developed for systems-level 
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analysis of functional imaging data, particularly from the resting state.2,3 Spatial covariance 

analysis has proven particularly useful in characterizing specific network abnormalities in 

metabolic imaging data from patients with neurodegenerative disease.4 A major feature of 

this general approach has been the ability to quantify network activity in individual subjects 

by a single numerical measure. It is this particular attribute that has allowed for the 

quantitative assessment of the network-level changes that accompany disease progression 

and the response to treatment. This review will highlight the recent advances that have been 

made using spatial covariance analysis in the study of the parkinsonian movement disorders 

as an example of its broader use in translational neurology. In recent years, this approach has 

additionally advanced the understanding of the systems-level changes that underlie other 

neurodegenerative disorders, including Alzheimer disease5,6 and Huntington disease,7,8 as 

well as brain diseases without localized histopathological changes such as Tourette 

syndrome9 and the dystonias.10 Furthermore, we will emphasize new insights derived by 

applying this approach to studies of brain metabolism conducted in the resting state. In this 

vein, we note that of late a variety of connectivity-based approaches have been used to 

examine multiregional relationships in patients with these diseases undergoing activation 

paradigms during brain imaging. 11 Progress in this general field of investigation has been 

reviewed elsewhere.12

The work that we discuss is based largely on a computational technique known as the Scaled 

Subprofile Model (SSM).3,4,13 The operational details of this principal component analysis 

(PCA)-based method have been presented elsewhere.14 (Software is freely available at 

http://www.fil.ion.ucl.ac.uk/spm/ext/.) This particular approach is noteworthy in that resting 

imaging data from patients and control subjects are merged and analyzed as a combined 

group. Under these circumstances, measures of cerebral function often exhibit skewed log-

normal distributions, as is commonly encountered in biological systems, wherein individual 

values are small and non-negative, and possess relatively large variance.15 In this situation, 

variability in resting brain activity can be modeled as the multiplicative product of a large 

number of independent spatial elements. After removing the between-subject and between-

region variability in the natural log-transformed imaging data, SSM/PCA yields residual 

values, albeit small, that contain relevant biological signals that are independent of the 

global mean. In accordance with the log-normal distribution inherent in the model, global 

brain activity is represented by the geometrical mean of the voxel-wise measurements, and 

is, therefore, invariant under commonly used ratio scaling methods.14 Importantly, the 

model does not depend on prior assumptions regarding the functional intercorrelations 

between brain regions. Indeed, the resulting spatial covariance patterns (ie, the metabolic 

networks) are entirely data-driven, reflecting the relative contributions of all voxels within 

the covariance network, and are not limited to isolated clusters (blobs).

An advantage of this analytical approach is that these patterns are invariant in prospective 

cohorts. Their scalar expression in individual subjects (ie, the subject scores, which quantify 

network activity in each scan) can be directly utilized to test the model,14 to quantify rates of 

disease progression,16,17 and to evaluate objectively potential treatment effects.18,19 The 

algorithm identifies linearly independent (orthogonal) sources of variability in the imaging 

data. The resulting spatial covariance patterns are considered to be disease-related if the 

associated subject scores discriminate patients from controls according to stringent 
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prespecified criteria.14 Rigorous cross-validation procedures such as bootstrapping are 

typically performed to assess the stability of the extracted network topographies. 

Nonetheless, it is essential to understand that the relevance of a given candidate network is 

determined ultimately by independent replication in new populations. 4,20,21 The use of a 

particular covariance pattern as a biomarker can be supported by the presence of consistent 

correlations between quantifiers of its expression in individual patients and independent 

clinical, physiological, and/or genotypic descriptors of the disease process. 4,22 Even so, the 

network activity measure should be demonstrated to have a high degree of stability on test–

retest evaluation23 before further use as a reliable disease biomarker. Lastly, although not 

essential, it is very useful to demonstrate that the candidate network exhibits high sensitivity 

and specificity for the disease in question, as can be determined by long-term clinical 

evaluation, postmortem confirmation, or both.24

Abnormal Metabolic Networks in Parkinson Disease

Parkinson Disease-Related Covariance Pattern

Parkinson disease (PD) is characterized by both motor and nonmotor clinical manifestations. 

Network analysis of resting state images of brain metabolism acquired using [18F]-

fluorodeoxyglucose (FDG) positron emission tomography (PET) has led to the identification 

of several distinct spatial covariance patterns associated with the various clinical 

manifestations of the disorder. The prominent network abnormality seen in PD is 

characterized by increased pallidothalamic and pontine metabolic activity, associated with 

reductions in premotor cortex and in parietal association regions (Fig 1A). This PD-related 

metabolic pattern (PDRP) has been replicated in 7 previously reported populations of 

patients and healthy control subjects,4,20 and recently in 3 additional cohorts scanned using 

contemporary, commercially available PET devices (see Fig 1B). Of note, an abnormal 

spatial covariance topography homologous to the PDRP has been described in an 

experimental nonhuman primate model of parkinsonism.25 The spatial features of both the 

human and primate parkinsonism-related metabolic networks accord well with the 

distribution of synaptic changes that characterizes this movement disorder.26

In the absence of medication, measurements of PDRP expression made in scans of CBF are 

closely intercorrelated with corresponding network values computed in scans of cerebral 

glucose metabolism from the same subjects.27,28 Thus, PDRP expression can be quantified 

in cerebral perfusion scans acquired using PET,23,27 single photon emission computed 

tomography,29,30 and more recently with magnetic resonance arterial spin labeling (ASL) 

techniques.31,32 A significant correlation has been noted between off-medication PDRP 

scores measured with ASL magnetic resonance imaging (MRI) and FDG PET in the same 

subjects.31 That said, perfusion imaging techniques may not be optimal for network 

quantification in the presence of antiparkinsonian medications with substantial vascular 

effects (see below). To date, there is comparatively limited experience in using resting state 

functional MRI (fMRI) scans to identify and validate PD-related covariance topographies. 

The blood oxygen level-dependent signal reflects complex interactions between local 

neuronal activity, oxygen extraction, and CBF and blood volume, and the interpretation of 

fMRI-based network topographies may, therefore, not be straightforward. Recent reports 

Niethammer and Eidelberg Page 3

Ann Neurol. Author manuscript; available in PMC 2015 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



have been encouraging, suggesting that abnormal PD-related patterns are expressed in fMRI 

data, with spatial topographies similar to those described using PET methods.33,34

Clinical and Physiological Correlates of Network Activity

Prospective measurements of PDRP activity have revealed significant correlations with 

independent clinical severity ratings in multiple patient cohorts.4,30,35–37 In general, PDRP 

expression has been found to correlate with the akinetic–rigid manifestations of the disorder, 

rather than tremor.19,38,39 The unique functional concomitants of PDRP expression are 

highlighted by the association of network activity with measurements of subthalamic 

nucleus (STN) firing rate recorded intraoperatively during deep brain stimulation (DBS) 

surgery.22 On the whole, this network can be viewed as a representation of abnormal basal 

ganglia output, mediated largely through the STN and its efferent projections.40,41 Indeed, 

substantial reductions in PDRP activity have been noted following effective stereotaxic 

interventions targeting this structure for motor symptoms (see Fig 1C, shaded bars). 

Therapeutic STN lesioning (subthalamotomy) is associated with sustained PDRP reductions, 

and with concurrent normalization of baseline overactivity of the internal globus pallidus 

(GPi), ventrolateral thalamus, and dorsal pons.42 A similar degree of network suppression 

has been noted during STN DBS for advanced PD motor symptoms.37,43,44

Clinical outcome in individual patients has been found to relate closely to the degree of 

PDRP suppression observed during STN stimulation,37,43 and an analogous relationship has 

been noted following experimental STN adeno-associated viral vector glutamic acid 

decarboxylase gene therapy.18 Of note, a microlesion created by inserting the DBS electrode 

into the STN without electrical stimulation has been found to reduce metabolic activity at 

the target site, and remotely in the GPi and ventrolateral thalamus.45,46 Despite producing 

significant local metabolic changes in key PDRP regions, the STN microlesion did not 

substantially alter the activity of the network as a whole46 (see Fig 1C, second bar), nor did 

it produce lasting clinical benefit. These findings suggest that a critical threshold exists for 

significant network modulation to occur following treatment. Although isolated effects on 

regional brain function can be seen below this threshold, symptomatic improvement 

becomes evident only once a sufficient degree of change has occurred at the circuit level.

L-dopa–Induced Dyskinesia

Treatment-mediated suppression of PDRP activity has also been noted in response to L-dopa 

treatment (see Fig 1C, black bar).37,47 As with STN stimulation, the response of motor 

symptoms to L-dopa correlated with the degree of treatment-mediated network modulation 

that was observed.37,48 That said, side effects such as L-dopa–induced dyskinesia (LID) 

cannot be readily attributed to excessive suppression of PDRP activity by treatment. 37 

Rather, the possibility is emerging that LID is associated with localized microvascular 

changes in network regions, potentiated in all likelihood by chronic L-dopa exposure.49–51 

Consistent with this notion, we reported a marked dissociation between the effects of L-dopa 

on PDRP expression measured in scans of glucose utilization (reflecting treatment-mediated 

modulation of synaptic activity) and corresponding changes measured in scans of cerebral 

perfusion (reflecting hemodynamic responses to treatment) measured concurrently in the 

same patients.28 At a regional level, this phenomenon was most pronounced in the 
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putamen/GPi and dorsal pontine nodes of the PDRP network. Similar findings have been 

recently described using quantitative autoradiography in an experimental rat model of 

LID.52 Importantly, in these regions, flow–metabolism dissociation during L-dopa treatment 

was substantially greater in PD patients with LID, with larger hemodynamic responses to L-

dopa and higher on-medication CBF values than in their nondyskinetic counterparts. It is 

tempting to speculate that the specific regional changes observed with LID are a 

consequence of vascular endothelial growth factor upregulation51 giving rise to angiogenesis 

and abnormal blood–brain barrier permeability in susceptible network regions.28,49,52

Other PD-Related Metabolic Networks

Tremor-Related Covariance Pattern

Resting tremor is a common and important clinical feature of PD. The pathophysiology of 

tremor is thought to be different than that of bradykinesia or rigidity,53 with involvement of 

cerebellothalamocortical pathways in addition to corticostriatopallidothalamocortical motor 

circuits.54 This may explain why PDRP expression is not influenced by the presence or 

severity of coincident parkinsonian tremor.30,35,38,55 In a recent study, metabolic images 

from tremulous PD patients were acquired at baseline and following the suppression of 

tremor by stimulation of the ventral intermediate (Vim) thalamic nucleus.19 A novel spatial 

covariance mapping approach56 was applied to the paired on/off scan data from each patient 

to identify a network that was specifically related to parkinsonian tremor.19 The resulting 

PD tremor-related pattern (PDTP) was characterized by increased metabolic activity in the 

cerebellum and dorsal pons, primary motor cortex, and putamen (Fig 2A), brain regions 

known to be interconnected through the Vim thalamic nucleus.57,58 Prospective PDTP 

computations in an independent group of 41 PD patients revealed this network to be related 

specifically to the severity of parkinsonian tremor as opposed to akinetic rigidity.19 Tremor 

ratings correlated with PDTP expression and not with PDRP values measured in the same 

patients (see Fig 2B, top). Likewise, in this sample, PDTP expression was found to correlate 

with clinical ratings for tremor and not akinesia–rigidity (see Fig 2B, bottom).

The functional difference between these 2 PD-related metabolic networks was further 

highlighted in a comparison of the effects of Vim thalamic and STN stimulation on network 

activity during tremor suppression. 19 PDTP expression measured at baseline (off-

stimulation) was abnormally elevated in PD patients with implanted Vim thalamic or STN 

DBS electrodes (see Fig 2C, top). Whereas tremor was effectively abolished by stimulation 

at either target, akinesia and rigidity responded only to STN stimulation. Accordingly, 

abnormal baseline PDTP elevations were significantly reduced with either Vim thalamic or 

STN stimulation (see Fig 2C, bottom), although the magnitude of the network response was 

notably greater for the former intervention. Baseline PDRP elevations, conversely, were 

suppressed by STN DBS but not by Vim thalamic stimulation.19 These findings, and the 

significantly different longitudinal progression rates observed for PDRP and PDTP values,19 

support the view that these networks are functionally independent, both as disease 

biomarkers and as systems-level targets of intervention.
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PD Cognition-Related Metabolic Brain Network

PD is clinically defined by its motor features, but nonmotor symptoms are common and may 

begin early in the disease process.59 Spatial covariance analysis has been particularly useful 

in providing a network-level understanding of the changes in brain function that underlie the 

cognitive features of this disorder. Cortical metabolic reductions are often evident in 

cognitively intact PD patients, even before the initiation of antiparkinsonian therapy.60–62 

Network analysis has revealed a specific metabolic topography associated with cognitive 

functioning in nondemented PD patients. A significant spatial covariance pattern has been 

identified with reproducible correlations between individual subject expression and 

performance on tests of learning and memory.47,60,63 This PD-related cognitive pattern 

(PDCP) is characterized by metabolic reductions in the medial prefrontal, premotor, and 

parietal association regions, associated with relative increases in the cerebellar vermis and 

dentate nuclei (Fig 3A). Importantly, the results of both longitudinal and cross-sectional 

analysis of metabolic data from PD patients indicate that PDCP expression progresses at a 

slower rate than PDRP,4,16 reaching abnormal levels 4 to 6 years after symptom onset. 

Indeed, the longitudinal data suggest that significant regional abnormalities occur in frontal 

and parietal PDCP areas before the appearance of cognition-related network changes in 

these patients.17,60 These findings accord with the notion discussed above that clinical 

manifestations are linked to the appearance of significant abnormalities at the network level, 

as opposed to isolated changes in regional brain function. The role of specific 

neurotransmitters such as acetylcholine and serotonin in modulating PDCP expression is 

currently being examined. A number of studies have suggested that cognitive functioning in 

early PD is influenced by changes in the integrity of dopaminergic afferents to the caudate 

nucleus, which can vary considerably across patients.64–66 Recent evidence suggests that 

increases in PDCP expression are associated with loss of dopaminergic input to this 

structure and not the putamen. 67 That said, the magnitude of this correlation is relatively 

modest, suggesting that other factors are involved in determining baseline PDCP levels.

The clinical relevance of the PDCP is highlighted in a recent study of the cognitive response 

to L-dopa for the treatment of PD motor symptoms.47 In contrast to the PDRP, which is 

consistently modulated by effective antiparkinsonian interventions,37 PDCP expression is 

not altered by the treatment of motor symptoms—at least not at the group level.37,63 That 

said, the cognitive response to dopaminergic therapy may be influenced by baseline (ie, off-

medication) functioning.68 Consistent with this observation, L-dopa–mediated improvement 

in performance on the California Verbal Learning Test, a neuropsychological test of verbal 

learning and memory, was found to correlate with baseline PDCP expression (see Fig 3B). 

During L-dopa treatment, neuropsychological test performance improved in nondemented 

PD patients with elevated baseline network activity, with consequent normalization of these 

values (see Fig 3C, left). By contrast, L-dopa did not improve test performance in patients 

with normal baseline network activity, nor did PDCP expression change during treatment.

Of note, PDCP modulation may not be a universal concomitant of the cognitive treatment 

response. This is demonstrated by the absence of significant changes in PDCP activity in a 

group of PD patients with improved cognitive performance in response to placebo (see Fig 

3C, right).47 This suggests that brain networks other than the PDCP may be deployed in 
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response to placebo treatment to achieve a cognitive outcome of comparable degree to that 

observed with dopaminergic pharmacotherapy. Moreover, PET imaging with [N-

methyl-11C]2-(4′-methylaminophenyl)-6-hydroxybenzothiazole (Pittsburgh compound B) to 

measure the deposition of fibrillar protein aggregates in the brain may enhance the accuracy 

of network-based predictions of the cognitive response to antiparkinsonian therapy. 

Specifically, preliminary data (D.E., personal communication) suggest that treatment-

mediated PDCP modulation, and concomitant improvement in cognitive performance, does 

not always occur in patients with elevated baseline network expression (see Fig 3B, arrows). 

In such cases, network modulation during treatment may be limited by strategically 

positioned deposition of protein aggregates in key network regions (see Fig 3D).

Network Progression in Preclinical PD

As representations of the stereotyped changes in functional connectivity that underlie many 

of the neurodegenerative disorders, characteristic spatial topographies like that of the PDRP 

remain essentially unchanged with advancing disease.14 This contrasts with the results of 

univariate analysis of longitudinal imaging data in which regional differences vary 

considerably over time.5,16,17 In this regard, the continuous increases in network activity 

observed in early PD may reflect compensatory responses of the brain at the synaptic 

level.69,70 Alternatively, these changes may reflect systems-level abnormalities stemming 

from the neurodegenerative process itself.71 These 2 possibilities, however, are not mutually 

exclusive, and both can potentially coexist at early disease stages.

A recent analysis of progression data from unilaterally affected (ie, hemiparkinsonian) PD 

patients has provided some insight into this issue. In that study, network activity was 

quantified in the cerebral hemispheres ipsilateral and contralateral to the initially involved 

body side in scans acquired at baseline (within 2 years of diagnosis), and again after 2 and 4 

years of follow-up.17 Contrary to expectation, PDRP expression was significantly elevated 

in both hemispheres at all time points (Fig 4A). Moreover, network activity in the preclinical 

hemisphere (ie, on the side opposite the initially unaffected presymptomatic body side) was 

virtually identical in magnitude to that measured in the contralateral side (ie, in the 

hemisphere opposite the initially affected limbs). Of note, extrapolation of the longitudinal 

PDRP data supported the existence of a discrete interval of 3 to 5 years over which the 

network abnormality developed prior to clinical onset.17,71 Although this observation is 

consistent with a compensatory mechanism, data from cross-sectional patient cohorts 

suggest that PDRP increases continuously with advancing disease for at least 15 years after 

symptom onset.4,14,71

The symmetry of the metabolic network changes in early PD contrast with the asymmetric 

loss of putamen dopaminergic innervations and the lateralized clinical manifestations 

observed in these patients.17 This may be understood in light of the finding that metabolic 

activity in the regions with the greatest local contributions to the PDRP topography (ie, 

those with the highest voxel weights on the pattern: the globus pallidus, ventral thalamus, 

and dorsal pons) exhibited minimal side-to-side differences during disease progression.16 In 

other words, PDRP expression is influenced most by symmetrical disease- related changes 

occurring downstream from the site of the dopaminergic pathology. Although significant 
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correlations have been noted between whole-brain PDRP expression, Unified Parkinson 

Disease Rating Scale motor ratings, and putamen dopamine transporter binding (see Fig 

4B), these relationships are of moderate size, accounting for approximately only a third of 

the overall variance in each pair of measurements. These data suggest that the PDRP 

represents a specific feature of the neurodegenerative process that is largely independent of 

concurrent changes in clinical ratings and imaging measures of nigrostriatal dopaminergic 

function.

The demonstration that PDRP network progression is a linear process that begins 

preclinically and spans the period of symptom onset is critical if this measure is to be used 

as a biomarker in disease modification trials. The data from 2 separate longitudinal PD 

studies indicate that network progression proceeds at a constant rate for at least a decade 

after the start of motor symptoms, without a discernible placebo effect (see Fig 4C). 

Moreover, the effects of symptomatic dopaminergic therapy on network activity are 

relatively small in comparison with the effects of disease progression. Systematic effects of 

L-dopa treatment on the estimated PDRP progression rate are minimized by scanning 

patients 12 hours after the last medication dose (as is routinely done in our laboratory). 

Under these conditions, we found no difference in the rate of network progression computed 

in chronically medicated early stage patients relative to their age- and duration-matched 

counterparts who were initially drug-naive and started L-dopa treatment 1 to 2 years later 

(see Fig 4D). Based on the longitudinal data from our early stage cohort,16 we estimate that 

for a placebo-controlled clinical trial of a disease-modifying agent, approximately 56 early 

stage PD patients would need to be randomized to detect a 20% change in the PDRP 

progression rate with 80% power (α = 0.05) over 2 years. Analogous calculations can be 

performed using the PDCP as a potential biomarker in clinical trials directed at the cognitive 

manifestations of the disease.

Metabolic Brain Networks: Role in Differential Diagnosis

In recent years, there has been a growing interest in optimizing the design of clinical trials of 

new therapies for PD and other neurodegenerative disorders. This, in turn, has motivated 

efforts to improve the accuracy of diagnosis in the selection of suitable trial participants. 

Concerns regarding potential misdiagnosis are particularly relevant in the assessment of new 

interventions directed at patients with early stage disease, in whom clinical ascertainment 

may be challenging.72 To determine whether improved accuracy of assignment can be 

achieved using network methods, we studied 167 patients with parkinsonism who were 

referred for FDG PET because of uncertain clinical diagnosis.24 After imaging, all patients 

were followed for an average of 2.6 years before a final clinical diagnosis was made by a 

movement disorders specialist blinded to the imaging findings. Likelihoods of idiopathic 

PD, as well as multiple system atrophy (MSA), and progressive supranuclear palsy (PSP), 2 

causes of progressive parkinsonism that are frequently misdiagnosed as PD,73 were 

determined for each case using computed subject scores for the corresponding disease- 

related patterns (Fig 5A).74,75 Logistical regression analysis was used to classify each scan 

based upon the computed probabilities of disease conditions.24 The resulting group 

assignments were compared with the final clinical diagnosis using receiver operating 

characteristic analysis. Indeed, the pattern-based classifications proved to be very accurate, 
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with excellent positive predictive value (PPV) for discriminating PD from atypical 

parkinsonism (PPV ≥ 97%) and for differentiating MSA from PSP (PPV ≥ 91%). 

Importantly, both PPV and diagnostic specificity remained high (≥92%) when assessed in 55 

(33%) patients in this cohort with short (≤2 years) symptom duration. The utility of this 

pattern-based classification approach has recently been substantiated in an independent FDG 

PET study of 134 patients of clinically indeterminate parkinsonism, of whom 86 (64%) had 

symptoms for no more than 2 years. Using the same algorithm employed by Tang and 

colleagues, the investigators (Dr. M. Tripathi, personal communication) accurately 

discriminated PD from atypical parkinsonism (PPV ≥ 97%, specificity ≥ 97%), even in 

short-duration cases (see Fig 5B).

This network-based classification algorithm was recently used to screen participants in a 

phase II trial of STN gene therapy for advanced PD,76 and in the assessment of patients 

referred for more routine antiparkinsonian interventions such as STN DBS.77 Similar 

algorithms may prove to have utility in studies of prodromal parkinsonism. Rapid eye 

movement behavior disorder (RBD) has been found to presage the development of 

parkinsonism in approximately 60% of subjects followed for 5 years or longer.78 Indeed, 

several imaging studies have demonstrated presynaptic nigrostriatal dopaminergic 

dysfunction in RBD patients.79,80 Although this disorder can be viewed as a prodromal form 

of PD, it can also evolve into other synucleinopathies such as MSA and diffuse Lewy body 

disease. Network classification procedures may make it possible to differentiate among 

these diagnostic possibilities even before the onset of motor symptoms. For example, 2 RBD 

patients without clinical signs of parkinsonism underwent metabolic imaging, and PDRP 

and MSA-related metabolic pattern expression values were separately quantified in both 

cases (Fig 6A, B). Qualitative review of the individual case data indicated that the first RBD 

patient exhibited higher PDRP expression and lower MSA-related metabolic pattern 

expression than the second. Graphical display of the subject scores for the 2 patterns in each 

of these subjects and in the individual data from the independent PD and MSA reference 

groups81 (see Fig 6C) illustrates the utility of network- based classification in this 

circumstance. There was a clear difference between the 2 RBD subjects, with the former 

sorting with PD and the latter with MSA. Needless to say, the validity of image-based 

assignments in individuals with prodromal disease can only be determined following long-

term prospective evaluation of the subjects until distinguishing clinical features emerge.

Summary

Network analysis methods can be used to identify specific spatial covariance patterns 

associated with neurodegenerative diseases. These patterns likely reflect interconnected 

functional changes in multiple brain regions, relating to the underlying pathology, and 

potentially to compensatory responses. Once identified, disease-related metabolic networks 

can be quantified on an individual case basis and used as quantitative descriptors of disease 

severity and progression. Disease-specific networks can also aid in differential diagnosis, an 

approach that may prove useful in other brain diseases including dementia. Moreover, 

network activity can be modified by treatment, thereby facilitating the objective evaluation 

of new therapies for these disorders. Including metabolic network assessments in future 

clinical trials will define their ultimate role as disease biomarkers.
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FIGURE 1. 
Parkinson disease (PD)-related spatial covariance pattern. (A) PD-related metabolic pattern 

(PDRP) identified by spatial covariance analysis of metabolic brain images from 20 PD 

patients and 20 age-matched healthy volunteer subjects scanned with [18F]-

fluorodeoxyglucose (FDG) positron emission tomography (PET) using the GE Advance 

tomograph (4.0mm, full width at half-maximum [FWHM]) at The Feinstein Institute for 

Medical Research (Manhasset, NY). This pattern was characterized by increased metabolic 

activity (red) in the globus pallidus (GP)/putamen, thalamus, pons, cerebellum, and 

sensorimotor cortex, associated with relative reductions (blue) in the lateral premotor cortex 

(PMC) and parieto-occipital association regions.23 In this combined group, analyzed by 

principal component analysis, the PDRP was represented by the first principal component 

pattern (PC1, accounting for 19.5% of the subject × voxel variance), which constituted the 

largest effect in the data. The display of the voxel weights (ie, the regional loadings) on the 

resulting pattern were displayed at a reliability threshold of Z = 3, (p < 0.001; bootstrap 

estimation) and overlaid on T1-weighted magnetic resonance template images. (B) Region 

weights on PD-related spatial covariance patterns identified in 4 independent cohorts of 

patient and healthy control subjects scanned with FDG PET. Significant disease-related 

topographies from the different populations are depicted by colored lines connecting the 

loadings on 30 standardized regions of interest (ROIs) defined using an automated atlas.21 

The PDRP gold standard pattern (A) is represented by a red line. Additional disease-related 

metabolic patterns were subsequently identified by spatial covariance analysis of data from 

separate groups of PD patients and control subjects scanned using a Siemens Biograph 

PET/CT camera (4.5mm FWHM) at Huashan Hospital (Shanghai, China), the GE Discovery 

PET/CT camera (5.2mm FWHM) at the Institute of Nuclear Medicine and Allied Sciences 
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(New Delhi, India), and the Siemens HR+ PET camera (4.1mm FWHM) at Groningen 

University Hospital (Groningen, the Netherlands). These patterns are respectively depicted 

by green, light blue, and dark blue lines. Voxel weights on the PDRP exhibited a close 

correlation with corresponding regional values on the subsequent disease-related metabolic 

topographies (r ≥ 0.90, p < 0.001). Spatial covariance analysis was applied separately to 

combined group FDG PET data from the 3 independent validation samples, which were 

each comprised of approximately 20 PD patients and 20 age-matched healthy subjects. 

Disease-related metabolic patterns were identified in each cohort according to prespecified 

criteria provided elsewhere.14 In all 3 cohorts, the resulting PD covariance topography was 

represented by the largest effect in the data (PC1, accounting for between 16.0 and 20.9% of 

the subject × voxel variance). Region weights (y-axis) of absolute value ≥0.5 (dashed lines) 

denote ROIs in which local glucose metabolism contributed significantly to network activity 

(p < 0.025). (C) Treatment-mediated changes in PDRP expression (mean ± standard error) 

following stereotactic surgical interventions (shaded bars) targeting the subthalamic nucleus 

(STN): microlesion (n = 6),46 subthalamotomy (n = 6),43 and deep brain stimulation (DBS; 

n = 18).19 Changes in network expression during L-dopa (LD) administration (n = 18; solid 

bar)47 as well as the test–retest variability of this measure (n = 14; open bar)37 are depicted 

for comparison. Significant PDRP modulation was evident following subthalamotomy, STN 

DBS, and L-dopa treatment but not microlesion. **p < 0.01, ***p < 0.001 for the 

comparison of changes in PDRP expression with each intervention with those observed 

during test–retest evaluation, repeated measures analysis of variance. Adapted from 

Asanuma K, Tang C, Ma Y, et al. Network modulation in the treatment of Parkinson’s 

disease. Brain 2006;129:2667–2678, by permission of Oxford University Press; Pourfar M, 

Tang CC, Lin T, et al. Assess the microlesion effect of subthalamic deep brain stimulation 

surgery with FDG PET. J Neurosurg 2009;110:1278–1282, with permission from American 

Association of Neurological Surgeons; Mattis P, Tang CC, Ma Y, et al. Network correlates 

of the cognitive response to levodopa in Parkinson’s disease. Neurology 2011;77:858–865, 

with permission from Elsevier.
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FIGURE 2. 
Parkinson disease (PD) tremor-related spatial covariance pattern. (A) PD tremor-related 

metabolic pattern (PDTP) identified by spatial covariance analysis of [18F]-

fluorodeoxyglucose (FDG) positron emission tomography (PET) scans from 9 tremor-

dominant PD patients scanned at baseline and during ventral intermediate (Vim) thalamic 

nucleus deep brain stimulation (DBS).19 This pattern was characterized by increased 

metabolic activity in the anterior cerebellum/dentate nucleus (DN), dorsal pons, primary 

sensorimotor cortex (SMC), and the caudate/putamen. The display of the covariance map 

was thresholded at Z = 2.70, p < 0.01 and overlaid on T1-weighted magnetic resonance 

template images. (B) Top: Unified Parkinson Disease Rating Scale (UPDRS) tremor ratings 

correlated with subject scores for the PDTP (r = 0.54, p < 0.001), but not the PD-related 

metabolic pattern (PDRP; r = 0.25, p = 0.16). The correlation between tremor and network 

activity was significantly greater for the PDTP values relative to PDRP (p < 0.05, multiple 

linear regression). Bottom: Although PDTP expression correlated with UPDRS tremor 

ratings, these values did not correlate with concurrent ratings for akinesia and rigidity from 

the same patients (r = 0.23, p = 0.15). Moreover, the correlation between PDTP expression 

and clinical disability was significantly greater for the tremor ratings relative to akinesia/

rigidity (p < 0.01, multiple linear regression). (C) Top: PDTP expression (mean ± standard 

error [SE]) was elevated at baseline (off-stimulation) in PD patients treated with either Vim 

DBS (n = 9, black) or subthalamic nucleus (STN) DBS (n = 9, gray), compared with 

corresponding values from healthy control subjects (n = 20, white). There was a significant 

difference in PDTP expression across groups (p < 0.001, 1-way analysis of variance 

[ANOVA]), with comparable elevations in pattern expression in the 2 patient cohorts. **p < 

0.005, ***p < 0.001, Student t tests relative to the healthy control subjects. Bottom: 

Treatment-mediated changes in PDTP expression (mean ± SE) in the Vim thalamic DBS 

(black), STN DBS (gray), and test–retest (white) patient groups. The degree of PDTP 

modulation differed across the 3 groups (p < 0.001; 1-way ANOVA), with both Vim 

thalamic and STN stimulation providing significant reductions in network activity (Vim 

DBS, ***p < 0.001; STN DBS, **p < 0.01).19 Of note, the change in PDTP expression 
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during Vim thalamic DBS was larger than with STN stimulation (p < 0.05, post hoc test). 

Reprinted from Mure H, Hirano S, Tang CC, et al. Parkinson’s disease tremor-related 

metabolic network: characterization, progression, and treatment effects. Neuroimage 

2011;54:1244–1253, with permission from Elsevier.
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FIGURE 3. 
Parkinson disease (PD) related cognitive pattern (PDCP). (A) Identified by spatial 

covariance analysis of [18F]-fluorodeoxyglucose (FDG) positron emission tomography 

(PET) scans from 15 nondemented PD patients with mild to moderate motor symptoms. 

This pattern was characterized by reduced metabolic activity (blue) in the rostral 

supplementary motor area (pre-SMA), precuneus, and posterior parietal and prefrontal 

regions, with relative increases (red) in the cerebellar/dentate nucleus (DN).63 The display of 

the covariance map was thresholded at Z = 2.44, p < 0.01 and overlaid on T1-weighted 

magnetic resonance template images. PMC = premotor cortex. Reprinted from Huang C, 

Mattis P, Tang C, et al. Metabolic brain networks associated with cognitive function in 

Parkinson’s disease. Neuroimage 2007;34:714–723, with permission from Elsevier. (B) 

Relationship between baseline PDCP expression and L-dopa–mediated changes in verbal 

learning performance. Higher baseline PDCP scores correlated with greater improvement in 

cognitive functioning during L-dopa treatment (r = 0.70, p < 0.005; n = 17). Patients with 

meaningful improvement in verbal learning performance during treatment (defined by an 

independently determined Reliable Change Index [RCI]82 for this psychometric measure47) 

are depicted by squares; those without meaningful change are depicted by triangles. The 

horizontal dashed line represents the RCI cutoff of 0.44 for verbal learning test 

performance 47; the vertical dashed line represents the estimated minimal baseline network 

expression value of 1.01 associated with a meaningful cognitive response to medication. The 

red symbols denote 2 patients who in addition to FDG PET, underwent PET imaging with 

[N-methyl-11C]2-(4′-methylaminophenyl)-6-hydroxybenzothiazole (Pittsburgh compound B 

[PiB]) for the assessment of cortical protein aggregates. (C) Treatment-mediated changes in 

PDCP expression differed for the 8 PD patients (left) who exceeded the RCI cutoff for 

cognitive response to L-dopa as compared to 7 others (right) who exhibited a cognitive 

response of similar magnitude to placebo treatment (p = 0.02; 2 × 2 repeated measures 

analysis of variance).47 Significant PDCP modulation was observed in cognitive responders 

to L-dopa (**p < 0.01, post hoc test) but not to placebo (p = 0.38). B, C reprinted from 

Mattis P, Tang CC, Ma Y, et al. Network correlates of the cognitive response to levodopa in 

Niethammer and Eidelberg Page 18

Ann Neurol. Author manuscript; available in PMC 2015 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Parkinson’s disease. Neurology 2011;77:858–865, with permission from Elsevier. (D) 

Subject 1, with baseline PDCP expression of 2.19, was a cognitive responder to L-dopa by 

RCI criteria (B, arrow). This patient exhibited normal levels of [11C]-PiB binding (1.09, 

specific uptake ratio relative to the cerebellum; normal: 1.09 ± 0.10) in cortical areas with 

significantly low metabolic activity. By contrast, Subject 2, with baseline PDCP expression 

of 2.01, was a cognitive nonresponder to treatment (B, arrow). This patient exhibited 

elevated radioligand binding (1.43) in these hypometabolic regions. Thus, despite baseline 

PDCP elevations of similar magnitude in the 2 patients, Subject 2 additionally exhibited 

abnormal levels of protein aggregate binding in key network areas (see text). Maps of [11C]-

PiB binding (yellow-red) from the 2 subjects were overlaid on a statistical parametric map 

of abnormal metabolic reductions (blue) identified by voxel-wise comparison of FDG PET 

scans from 14 PD patients and 15 age-matched healthy volunteer subjects (p < 0.005, 

uncorrected). [11C]-PiB binding in hypometabolic cortical areas was quantified in the 2 

patients and compared with reference values measured in the corresponding scans from the 

healthy control cohort.
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FIGURE 4. 
Changes in Parkinson disease (PD)-related metabolic pattern (PDRP) activity with disease 

progression. (A) Time course of PDRP expression in the contralateral (squares) and 

ipsilateral (triangles) hemispheres of 15 early stage hemiparkinsonian patients scanned at 

baseline, and 2 and 4 years.17 On both sides, hemispheric PDRP expression was found to be 

abnormally elevated at each time point. Network activity increased linearly over time (p < 

0.001, repeated measures analysis of variance [RMANOVA]), rising in parallel on both 

sides. Broken lines denote the mean value (±1 standard error) for PDRP expression 

measured in 15 age-matched healthy control subjects. *p < 0.05, ***p < 0.001, Student t test 

comparisons of hemispheric values in patients relative to control subjects. Reprinted from 

Tang C, Poston K, Dhawan V, et al. Abnormalities in metabolic network activity precede 

the onset of motor symptoms in Parkinson’s disease. J Neurosci 2010;30:1049–1056, with 

permission from Society for Neuroscience. (B) Schematic showing significant correlations 

(p < 0.01) between changes in Unified Parkinson Disease Rating Scale (UPDRS) motor 

ratings, PDRP network activity, and striatal dopamine transporter binding during the 

progression of early stage PD. The gray areas indicate overlap between pairs of measures, 

represented by the strength (R2) of their within-subject correlations.16 The black area 

indicates the commonality (interaction effect) of the 3 measures. FPCIT=18F-FPCIT PET 

Reprinted from Eckert T, Tang C, Eidelberg D. Assessment of the progression of 

Parkinson’s disease: a metabolic network approach. Lancet Neurol 2007;6:926–932, with 

permission from Elsevier. (C) Time course of PDRP expression in 23 advanced PD patients 

(black line, right) randomized to sham surgery and followed for 1 year as part of a blinded 

clinical trial of subthalamic nucleus gene therapy.76 A significant linear increase in whole-

brain PDRP expression over time was observed in this group (p < 0.001, RMANOVA), 

which was in continuity (broken line) with network measurements (black line, left) obtained 

in a separate longitudinal study of early stage PD patients.16 By contrast, UPDRS motor 

ratings (gray line, right) declined in the sham-operated patient group (p < 0.001, 
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RMANOVA), compatible with placebo effect, whereas this measure increased in the 

longitudinal cohort of early PD patients (gray line, left). The left and right y-axes denote 

PDRP expression and UPDRS motor ratings, respectively. The x-axis denotes disease 

duration. Adapted from Tang C, Poston K, Dhawan V, et al. Abnormalities in metabolic 

network activity precede the onset of motor symptoms in Parkinson’s disease. J Neurosci 

2010;30:1049–1056, with permission from Society for Neuroscience. (D) Longitudinal 

changes in PDRP expression measured in 15 early stage PD patients.16 In this study, 8 of the 

subjects (circles) were drug-naive at baseline but were receiving chronic oral L-dopa/

carbidopa by the 2-year time point. The remaining 7 subjects (triangles) were chronically 

treated with L-dopa/carbidopa for at least 3 months before the initial time point. PDRP 

expression for the 2 groups was similar at baseline (p = 0.86) and at the subsequent 2 time 

points (p > 0.85). Importantly, the rate of network progression was similar for de novo and 

chronically treated subjects, indicating that the estimates were not altered by the introduction 

of symptomatic therapy midstudy (see text).
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FIGURE 5. 
Disease-related spatial covariance patterns for multiple system atrophy (MSA) and 

progressive supranuclear palsy (PSP). (A) Top: Multiple system atrophy-related metabolic 

pattern (MSARP) identified by spatial covariance analysis of [18F]-fluorodeoxyglucose 

(FDG) positron emission tomography (PET) scans from 10 MSA patients and 10 healthy 

volunteer subjects.74,81 This pattern was characterized by reduced metabolic activity (blue) 

in the putamen and the cerebellum. Bottom: Progressive supranuclear palsy-related 

metabolic pattern (PSPRP), identified by spatial covariance analysis of FDG PET scans 

from 10 PSP patients and 10 healthy volunteer subjects, was characterized by reduced 

metabolic activity (blue) in the medial prefrontal cortex (PFC), the frontal eye fields, the 

ventrolateral prefrontal cortex, the caudate nuclei, the medial thalamus, and the upper 

brainstem.74 The display of the MSARP and PSPRP covariance maps was thresholded at Z 

= 3.61, p < 0.001 and overlaid on T1-weighted magnetic resonance template images. 

Reprinted from Eckert T, Tang C, Ma Y, et al. Abnormal metabolic networks in atypical 

parkinsonism. Mov Disord 2008;23:727–733, with permission from John Wiley & Sons. (B) 

Receiver operating characteristic (ROC) curves showing accurate network-based 

classification of FDG PET scans from patients with parkinsonian symptoms of short 

duration (≤2 years) and indeterminate clinical diagnosis (see text). An ROC curve (red) from 

a cohort comprised of 55 short-duration patients24 disclosed accurate classification of the 

individual scans (area under the curve [AUC] = 0.93, p < 0.001; 95% confidence interval 

[CI], 0.86–0.99). Of these individuals, 30 were subsequently diagnosed clinically as having 

classical Parkinson disease (PD); the remaining 25 were diagnosed with either MSA (n = 

11) or PSP (n = 14). The validity of the approach is supported by findings from a separate 

group of 86 patients with clinically indeterminate parkinsonism of short duration (≤2 years; 

M. Tripathi, personal communication). Members of this testing group were individually 

classified based on their FDG PET scans according to the same diagnostic algorithm in the 

first group. An ROC curve (blue) based on these data disclosed a similar degree of 

diagnostic accuracy (AUC = 0.96, p < 0.001; 95% CI, 0.91–0.99) for the second group. Of 
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these patients, 47 were subsequently diagnosed as having PD; the remaining 39 patients 

were found to have either MSA (n = 18) or PSP (n = 21).
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FIGURE 6. 
Network activity in presymptomatic patients with rapid eye movement (REM) sleep 

behavior disorder. (A) Parkinson disease (PD)-related metabolic pattern (PDRP) expression 

measured in 2 REM-sleep behavior disorder (RBD) patients without clinical signs of 

parkinsonism. These values were compared with corresponding measurements81 (mean ± 

standard error [SE]) from 20 PD patients (light gray) and 22 multiple system atrophy (MSA) 

patients (8 (dark gray) with short (≤2 year) symptom duration and 14 (black) with longer (>2 

year) symptom duration). PDRP values were abnormally elevated in the PD patients (***p < 

0.001, Student t test comparison with values [white] from 20 age-matched healthy control 

subjects), but not in their MSA counterparts. PDRP expression was higher in the first RBD 

subject (red square) than in the second (blue square). (B) MSA-related metabolic pattern 

(MSARP) expression in the 2 RBD patients compared with corresponding network values 

(mean ± SE) in the PD, MSA, and healthy control groups (see above). MSARP expression 

was abnormally elevated in the MSA patients (***p < 0.001, Student t test comparison with 

healthy control values), but not in their PD counterparts. MSARP expression was higher in 

the second RBD than in the first. (C) Bivariate scatter plot depicting individual PDRP and 

MSARP expression values for the PD (triangles) and MSA (circles) subjects; the 2 RBD 

patients are represented by red and blue squares (see above). Based on subject scores for the 

2 patterns, the first RBD patient is seen to cluster with the PD group (dotted circle), whereas 

the second clustered with the MSA group (dotted ellipse). Of note, both RBD subjects had 

network values at the low end of the range for their assigned categories, consistent with their 

presymptomatic status (see text).
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